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m Informal analysis of two Fibonacci algorithms

m The random-access machine model

m Measure of complexity

m Characterizing functions with their asymptotic behavior

m Big-O, omega, and theta notations
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Slow vs. Fast Fibonacci

m We informally characterized our two Fibonacci algorithms
» FIBONACcI is exponential in n
» SMARTFIBONACCI is (almost) linear in n

m How do we characterize the complexity of algorithms?

> in general
» in a way that is specific to the algorithms

» butindependent of implementation details
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m A basic step in the RAM model takes a constant time
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Analysis in the RAM Model

SMARTFIBONACCI(n) cost times(n > 1)
1 ifn-== C1 1
2 return 0 5 0
3 elseifn == G 1
4 return 1 Cs4 0
5 elsepprev =0 Cs 1
6 prev =1 Ce 1
7 fori=2ton G n
8 f = prev + pprev Cg n—1
9 pprev = prev Cy n—1

10 prev = f €10 n—=1

11 returnf C11 1

T(n) =nC; + G, = T(n)is a linear function of n
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Input Size

m In general we measure the complexity of an algorithm as a function of the size of
the input

» size measured in bits
» did we do that for SMARTFIBONACCI?

m Example: given a sequence A = (a4, 0z, ..., 0,), and a value x, output TRUE if A
contains x
FIND(A, X)
1 fori = 1 to length(A)
2 if Ali] ==
3 return TRUE
4 return FALSE

T(n) =Cn
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Worst-Case Complexity

m In general we measure the complexity of an algorithm in the worst case

m Example: given a sequence A = (a4, ay, ..., a,), output TRUE if A contains two
equal values a; = a; (with / # )

FINDEQUALS(A)

1 fori = 1tolength(A) — 1

2 forj = i+ 1 to length(A)
3 if Ali] == A[j]

4 return TRUE

5 return FALSE
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Constant Factors

m Does a load/store operation cost more than, say, an arithmetic operation?

x=0 vs. y+z

m We do not care about the specific costs of each basic step

» these costs are likely to vary significantly with languages, implementations, and
processors
> SO,Weassumec; =C =C3 =+ =(

» we also ignore the specific value ¢;, and in fact we ignore every constant cost factor
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Order of Growth

m We care only about the order of growth or rate of growth of T(n)

» so we ignore lower-order terms

E.g. in
T(n) = an® + bn + ¢

we only consider the n? term and say that T(n) is a quadratic function in n

We write

and say that “T(n) is theta of n-squared”
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m If f(n) = O(g(n)) then we can also say that g(n) asymptotically dominates f(n),
which we can also write as

g(n) = Q(f(n))
» which we read as “f(n) is big-omega of g(n)" of simply “f(n) is omega of g(n)"
Examples:
» 3n+ 2 =Q(logn)
» let T¢(n) be the computational complexity of FIBONAccI (the inefficient algorithm);
then
Te(n) = Q((1.4)")

m When f(n) = O(g(n)) and f(n) = Q(g(n)) we also write
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Characterizing Unknown Functions

m Theidea of the O, Q, and © notations is very often to characterize a function
that is not completely known

Example:

Let (n) be the number of primes less than or equal to n
What is the asymptotic behavior of 7(n)?

trivial upper bound

v
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(1) trivial lower bound

» 7(n) = ©(n/logn) non-trivial tight bound

In fact, the fundamental prime number theorem says that
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m Given a function g(n), we define the family of functions ©(g(n))
c28(n)

f(n)

f(n) = ©(g(n))

i.e. f(n) € ©(g(n))

“f(n) is theta of g(n)" 7 /

No

c18(n)

O(g(n)) =A{f(n) : 3¢y > 0,3c; > 0,3ny > 0
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Examples
m7(n)=n*>+10n+100 = T(n)=0O(n?
m7(n)=n+10logn = T(n) =0(n)

m 7(n) =nlogn+nyn = T(n) =0(nvn)

ols

mT(n)=25+n" = T(n)=0O(25)

m7(n)=1%" =T(n)=0()

m 7(n) = complexity of SMARTFIBONACCI = T(n) = O(n)
m We characterize the behavior of T(n) in the limit

m The ©-notation is an asymptotic notation
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m Given a function g(n), we define the family of functions O(g(n))
cg(n)
f(n)

f(n) = O(g(n))
i.e., f(n) € O(g(n)
“f(n) is big-oh of g(n)”

No

O(g(n)) ={f(n) : 3c > 0,3ng > 0
:0 < f(n) < cg(n)foralln = ny}
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Example

m So, what is the complexity of FINDEQUALS?

FINDEQUALS(A)

1 fori = 1 tolength(A) — 1

2 forj = i+ 1 to length(A)
3 if Ali] == A[j]

4 return TRUE

5 return FALSE

» n = length(A) is the size of the input

» we measure the worst-case complexity
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Q2-Notation

m Given a function g(n), we define the family of functions Q(g(n))

f(n) = Q(g(n)
ie. f(n) € Q(g(n))
“f(n) is omega of g(n)"

Q(g(n)) ={f(n) : 3¢ > 0,3ny > 0
:0 < cg(n) < f(n)foralln > ng}
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©, O, and Q2 as Relations

m Theorem: for any two functions f(n) and g(n),
f(n) = Q(g(n)) Af(n) = O(g(n)) < f(n) = O(g(n))

m The ©-notation, Q-notation, and O-notation can be viewed as the “asymptotic”
=, >, and < relations for functions, respectively

m The above theorem can be interpreted as saying

fzgnf<goef=g

m When f(n) = O(g(n)) we say that g(n) is an upper bound for f(n), and that g(n)
dominates f(n)

m When f(n) = Q(g(n)) we say that g(n) is a lower bound for f(n)
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©, O, and Q as Anonymous Functions

m We can use the ©-, O-, and Q-notation to represent anonymous (unknown or
unsecified) functions

E.g.,
f(n) = 10n% + O(n)

means that f(n) is equal to 10n? plus a function we don't know or we don'’t care
to know that is asymptotically at most linear in n.

m Examples
n?+4n—1=n?+0(n)? YES
n® +Q(n)—1=0(n%? NO
n? +0(n)—1 = 0(n*)? YES
nlogn + ©(+y/n) = O(nyn)? YES
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m The upper bound defined by the O-notation may or may not be asymptotically
tight
E.g.,
nlogn = 0(n?) is not asymptotically tight
n®> —n+10 = 0(n?) is asymptotically tight

m We use the o-notation to denote upper bounds that are not asymtotically tight.
So, given a function g(n), we define the family of functions o(g(n))
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w-Notation

m The lower bound defined by the Q-notation may or may not be asymptotically
tight

E.g.,
2" = Q(nlogn) is not asymptotically tight
n+4nlogn = Q(nlogn) isasymptotically tight

m We use the w-notation to denote lower bounds that are not asymtotically tight.
So, given a function g(n), we define the family of functions w(g(n))

w(g(n) ={f(n): 3c>0,3ny >0
:0 < cg(n) < f(n)foralln > ng}



