Basics of Complexity Analysis:
The RAM Model and the
Growth of Functions

Antonio Carzaniga

Faculty of Informatics
Universita della Svizzera italiana

February 22,2018

m Informal analysis of two Fibonacci algorithms

m The random-access machine model

m Measure of complexity

m Characterizing functions with their asymptotic behavior

m Big-O, omega, and theta notations

Outline

running time (seconds)

60 -
50 A
40 A
30 -
20 -

10

O_* T T T T i i i i i
0 20 40 60 80 100120140 160 180 200

J

n

Slow vs. Fast Fibonacci

— Ruby

— Scheme

= Python

—_— C

e C-WiZ

— |aVa
C-gcc

SmartFibonacci

,—)

Slow vs. Fast Fibonacci

m We informally characterized our two Fibonacci algorithms

Slow vs. Fast Fibonacci

m We informally characterized our two Fibonacci algorithms

» FIBONACcI is exponential in n

» SMARTFIBONACCI is (almost) linear in n

Slow vs. Fast Fibonacci

m We informally characterized our two Fibonacci algorithms

» FIBONACcI is exponential in n

» SMARTFIBONACCI is (almost) linear in n

m How do we characterize the complexity of algorithms?

> in general

Slow vs. Fast Fibonacci

m We informally characterized our two Fibonacci algorithms
» FIBONACcI is exponential in n
» SMARTFIBONACCI is (almost) linear in n

m How do we characterize the complexity of algorithms?

> in general
» in a way that is specific to the algorithms

» butindependent of implementation details

running time (seconds)

60 -
50 A
40 A
30 -
20 -

10

O_* T T T T i i i i i
0 20 40 60 80 100120140 160 180 200

J

n

Slow vs. Fast Fibonacci

— Ruby

— Scheme

= Python

—_— C

e C-WiZ

— |aVa
C-gcc

SmartFibonacci

,—)

time

Slow vs. Fast Fibonacci

FIBONACC|
SMARTFIBONACC| s

A Model of the Computer

m An informal model of the random-access machine (RAM)

A Model of the Computer

m An informal model of the random-access machine (RAM)

m Basic types in the RAM model

A Model of the Computer

m An informal model of the random-access machine (RAM)

m Basic types in the RAM model

» integer and floating-point numbers
» limited size of each “word" of data (e.g., 64 bits)

A Model of the Computer

m An informal model of the random-access machine (RAM)

m Basic types in the RAM model

» integer and floating-point numbers
» limited size of each “word" of data (e.g., 64 bits)

m Basic steps in the RAM model

A Model of the Computer

m An informal model of the random-access machine (RAM)

m Basic types in the RAM model

» integer and floating-point numbers
» limited size of each “word" of data (e.g., 64 bits)

m Basic steps in the RAM model

» operations involving basic types

load/store: assignment, use of a variable

arithmetic operations: addition, multiplication, division, etc.
branch operations: conditional branch, jump

subroutine call

v

v

v

v

A Model of the Computer

m An informal model of the random-access machine (RAM)

m Basic types in the RAM model

» integer and floating-point numbers
» limited size of each “word" of data (e.g., 64 bits)

m Basic steps in the RAM model

» operations involving basic types

load/store: assignment, use of a variable

arithmetic operations: addition, multiplication, division, etc.
branch operations: conditional branch, jump

subroutine call

v

v

v

v

m A basic step in the RAM model takes a constant time

SMARTFIBONACCI(n)

1

2
3
4
5
6
7
8
9
0
1

ifn==

return 0

elseif n =

return 1
else pprev = 0

prev =1

fori=2ton

return f

f = prev + pprev
pprev = prev

prev = f

Analysis in the RAM Model

SMARTFIBONACCI(n)

1

2
3
4
5
6
7
8
9
0
1

ifn==

return 0

elseif n =

return 1
else pprev = 0

prev =1

fori=2ton

return f

f = prev + pprev
pprev = prev

prev = f

Analysis in the RAM Model

cost times(n > 1)

Analysis in the RAM Model

SMARTFIBONACCI(n) cost times(n > 1)
1 ifn-== C1 1
2 return 0 5 0
3 elseifn == G 1
4 return 1 Cs4 0
5 elsepprev =0 Cs 1
6 prev =1 Ce 1
7 fori=2ton G n
8 f = prev + pprev Cg n—1
9 pprev = prev Cy n—1

10 prev = f €10 n—=1

11 returnf C11 1

T(nN)=c1+c3+Cs+C+Cy1+nc;+(n—1)cg+ g+ C10)

Analysis in the RAM Model

SMARTFIBONACCI(n) cost times(n > 1)
1 ifn-== C1 1
2 return 0 5 0
3 elseifn == G 1
4 return 1 Cs4 0
5 elsepprev =0 Cs 1
6 prev =1 Ce 1
7 fori=2ton G n
8 f = prev + pprev Cg n—1
9 pprev = prev Cy n—1

10 prev = f €10 n—=1

11 returnf C11 1

T(n) =nC; + G, = T(n)is a linear function of n

Input Size

m In general we measure the complexity of an algorithm as a function of the size of
the input

» size measured in bits

Input Size

m In general we measure the complexity of an algorithm as a function of the size of
the input

» size measured in bits
» did we do that for SMARTFIBONACCI?

Input Size

m In general we measure the complexity of an algorithm as a function of the size of
the input

» size measured in bits
» did we do that for SMARTFIBONACCI?

m Example: given a sequence A = (a4, 03, ...,0,), and a value x, output TRUE if A
contains x

Input Size

m In general we measure the complexity of an algorithm as a function of the size of
the input

» size measured in bits
» did we do that for SMARTFIBONACCI?

m Example: given a sequence A = (a4, 0z, ..., 0,), and a value x, output TRUE if A
contains x
FIND(A, X)
1 fori = 1 to length(A)
2 if Ali] ==
3 return TRUE
4 return FALSE

Input Size

m In general we measure the complexity of an algorithm as a function of the size of
the input

» size measured in bits
» did we do that for SMARTFIBONACCI?

m Example: given a sequence A = (a4, 0z, ..., 0,), and a value x, output TRUE if A
contains x
FIND(A, X)
1 fori = 1 to length(A)
2 if Ali] ==
3 return TRUE
4 return FALSE

T(n) =Cn

Worst-Case Complexity

m In general we measure the complexity of an algorithm in the worst case

Worst-Case Complexity

m In general we measure the complexity of an algorithm in the worst case

m Example: given a sequence A = (a4, ay, ..., a,), output TRUE if A contains two
equal values a; = a; (with / #)

Worst-Case Complexity

m In general we measure the complexity of an algorithm in the worst case

m Example: given a sequence A = (a4, ay, ..., a,), output TRUE if A contains two
equal values a; = a; (with / #)

FINDEQUALS(A)

1 fori = 1tolength(A) — 1

2 forj = i+ 1 to length(A)
3 if Ali] == A[j]

4 return TRUE

5 return FALSE

Worst-Case Complexity

m In general we measure the complexity of an algorithm in the worst case

m Example: given a sequence A = (a4, ay, ..., a,), output TRUE if A contains two
equal values a; = a; (with / #)

FINDEQUALS(A)

1 fori = 1tolength(A) — 1

2 forj = i+ 1 to length(A)
3 if Ali] == A[j]

4 return TRUE

5 return FALSE

nn-—1)

T(n)=C >

Constant Factors

m Does a load/store operation cost more than, say, an arithmetic operation?

x=0 vs. y+z

Constant Factors

m Does a load/store operation cost more than, say, an arithmetic operation?

x=0 vs. y+z

m We do not care about the specific costs of each basic step

» these costs are likely to vary significantly with languages, implementations, and
processors

> SO, weassumec = =63 =+ =(

Constant Factors

m Does a load/store operation cost more than, say, an arithmetic operation?

x=0 vs. y+z

m We do not care about the specific costs of each basic step

» these costs are likely to vary significantly with languages, implementations, and
processors
> SO,Weassumec; =C =C3 =+ =(

» we also ignore the specific value ¢;, and in fact we ignore every constant cost factor

Order of Growth

m We care only about the order of growth or rate of growth of T(n)

Order of Growth

m We care only about the order of growth or rate of growth of T(n)

» so we ignore lower-order terms

E.g. in
T(n) = an® + bn + ¢

we only consider the n? term and say that T(n) is a quadratic function in n

Order of Growth

m We care only about the order of growth or rate of growth of T(n)

» so we ignore lower-order terms

E.g. in
T(n) = an® + bn + ¢

we only consider the n? term and say that T(n) is a quadratic function in n

We write

and say that “T(n) is theta of n-squared”

Don Knuth’s A-notation

m Let A(c) indicate a quantity that is absolutely at most c

Don Knuth’s A-notation

m Let A(c) indicate a quantity that is absolutely at most c

Example: x = A(2) means that |x| < 2

Don Knuth’s A-notation

m Let A(c) indicate a quantity that is absolutely at most c

Example: x = A(2) means that |x| < 2

m When x = A(y) we say that “x is absolutely at most y”

» warning: this does not mean that x equals A(y)!
» A(y) denotes a set of values
» x = A(y) really means x € A(y)

Don Knuth’s A-notation

m Let A(c) indicate a quantity that is absolutely at most c

Example: x = A(2) means that |x| < 2

m When x = A(y) we say that “x is absolutely at most y”

» warning: this does not mean that x equals A(y)!
» A(y) denotes a set of values
» x = A(y) really means x € A(y)

m Caluclating with the A notation

Examples:
» 1 =3.14159265. ..

Don Knuth’s A-notation

m Let A(c) indicate a quantity that is absolutely at most c

Example: x = A(2) means that |x| < 2

m When x = A(y) we say that “x is absolutely at most y”

» warning: this does not mean that x equals A(y)!
» A(y) denotes a set of values
» x = A(y) really means x € A(y)

m Caluclating with the A notation

Examples:
» 7 =3.14159265 ... = 3.14 + A(0.005)

Don Knuth’s A-notation

m Let A(c) indicate a quantity that is absolutely at most c

Example: x = A(2) means that |x| < 2

m When x = A(y) we say that “x is absolutely at most y”

» warning: this does not mean that x equals A(y)!
» A(y) denotes a set of values
» x = A(y) really means x € A(y)

m Caluclating with the A notation

Examples:
» 7 =3.14159265 ... = 3.14 + A(0.005)
> A(3) +A(4) =

Don Knuth’s A-notation

m Let A(c) indicate a quantity that is absolutely at most c

Example: x = A(2) means that |x| < 2

m When x = A(y) we say that “x is absolutely at most y”

» warning: this does not mean that x equals A(y)!
» A(y) denotes a set of values
» x = A(y) really means x € A(y)

m Caluclating with the A notation

Examples:
» 7 =3.14159265 ... = 3.14 + A(0.005)
» A(3) + A(4) = A(7)

Don Knuth’s A-notation

m Let A(c) indicate a quantity that is absolutely at most c

Example: x = A(2) means that |x| < 2

m When x = A(y) we say that “x is absolutely at most y”

» warning: this does not mean that x equals A(y)!
» A(y) denotes a set of values
» x = A(y) really means x € A(y)

m Caluclating with the A notation

Examples:
» 7 =3.14159265 ... = 3.14 + A(0.005)
» A(3) + A(4) = A(7)
» x =A(3) = x =A(4)

Don Knuth’s A-notation

m Let A(c) indicate a quantity that is absolutely at most c

Example: x = A(2) means that |x| < 2

m When x = A(y) we say that “x is absolutely at most y”

» warning: this does not mean that x equals A(y)!
» A(y) denotes a set of values
» x = A(y) really means x € A(y)

m Caluclating with the A notation

Examples:
» m =3.14159265... =3.14 + A(0.005)
> A(3) +A(4) = A(7)
» x =A3) = x =A(4), butx = A(4) = x = A(3)

Don Knuth’s A-notation

m Let A(c) indicate a quantity that is absolutely at most c

Example: x = A(2) means that |x| < 2

m When x = A(y) we say that “x is absolutely at most y”

» warning: this does not mean that x equals A(y)!
» A(y) denotes a set of values
» x = A(y) really means x € A(y)

m Caluclating with the A notation

Examples:
» m =3.14159265... =3.14 + A(0.005)
> A(3) +A(4) = A(7)
» x =A3) = x =A(4), butx = A(4) = x = A(3)
> ARA(7) =

Don Knuth’s A-notation

m Let A(c) indicate a quantity that is absolutely at most c

Example: x = A(2) means that |x| < 2

m When x = A(y) we say that “x is absolutely at most y”

» warning: this does not mean that x equals A(y)!
» A(y) denotes a set of values
» x = A(y) really means x € A(y)

m Caluclating with the A notation

Examples:
» m =3.14159265... =3.14 + A(0.005)
> A(3) +A(4) = A(7)
» x =A3) = x =A(4), butx = A(4) = x = A(3)
> A(2)A(7) = A(14)

Don Knuth’s A-notation

m Let A(c) indicate a quantity that is absolutely at most c

Example: x = A(2) means that |x| < 2

m When x = A(y) we say that “x is absolutely at most y”

» warning: this does not mean that x equals A(y)!
» A(y) denotes a set of values
» x = A(y) really means x € A(y)

m Caluclating with the A notation

Examples:

7 =3.14159265 ... = 3.14 + A(0.005)

A(3) +A(4) = A(7)

x=A3)=x=A(4), butx =A(4) =» x = A(3)
A(2)A(7) = A(14)

(10 +A(2))(20 + A(1)) =

v

\ 4

v

v

v

Don Knuth’s A-notation

m Let A(c) indicate a quantity that is absolutely at most c

Example: x = A(2) means that |x| < 2

m When x = A(y) we say that “x is absolutely at most y”

» warning: this does not mean that x equals A(y)!
» A(y) denotes a set of values
» x = A(y) really means x € A(y)

m Caluclating with the A notation

Examples:

7 =3.14159265... = 3.14 + A(0.005)

A(3) +A(4) = A7)

x =A(3) = x = A(4), butx = A(4) = x = A(3)
A(2)A(7) = A(14)

(10 4+ A(2))(20 + A(1)) = 200 + A(52)

v

\ 4

v

v

v

Don Knuth’s A-notation

m Let A(c) indicate a quantity that is absolutely at most c

Example: x = A(2) means that |x| < 2

m When x = A(y) we say that “x is absolutely at most y”

» warning: this does not mean that x equals A(y)!
» A(y) denotes a set of values
» x = A(y) really means x € A(y)

m Caluclating with the A notation

Examples:

7 =3.14159265... = 3.14 + A(0.005)

A(3) +A(4) = A7)

x =A(3) = x = A(4), butx = A(4) = x = A(3)
A(2)A(7) = A(14)

(10 4+ A(2))(20 + A(1)) = 200 + A(52) = 200 + A(100)

v

\ 4

v

v

v

Don Knuth’s A-notation

m Let A(c) indicate a quantity that is absolutely at most c
Example: x = A(2) means that |x| < 2

m When x = A(y) we say that “x is absolutely at most y”

» warning: this does not mean that x equals A(y)!
» A(y) denotes a set of values
» x = A(y) really means x € A(y)

m Caluclating with the A notation

Examples:
7 =3.14159265... = 3.14 + A(0.005)
A(3) +A(4) = A7)
x =A(3) = x = A(4), butx = A(4) = x = A(3)
ARR)A(7) = A(14)
(10 4+ A(2))(20 + A(1)) = 200 + A(52) = 200 + A(100)
)=

A(n=1) = A(n®)

v

\ 4

v

v

v

v

Don Knuth’s A-notation

m Let A(c) indicate a quantity that is absolutely at most c
Example: x = A(2) means that |x| < 2

m When x = A(y) we say that “x is absolutely at most y”

» warning: this does not mean that x equals A(y)!
» A(y) denotes a set of values
» x = A(y) really means x € A(y)

m Caluclating with the A notation

Examples:

7 =3.14159265... = 3.14 + A(0.005)

A(3) +A(4) = A7)

x =A(3) = x = A(4), butx = A(4) = x = A(3)
ARR)A(7) = A(14)

(10 + A(2))(20 +A()) = 200 + A(52) = 200 + A(100)
A(n—1) = A(n®) foralln

v

\ 4

v

v

v

v

FromAto O

FromAto O

m If f(n) is such that f(n) = kA(g(n)) for all n sufficiently large and for some
constant k > 0, then we say that

» read “f(n) is big-oh of g(n)" or simply “f(n) is oh of g(n)”

FromAto O

m If f(n) is such that f(n) = kA(g(n)) for all n sufficiently large and for some
constant k > 0, then we say that

» read “f(n) is big-oh of g(n)" or simply “f(n) is oh of g(n)”
Examples:

» 3n+2=0(n)

FromAto O

m If f(n) is such that f(n) = kA(g(n)) for all n sufficiently large and for some
constant k > 0, then we say that

» read “f(n) is big-oh of g(n)" or simply “f(n) is oh of g(n)”
Examples:

» 3n+2=0(n)

» 2+/n +logn = 0(n?)

FromAto O

m If f(n) is such that f(n) = kA(g(n)) for all n sufficiently large and for some
constant k > 0, then we say that

» read “f(n) is big-oh of g(n)" or simply “f(n) is oh of g(n)”
Examples:

» 3n+2=0(n)

» 2+/n +logn = 0(n?)

» let Tse(n) be the computational complexity of SMARTFIBONACCI (the efficient
algorithm); then

FromAto O

m If f(n) is such that f(n) = kA(g(n)) for all n sufficiently large and for some
constant k > 0, then we say that

» read “f(n) is big-oh of g(n)" or simply “f(n) is oh of g(n)”
Examples:
» 3n+2=0(n)
» 24/n +logn = O(n?)
» let Tse(n) be the computational complexity of SMARTFIBONACCI (the efficient
algorithm); then

Tse(n) = O(n)

From O to 2 and ©

m If f(n) = O(g(n)) then we can also say that g(n) asymptotically dominates f(n),
which we can also write as

g(n) = Q(f(n))
» which we read as “f(n) is big-omega of g(n)" of simply “f(n) is omega of g(n)"

From O to 2 and ©

m If f(n) = O(g(n)) then we can also say that g(n) asymptotically dominates f(n),
which we can also write as

g(n) = Q(f(n))
» which we read as “f(n) is big-omega of g(n)" of simply “f(n) is omega of g(n)"
Examples:

» 3n+ 2 =Q(logn)

From O to 2 and ©

m If f(n) = O(g(n)) then we can also say that g(n) asymptotically dominates f(n),
which we can also write as

g(n) = Q(f(n))
» which we read as “f(n) is big-omega of g(n)" of simply “f(n) is omega of g(n)"
Examples:

» 3n+ 2 =Q(logn)
» let T¢(n) be the computational complexity of FIBONAccI (the inefficient algorithm);
then

Te(n) = Q((1.4)")

From O to 2 and ©

m If f(n) = O(g(n)) then we can also say that g(n) asymptotically dominates f(n),
which we can also write as

g(n) = Q(f(n))
» which we read as “f(n) is big-omega of g(n)" of simply “f(n) is omega of g(n)"
Examples:
» 3n+ 2 =Q(logn)
» let T¢(n) be the computational complexity of FIBONAccI (the inefficient algorithm);
then
Te(n) = Q((1.4)")

m When f(n) = O(g(n)) and f(n) = Q(g(n)) we also write

Characterizing Unknown Functions

m Theidea of the O, Q, and © notations is very often to characterize a function
that is not completely known

Characterizing Unknown Functions

m Theidea of the O, Q, and © notations is very often to characterize a function
that is not completely known

Example:

Let (n) be the number of primes less than or equal to n
What is the asymptotic behavior of 7(n)?

Characterizing Unknown Functions

m Theidea of the O, Q, and © notations is very often to characterize a function
that is not completely known

Example:

Let (n) be the number of primes less than or equal to n
What is the asymptotic behavior of 7(n)?

trivial upper bound

Characterizing Unknown Functions

m Theidea of the O, Q, and © notations is very often to characterize a function
that is not completely known

Example:

Let (n) be the number of primes less than or equal to n
What is the asymptotic behavior of 7(n)?

trivial upper bound

trivial lower bound

Characterizing Unknown Functions

m Theidea of the O, Q, and © notations is very often to characterize a function
that is not completely known

Example:

Let (n) be the number of primes less than or equal to n
What is the asymptotic behavior of 7(n)?

trivial upper bound
trivial lower bound

non-trivial tight bound

Characterizing Unknown Functions

m Theidea of the O, Q, and © notations is very often to characterize a function
that is not completely known

Example:

Let (n) be the number of primes less than or equal to n
What is the asymptotic behavior of 7(n)?

trivial upper bound

v
Bal
<)

I

0

(1) trivial lower bound

» 7(n) = ©(n/logn) non-trivial tight bound

In fact, the fundamental prime number theorem says that

jim ZnInn_

n—oo n

1

©-Notation

©-Notation

m Given a function g(n), we define the family of functions ©(g(n))

©-Notation

m Given a function g(n), we define the family of functions ©(g(n))

f(n)

©-Notation

m Given a function g(n), we define the family of functions ©(g(n))

V,

///

A

2
v/

/4

c28(n)

©-Notation

m Given a function g(n), we define the family of functions ©(g(n))
c28(n)

f(n)

c18(n)

7)),

No

O(g(n)) =A{f(n) : 3¢y > 0,3c; > 0,3ny > 0
10 < cig(n) < f(n) < cpg(n) foralln > ng}

©-Notation

m Given a function g(n), we define the family of functions ©(g(n))
c28(n)

f(n)

f(n) = ©(g(n))

i.e. f(n) € ©(g(n))

“f(n) is theta of g(n)" 7 /

No

c18(n)

O(g(n)) =A{f(n) : 3¢y > 0,3c; > 0,3ny > 0
10 < 1g(n) < f(n) < cog(n) foralln > ng}

Examples

m 7(n) =n?+10n+ 100

Examples

m7(n)=n*>+10n+100 = T(n)=0O(n?

Examples

m7(n)=n*>+10n+100 = T(n)=0O(n?

m7(n)=n+10logn

Examples

m7(n)=n*>+10n+100 = T(n)=0O(n?

m7(n)=n+10logn = T(n) =0(n)

Examples
m7(n)=n*>+10n+100 = T(n)=0O(n?
m7(n)=n+10logn = T(n) =0(n)

m 7(n) =nlogn +nyn

Examples
m7(n)=n*>+10n+100 = T(n)=0O(n?
m7(n)=n+10logn = T(n) =0(n)

m 7(n) =nlogn+nyn = T(n) =0(nvn)

Examples
m7(n)=n*>+10n+100 = T(n)=0O(n?
m7(n)=n+10logn = T(n) =0(n)
m 7(n) =nlogn+nyn = T(n) =0(nvn)

] T(n):2%+n

Examples
m7(n)=n*>+10n+100 = T(n)=0O(n?
m 7(n)=n+10logn = T(n) = O(n)
m 7(n) =nlogn+nyn = T(n) = ©(nyn)

mT(n)=25+n" = T(n)=0O(25)

Examples
m7(n)=n*>+10n+100 = T(n)=0O(n?
m 7(n)=n+10logn = T(n) = O(n)
m 7(n) =nlogn+nyn = T(n) = ©(nyn)

mT(n)=25+n" = T(n)=0O(25)

m T(n) =104

m7(n)=n*>+10n+100 = T(n)=0O(n?
m7(n)=n+10logn = T(n) =0(n)
m 7(n) =nlogn+nyn = T(n) =0(nvn)

mT(n)=25+n" = T(n)=0O(25)

m7(n)=1%" =T(n)=0()

Examples

m7(n)=n*>+10n+100 = T(n)=0O(n?
m7(n)=n+10logn = T(n) =0(n)
m 7(n) =nlogn+nyn = T(n) =0(nvn)

mT(n)=25+n" = T(n)=0O(25)

m7(n)=1%" =T(n)=0()

m 7(n) = complexity of SMARTFIBONACCI

Examples

m7(n)=n*>+10n+100 = T(n)=0O(n?
m7(n)=n+10logn = T(n) =0(n)
m 7(n) =nlogn+nyn = T(n) =0(nvn)

mT(n)=25+n" = T(n)=0O(25)

m7(n)=1%" =T(n)=0()

m 7(n) = complexity of SMARTFIBONACCI

= T(n) = O(n)

Examples

Examples
m7(n)=n*>+10n+100 = T(n)=0O(n?
m7(n)=n+10logn = T(n) =0(n)

m 7(n) =nlogn+nyn = T(n) =0(nvn)

ols

mT(n)=25+n" = T(n)=0O(25)

m7(n)=1%" =T(n)=0()

m 7(n) = complexity of SMARTFIBONACCI = T(n) = O(n)
m We characterize the behavior of T(n) in the limit

m The ©-notation is an asymptotic notation

O-Notation

O-Notation

m Given a function g(n), we define the family of functions O(g(n))

O-Notation

m Given a function g(n), we define the family of functions O(g(n))

f(n)

m Given a function g(n), we define the family of functions O(g(n))

V,

N

/l/»

cg(n)
f(m)

O-Notation

O-Notation

m Given a function g(n), we define the family of functions O(g(n))
cg(n)
f(n)

No

O(g(n)) ={f(n) : 3c > 0,3ng > 0
: 0 < f(n) < cg(n)foralln = ny}

O-Notation

m Given a function g(n), we define the family of functions O(g(n))
cg(n)
f(n)

f(n) = O(g(n))
i.e., f(n) € O(g(n)
“f(n) is big-oh of g(n)”

No

O(g(n)) ={f(n) : 3c > 0,3ng > 0
:0 < f(n) < cg(n)foralln = ny}

Examples

m f(n) =n*+10n+ 100

Examples

m f(n)=n*+10n+100 = f(n) = O(n?)

Examples

mf(n)=n*+10n+100 = f(n)=0(n?) = f(n)=0(n®)

Examples

mf(n)=n*+10n+100 = f(n)=0(n?) = f(n)=0(n®)

mf(n)=n+10logn

Examples

mf(n)=n*+10n+100 = f(n)=0(n?) = f(n)=0(n®)

mf(n)=n+10logn = f(n) =0(2")

Examples
mf(n)=n*+10n+100 = f(n)=0(n?) = f(n)=0(n®)
mf(n)=n+10logn = f(n) =0(2")

m f(n) =nlogn+nyn

Examples
mf(n)=n*+10n+100 = f(n)=0(n?) = f(n)=0(n®)
mf(n)=n+10logn = f(n) =0(2")

m f(n) =nlogn+nyn = f(n)=0(n?)

Examples
mf(n)=n*+10n+100 = f(n)=0(n?) = f(n)=0(n®)
mf(n)=n+10logn = f(n) =0(2")
m f(n) =nlogn+nyn = f(n)=0(n?)

mf(n) =28 +n’

Examples
mf(n)=n*+10n+100 = f(n)=0(n?) = f(n)=0(n®)
mf(n)=n+10logn = f(n) =0(2")
m f(n) =nlogn+nyn = f(n)=0(n?)

mf(n)=26+n" = f(n)=0((1.5)")

m f(n)=n*+10n+100 = f(n) = O(n?)
mf(n)=n+10logn = f(n) = 0(2")

m f(n) =nlogn+nyn = f(n)=0(n?)
mf(n) =28 +n’ = f(n)=0((1.5)")

m f(n) = 1%

Examples

m f(n)=n*+10n+100 = f(n) = O(n?)

mf(n)=n+10logn = f(n) =0(2")
m f(n) =nlogn+nyn = f(n)=0(n?)
mf(n)=25+n" = f(n)=0((1.5)")

m f(n)=13" = f(n)=0(1)

= f(n)

o(n?)

Examples

m f(n)=n*+10n+100 = f(n) = O(n?)

mf(n)=n+10logn = f(n) = 0(2")
m f(n) =nlogn+nyn = f(n)=0(n?)
mf(n) =28 +n’ = f(n)=0((1.5)")
mf(n)=15" = f(n)=0(1)

m f(n) = ©(g(n)) = f(n) = 0(g(n))

= f(n)

o(n?)

Examples

m f(n)=n*+10n+100 = f(n) = O(n?)

mf(n)=n+10logn = f(n) = 0(2")
m f(n) =nlogn+nyn = f(n)=0(n?)
mf(n) =28 +n’ = f(n)=0((1.5)")
mf(n)=15" = f(n)=0(1)

m f(n) = ©(g(n)) = f(n) = 0(g(n))

= f(n)

o(n?)

Examples

m f(n)=n*+10n+100 = f(n) = O(n?)

mf(n)=n+10logn = f(n) = 0(2")
m f(n) =nlogn+nyn = f(n)=0(n?)
mf(n) =28 +n’ = f(n)=0((1.5)")
mf(n)=15" = f(n)=0(1)

m f(n) = ©(g(n)) = f(n) = 0(g(n))

= f(n)

o(n?)

Examples

Examples

m n2 —10n+ 100 = O(nlog n)?

Examples

m n>—10n+ 100 = O(nlogn)? NO

Examples

m n>—10n+ 100 = O(nlogn)? NO

m f(n) = 0(2") = f(n) = O(n*)?

Examples

m n>—10n+ 100 = O(nlogn)? NO

m f(n) = 0(2") = f(n) = O(n*)? NO

Examples
m n>—10n+ 100 = O(nlogn)? NO
m f(n) = 0(2") = f(n) = O(n*)? NO
m f(n) = ©(2") = f(n) = O(n*2")?

Examples
m n>—10n+ 100 = O(nlogn)? NO

m f(n) = 0(2") = f(n) = O(n?)? NO

m f(n) = ©(2") = f(n) = O(n*2")? YES

Examples
m n>—10n+ 100 = O(nlogn)? NO

m f(n) = 0(2") = f(n) = O(n?)? NO

m f(n) = ©(2") = f(n) = O(n*2")? YES

m f(n) = ©(n*2") = f(n) = 0(2"*?°82")?

Examples
m n>—10n+ 100 = O(nlogn)? NO
m f(n) = 0(2") = f(n) = O(n*)? NO
m f(n) = ©(2") = f(n) = O(n*2")? YES

m f(n) = ©(n?2") = f(n) = O(2"*?"*%")? YES

Examples
m n>—10n+ 100 = O(nlogn)? NO
m f(n) = 0(2") = f(n) = O(n*)? NO
m f(n) = ©(2") = f(n) = O(n*2")? YES
m f(n) = ©(n°2") = f(n) = O(2"*2"°&2")? YES

m f(n) = 0(2") = f(n) = ©(n*)?

Examples
m n>—10n+ 100 = O(nlogn)? NO
m f(n) = 0(2") = f(n) = O(n*)? NO
m f(n) = ©(2") = f(n) = O(n*2")? YES
m f(n) = ©(n°2") = f(n) = O(2"*2"°&2")? YES

m f(n) = 0(2") = f(n) = ©(n?*)? NO

Examples
m n>—10n+ 100 = O(nlogn)? NO
m f(n) = 0(2") = f(n) = O(n*)? NO
m f(n) = ©(2") = f(n) = O(n*2")? YES
m f(n) = ©(n°2") = f(n) = O(2"*2"°&2")? YES
m f(n) = 0(2") = f(n) = ©(n%)? NO

m \n = O(log? n)?

Examples
m n>—10n+ 100 = O(nlogn)? NO
m f(n) = 0(2") = f(n) = O(n*)? NO
m f(n) = ©(2") = f(n) = O(n*2")? YES
m f(n) = ©(n°2") = f(n) = O(2"*2"°&2")? YES
m f(n) = 0(2") = f(n) = ©(n%)? NO

m Vn = O(log?n)? NO

Examples
m n>—10n+ 100 = O(nlogn)? NO
m f(n) = 0(2") = f(n) = O(n*)? NO
m f(n) = ©(2") = f(n) = O(n*2")? YES
m f(n) = ©(n°2") = f(n) = O(2"*2"°&2")? YES
m f(n) = 0(2") = f(n) = ©(n*)? NO
m \n = 0(log?n)? NO

m n?+(1.5)" = 0(22)?

Examples
m n>—10n+ 100 = O(nlogn)? NO
m f(n) = 0(2") = f(n) = O(n*)? NO
m f(n) = ©(2") = f(n) = O(n*2")? YES
m f(n) = ©(n°2") = f(n) = O(2"*2"°&2")? YES
m f(n) = 0(2") = f(n) = ©(n*)? NO
m \n = 0(log?n)? NO

mn?+(1.5" = 0(22)? NO

Example

m So, what is the complexity of FINDEQUALS?

FINDEQUALS(A)

1 fori = 1 tolength(A) — 1

2 forj = i+ 1 to length(A)
3 if Ali] == A[j]

4 return TRUE

5 return FALSE

Example

m So, what is the complexity of FINDEQUALS?

FINDEQUALS(A)

1 fori = 1 tolength(A) — 1

2 forj = i+ 1 to length(A)
3 if Ali] == A[j]

4 return TRUE

5 return FALSE

» n = length(A) is the size of the input

» we measure the worst-case complexity

Q2-Notation

Q2-Notation

m Given a function g(n), we define the family of functions Q(g(n))

Q2-Notation

m Given a function g(n), we define the family of functions Q(g(n))

f(n)

Q2-Notation

m Given a function g(n), we define the family of functions Q(g(n))

Q2-Notation

m Given a function g(n), we define the family of functions Q(g(n))

No

Q(g(n)) ={f(n) : 3¢ > 0,3ny > 0
:0 < cg(n) < f(n)foralln > ng}

Q2-Notation

m Given a function g(n), we define the family of functions Q(g(n))

f(n) = Q(g(n)
ie. f(n) € Q(g(n))
“f(n) is omega of g(n)"

Q(g(n)) ={f(n) : 3¢ > 0,3ny > 0
:0 < cg(n) < f(n)foralln > ng}

©, O, and Q2 as Relations

m Theorem: for any two functions f(n) and g(n),
f(n) = Q(g(n)) Af(n) = O(g(n)) < f(n) = O(g(n))

©, O, and Q2 as Relations

m Theorem: for any two functions f(n) and g(n),
f(n) = Q(g(n)) Af(n) = O(g(n)) < f(n) = O(g(n))

m The ©-notation, Q-notation, and O-notation can be viewed as the “asymptotic”
=, >, and < relations for functions, respectively

©, O, and Q2 as Relations

m Theorem: for any two functions f(n) and g(n),
f(n) = Q(g(n)) Af(n) = O(g(n)) < f(n) = O(g(n))

m The ©-notation, Q-notation, and O-notation can be viewed as the “asymptotic”
=, >, and < relations for functions, respectively

m The above theorem can be interpreted as saying

fzgnf<goef=g

©, O, and Q2 as Relations

m Theorem: for any two functions f(n) and g(n),
f(n) = Q(g(n)) Af(n) = O(g(n)) < f(n) = O(g(n))

m The ©-notation, Q-notation, and O-notation can be viewed as the “asymptotic”
=, >, and < relations for functions, respectively

m The above theorem can be interpreted as saying

fzgnf<goef=g

m When f(n) = O(g(n)) we say that g(n) is an upper bound for f(n), and that g(n)
dominates f(n)

©, O, and Q2 as Relations

m Theorem: for any two functions f(n) and g(n),
f(n) = Q(g(n)) Af(n) = O(g(n)) < f(n) = O(g(n))

m The ©-notation, Q-notation, and O-notation can be viewed as the “asymptotic”
=, >, and < relations for functions, respectively

m The above theorem can be interpreted as saying

fzgnf<goef=g

m When f(n) = O(g(n)) we say that g(n) is an upper bound for f(n), and that g(n)
dominates f(n)

m When f(n) = Q(g(n)) we say that g(n) is a lower bound for f(n)

©, O, and Q as Anonymous Functions

m We can use the ©-, O-, and Q-notation to represent anonymous (unknown or
unsecified) functions

E.g.,
f(n) = 10n% + O(n)

means that f(n) is equal to 10n? plus a function we don't know or we don'’t care
to know that is asymptotically at most linear in n.

©, O, and Q as Anonymous Functions

m We can use the ©-, O-, and Q-notation to represent anonymous (unknown or
unsecified) functions

E.g.,
f(n) = 10n% + O(n)

means that f(n) is equal to 10n? plus a function we don't know or we don'’t care
to know that is asymptotically at most linear in n.

m Examples

n? +4n—1=n?+0(n)?

©, O, and Q as Anonymous Functions

m We can use the ©-, O-, and Q-notation to represent anonymous (unknown or
unsecified) functions

E.g.,
f(n) = 10n% + O(n)

means that f(n) is equal to 10n? plus a function we don't know or we don'’t care
to know that is asymptotically at most linear in n.

m Examples
n?+4n—1=n?+0(n)? YES

©, O, and Q as Anonymous Functions

m We can use the ©-, O-, and Q-notation to represent anonymous (unknown or
unsecified) functions

E.g.,
f(n) = 10n% + O(n)

means that f(n) is equal to 10n? plus a function we don't know or we don'’t care
to know that is asymptotically at most linear in n.

m Examples
n?+4n—1=n?+0(n)? YES
n? +Q(n) —1 = 0(n?)?

©, O, and Q as Anonymous Functions

m We can use the ©-, O-, and Q-notation to represent anonymous (unknown or
unsecified) functions

E.g.,
f(n) = 10n% + O(n)

means that f(n) is equal to 10n? plus a function we don't know or we don'’t care
to know that is asymptotically at most linear in n.

m Examples
n?+4n—1=n?+0(n)? YES
n® +Q(n)—1=0(n%? NO

©, O, and Q as Anonymous Functions

m We can use the ©-, O-, and Q-notation to represent anonymous (unknown or
unsecified) functions

E.g.,
f(n) = 10n% + O(n)

means that f(n) is equal to 10n? plus a function we don't know or we don'’t care
to know that is asymptotically at most linear in n.

m Examples
n?+4n—1=n?+0(n)? YES
n® +Q(n)—1=0(n%? NO
n? +0(n) —1 = 0(n?)?

©, O, and Q as Anonymous Functions

m We can use the ©-, O-, and Q-notation to represent anonymous (unknown or
unsecified) functions

E.g.,
f(n) = 10n% + O(n)

means that f(n) is equal to 10n? plus a function we don't know or we don'’t care
to know that is asymptotically at most linear in n.

m Examples
n?+4n—1=n?+0(n)? YES
n® +Q(n)—1=0(n%? NO
n? +0(n)—1 = 0(n*)? YES

©, O, and Q as Anonymous Functions

m We can use the ©-, O-, and Q-notation to represent anonymous (unknown or
unsecified) functions

E.g.,
f(n) = 10n% + O(n)

means that f(n) is equal to 10n? plus a function we don't know or we don'’t care
to know that is asymptotically at most linear in n.

m Examples
n?+4n—1=n?+0(n)? YES
n® +Q(n)—1=0(n%? NO
n? +0(n)—1 = 0(n*)? YES
nlogn + ©(y/n) = O(n/n)?

©, O, and Q as Anonymous Functions

m We can use the ©-, O-, and Q-notation to represent anonymous (unknown or
unsecified) functions

E.g.,
f(n) = 10n% + O(n)

means that f(n) is equal to 10n? plus a function we don't know or we don'’t care
to know that is asymptotically at most linear in n.

m Examples
n?+4n—1=n?+0(n)? YES
n® +Q(n)—1=0(n%? NO
n? +0(n)—1 = 0(n*)? YES
nlogn + ©(+y/n) = O(nyn)? YES

o-Notation

o-Notation

m The upper bound defined by the O-notation may or may not be asymptotically
tight

o-Notation

m The upper bound defined by the O-notation may or may not be asymptotically
tight
E.g.,
nlogn = 0(n?) is not asymptotically tight
n®> —n+10 = 0(n?) is asymptotically tight

o-Notation

m The upper bound defined by the O-notation may or may not be asymptotically
tight
E.g.,
nlogn = 0(n?) is not asymptotically tight
n®> —n+10 = 0(n?) is asymptotically tight

m We use the o-notation to denote upper bounds that are not asymtotically tight.
So, given a function g(n), we define the family of functions o(g(n))

o(g(n)) =4{f(n) : 3¢ > 0,3ng > 0
:0 < f(n) < cg(n)foralln > ng}

w-Notation

w-Notation

m The lower bound defined by the Q-notation may or may not be asymptotically
tight

w-Notation

m The lower bound defined by the Q-notation may or may not be asymptotically
tight

E.g.,
2" = Q(nlogn) is not asymptotically tight
n+4nlogn = Q(nlogn) isasymptotically tight

w-Notation

m The lower bound defined by the Q-notation may or may not be asymptotically
tight

E.g.,
2" = Q(nlogn) is not asymptotically tight
n+4nlogn = Q(nlogn) isasymptotically tight

m We use the w-notation to denote lower bounds that are not asymtotically tight.
So, given a function g(n), we define the family of functions w(g(n))

w(g(n) ={f(n): 3c>0,3ny >0
:0 < cg(n) < f(n)foralln > ng}

