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Slow vs. Fast Fibonacci

We informally characterized our two Fibonacci algorithms

◮ FIBONACCI is exponential in n

◮ SMARTFIBONACCI is (almost) linear in n

How do we characterize the complexity of algorithms?

◮ in general

◮ in a way that is specific to the algorithms

◮ but independent of implementation details
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A Model of the Computer

An informal model of the random-access machine (RAM)

Basic types in the RAM model

◮ integer and floating-point numbers

◮ limited size of each “word” of data (e.g., 64 bits)

Basic steps in the RAM model

◮ operations involving basic types

◮ load/store: assignment, use of a variable

◮ arithmetic operations: addition, multiplication, division, etc.

◮ branch operations: conditional branch, jump

◮ subroutine call

A basic step in the RAM model takes a constant time
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1 if n == 0
2 return 0
3 elseif n == 1
4 return 1
5 else pprev = 0
6 prev = 1
7 for i = 2 to n
8 f = prev + pprev
9 pprev = prev
10 prev = f
11 return f

cost times (n > 1)

c1 1
c2 0
c3 1
c4 0
c5 1
c6 1
c7 n
c8 n − 1
c9 n − 1
c10 n − 1
c11 1
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Analysis in the RAM Model

SMARTFIBONACCI(n)

1 if n == 0
2 return 0
3 elseif n == 1
4 return 1
5 else pprev = 0
6 prev = 1
7 for i = 2 to n
8 f = prev + pprev
9 pprev = prev
10 prev = f
11 return f

cost times (n > 1)

c1 1
c2 0
c3 1
c4 0
c5 1
c6 1
c7 n
c8 n − 1
c9 n − 1
c10 n − 1
c11 1

T(n) = nC1 + C2 ⇒ T(n) is a linear function of n
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Input Size

In general we measure the complexity of an algorithm as a function of the size of
the input

◮ size measured in bits

◮ did we do that for SMARTFIBONACCI?

Example: given a sequence A = 〈a1, a2, . . . , an〉, and a value x, output TRUE if A
contains x

FIND(A, x)

1 for i = 1 to length(A)
2 if A[i] == x
3 return TRUE

4 return FALSE

T(n) = Cn
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Worst-Case Complexity

In general we measure the complexity of an algorithm in the worst case

Example: given a sequence A = 〈a1, a2, . . . , an〉, output TRUE if A contains two
equal values ai = aj (with i , j)

FINDEQUALS(A)

1 for i = 1 to length(A) − 1
2 for j = i + 1 to length(A)
3 if A[i] == A[j]
4 return TRUE

5 return FALSE

T(n) = C
n(n − 1)

2
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Constant Factors

Does a load/store operation cost more than, say, an arithmetic operation?

x = 0 vs. y + z

We do not care about the specific costs of each basic step

◮ these costs are likely to vary significantly with languages, implementations, and
processors

◮ so, we assume c1 = c2 = c3 = · · · = ci

◮ we also ignore the specific value ci, and in fact we ignore every constant cost factor
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Order of Growth

We care only about the order of growth or rate of growth of T(n)

◮ so we ignore lower-order terms

E.g., in

T(n) = an2 + bn + c

we only consider the n2 term and say that T(n) is a quadratic function in n

We write

T(n) = Θ(n2)

and say that “T(n) is theta of n-squared”
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Don Knuth’s A-notation

Let A(c) indicate a quantity that is absolutely at most c

Example: x = A(2)means that `x` ≤ 2

When x = A(y) we say that “x is absolutely at most y”

◮ warning: this does not mean that x equals A(y)!

◮ A(y) denotes a set of values

◮ x = A(y) really means x ∈ A(y)

Caluclating with the A notation

Examples:

◮ π = 3.14159265 . . . = 3.14 + A(0.005)

◮ A(3) + A(4) = A(7)

◮ x = A(3) ⇒ x = A(4), but x = A(4); x = A(3)

◮ A(2)A(7) = A(14)

◮ (10 + A(2))(20 + A(1)) = 200 + A(52) = 200 + A(100)

◮ A(n − 1) = A(n2) for all n
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If f (n) is such that f (n) = kA(g(n)) for all n sufficiently large and for some
constant k > 0, then we say that

f (n) = O(g(n))

◮ read “f (n) is big-oh of g(n)” or simply “f (n) is oh of g(n)”

Examples:

◮ 3n + 2 = O(n)

◮ 2
√
n + log n = O(n2)

◮ let TSF(n) be the computational complexity of SMARTFIBONACCI (the efficient
algorithm); then

TSF(n) = O(n)
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From O to Ω and Θ

If f (n) = O(g(n)) then we can also say that g(n) asymptotically dominates f (n),
which we can also write as

g(n) = Ω(f (n))

◮ which we read as “f (n) is big-omega of g(n)” of simply “f (n) is omega of g(n)”

Examples:

◮ 3n + 2 = Ω(log n)

◮ let TF(n) be the computational complexity of FIBONACCI (the inefficient algorithm);
then

TF(n) = Ω((1.4)n)

When f (n) = O(g(n)) and f (n) = Ω(g(n)) we also write

f (n) = Θ(g(n))
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Characterizing Unknown Functions

The idea of the O, Ω, andΘ notations is very often to characterize a function
that is not completely known

Example:

Let π(n) be the number of primes less than or equal to n

What is the asymptotic behavior of π(n)?

◮ π(n) = O(n) trivial upper bound

◮ π(n) = Ω(1) trivial lower bound

◮ π(n) = Θ(n/log n) non-trivial tight bound

In fact, the fundamental prime number theorem says that

lim
n→∞

π(n) ln n

n
= 1
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Θ-Notation

Given a function g(n), we define the family of functions Θ(g(n))

f (n)

c2g(n)

c1g(n)

n0

f (n) = Θ(g(n))
i.e., f(n) ∈ Θ(g(n))

“f (n) is theta of g(n)”

Θ(g(n)) = {f (n) : \c1 > 0,\c2 > 0,\n0 > 0

: 0 ≤ c1g(n) ≤ f (n) ≤ c2g(n) for all n ≥ n0}
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T(n) = 10+n
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T(n) = complexity of SMARTFIBONACCI ⇒ T(n) = Θ(n)

We characterize the behavior of T(n) in the limit

The Θ-notation is an asymptotic notation
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Given a function g(n), we define the family of functions O(g(n))

f (n)

cg(n)

n0

f (n) = O(g(n))
i.e., f(n) ∈ O(g(n))

“f (n) is big-oh of g(n)”

O(g(n)) = {f (n) : \c > 0,\n0 > 0

: 0 ≤ f (n) ≤ cg(n) for all n ≥ n0}
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Example

So, what is the complexity of FINDEQUALS?

FINDEQUALS(A)

1 for i = 1 to length(A) − 1
2 for j = i + 1 to length(A)
3 if A[i] == A[j]
4 return TRUE

5 return FALSE

T(n) = Θ(n2)

◮ n = length(A) is the size of the input

◮ we measure the worst-case complexity
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Ω-Notation

Given a function g(n), we define the family of functions Ω(g(n))

f (n)

cg(n)

n0

f (n) = Ω(g(n))
i.e., f(n) ∈ Ω(g(n))

“f (n) is omega of g(n)”

Ω(g(n)) = {f (n) : \c > 0, \n0 > 0

: 0 ≤ cg(n) ≤ f (n) for all n ≥ n0}
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Theorem: for any two functions f (n) and g(n),
f (n) = Ω(g(n)) ∧ f (n) = O(g(n)) ⇔ f (n) = Θ(g(n))

The Θ-notation, Ω-notation, and O-notation can be viewed as the “asymptotic”
=, ≥, and ≤ relations for functions, respectively

The above theorem can be interpreted as saying

f ≥ g ∧ f ≤ g ⇔ f = g

When f (n) = O(g(n)) we say that g(n) is an upper bound for f (n), and that g(n)
dominates f (n)

When f (n) = Ω(g(n)) we say that g(n) is a lower bound for f (n)
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Θ, O, and Ω as Anonymous Functions

We can use the Θ-, O-, and Ω-notation to represent anonymous (unknown or
unsecified) functions
E.g.,

f (n) = 10n2 + O(n)

means that f (n) is equal to 10n2 plus a function we don’t know or we don’t care
to know that is asymptotically at most linear in n.

Examples

n2 + 4n − 1 = n2 + Θ(n)? YES

n2 + Ω(n) − 1 = O(n2)? NO

n2 + O(n) − 1 = O(n2)? YES

n log n + Θ(
√
n) = O(n

√
n)? YES
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o-Notation

The upper bound defined by the O-notation may or may not be asymptotically
tight

E.g.,

n log n = O(n2) is not asymptotically tight

n2 − n + 10 = O(n2) is asymptotically tight

We use the o-notation to denote upper bounds that are not asymtotically tight.
So, given a function g(n), we define the family of functions o(g(n))

o(g(n)) = {f (n) : \c > 0, \n0 > 0

: 0 ≤ f (n) < cg(n) for all n ≥ n0}
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ω-Notation

The lower bound defined by the Ω-notation may or may not be asymptotically
tight

E.g.,

2n = Ω(n log n) is not asymptotically tight

n + 4n log n = Ω(n log n) is asymptotically tight

We use the ω-notation to denote lower bounds that are not asymtotically tight.
So, given a function g(n), we define the family of functions ω(g(n))

ω(g(n)) = {f (n) : \c > 0,\n0 > 0

: 0 ≤ cg(n) < f (n) for all n ≥ n0}


