
Basics of Complexity Analysis:

The RAM Model and the

Growth of Functions

Antonio Carzaniga

Faculty of Informatics
Università della Svizzera italiana

February 22, 2018



Outline

Informal analysis of two Fibonacci algorithms

The random-access machinemodel

Measure of complexity

Characterizing functions with their asymptotic behavior

Big-O, omega, and theta notations



Slow vs. Fast Fibonacci

0

10

20

30

40

50

60

0 20 40 60 80 100 120 140 160 180 200

n

ru
n
n
in
g
ti
m
e
(s
e
co
n
d
s)

Ruby
Scheme
Python
C
C-wiz
Java
C-gcc
SmartFibonacci



Slow vs. Fast Fibonacci

We informally characterized our two Fibonacci algorithms



Slow vs. Fast Fibonacci

We informally characterized our two Fibonacci algorithms

◮ FIBONACCI is exponential in n

◮ SMARTFIBONACCI is (almost) linear in n



Slow vs. Fast Fibonacci

We informally characterized our two Fibonacci algorithms

◮ FIBONACCI is exponential in n

◮ SMARTFIBONACCI is (almost) linear in n

How do we characterize the complexity of algorithms?

◮ in general



Slow vs. Fast Fibonacci

We informally characterized our two Fibonacci algorithms

◮ FIBONACCI is exponential in n

◮ SMARTFIBONACCI is (almost) linear in n

How do we characterize the complexity of algorithms?

◮ in general

◮ in a way that is specific to the algorithms

◮ but independent of implementation details



Slow vs. Fast Fibonacci

0

10

20

30

40

50

60

0 20 40 60 80 100 120 140 160 180 200

n

ru
n
n
in
g
ti
m
e
(s
e
co
n
d
s)

Ruby
Scheme
Python
C
C-wiz
Java
C-gcc
SmartFibonacci



Slow vs. Fast Fibonacci

n

ti
m
e

FIBONACCI

SMARTFIBONACCI



A Model of the Computer

An informal model of the random-access machine (RAM)



A Model of the Computer

An informal model of the random-access machine (RAM)

Basic types in the RAM model



A Model of the Computer

An informal model of the random-access machine (RAM)

Basic types in the RAM model

◮ integer and floating-point numbers

◮ limited size of each “word” of data (e.g., 64 bits)



A Model of the Computer

An informal model of the random-access machine (RAM)

Basic types in the RAM model

◮ integer and floating-point numbers

◮ limited size of each “word” of data (e.g., 64 bits)

Basic steps in the RAM model



A Model of the Computer

An informal model of the random-access machine (RAM)

Basic types in the RAM model

◮ integer and floating-point numbers

◮ limited size of each “word” of data (e.g., 64 bits)

Basic steps in the RAM model

◮ operations involving basic types

◮ load/store: assignment, use of a variable

◮ arithmetic operations: addition, multiplication, division, etc.

◮ branch operations: conditional branch, jump

◮ subroutine call



A Model of the Computer

An informal model of the random-access machine (RAM)

Basic types in the RAM model

◮ integer and floating-point numbers

◮ limited size of each “word” of data (e.g., 64 bits)

Basic steps in the RAM model

◮ operations involving basic types

◮ load/store: assignment, use of a variable

◮ arithmetic operations: addition, multiplication, division, etc.

◮ branch operations: conditional branch, jump

◮ subroutine call

A basic step in the RAM model takes a constant time



Analysis in the RAM Model

SMARTFIBONACCI(n)

1 if n == 0
2 return 0
3 elseif n == 1
4 return 1
5 else pprev = 0
6 prev = 1
7 for i = 2 to n
8 f = prev + pprev
9 pprev = prev
10 prev = f
11 return f



Analysis in the RAM Model

SMARTFIBONACCI(n)

1 if n == 0
2 return 0
3 elseif n == 1
4 return 1
5 else pprev = 0
6 prev = 1
7 for i = 2 to n
8 f = prev + pprev
9 pprev = prev
10 prev = f
11 return f

cost times (n > 1)



Analysis in the RAM Model

SMARTFIBONACCI(n)

1 if n == 0
2 return 0
3 elseif n == 1
4 return 1
5 else pprev = 0
6 prev = 1
7 for i = 2 to n
8 f = prev + pprev
9 pprev = prev
10 prev = f
11 return f

cost times (n > 1)

c1 1
c2 0
c3 1
c4 0
c5 1
c6 1
c7 n
c8 n − 1
c9 n − 1
c10 n − 1
c11 1

T(n) = c1 + c3 + c5 + c6 + c11 + nc7 + (n − 1)(c8 + c9 + c10)



Analysis in the RAM Model

SMARTFIBONACCI(n)

1 if n == 0
2 return 0
3 elseif n == 1
4 return 1
5 else pprev = 0
6 prev = 1
7 for i = 2 to n
8 f = prev + pprev
9 pprev = prev
10 prev = f
11 return f

cost times (n > 1)

c1 1
c2 0
c3 1
c4 0
c5 1
c6 1
c7 n
c8 n − 1
c9 n − 1
c10 n − 1
c11 1

T(n) = nC1 + C2 ⇒ T(n) is a linear function of n



Input Size

In general we measure the complexity of an algorithm as a function of the size of
the input

◮ size measured in bits



Input Size

In general we measure the complexity of an algorithm as a function of the size of
the input

◮ size measured in bits

◮ did we do that for SMARTFIBONACCI?



Input Size

In general we measure the complexity of an algorithm as a function of the size of
the input

◮ size measured in bits

◮ did we do that for SMARTFIBONACCI?

Example: given a sequence A = 〈a1, a2, . . . , an〉, and a value x, output TRUE if A
contains x



Input Size

In general we measure the complexity of an algorithm as a function of the size of
the input

◮ size measured in bits

◮ did we do that for SMARTFIBONACCI?

Example: given a sequence A = 〈a1, a2, . . . , an〉, and a value x, output TRUE if A
contains x

FIND(A, x)

1 for i = 1 to length(A)
2 if A[i] == x
3 return TRUE

4 return FALSE



Input Size

In general we measure the complexity of an algorithm as a function of the size of
the input

◮ size measured in bits

◮ did we do that for SMARTFIBONACCI?

Example: given a sequence A = 〈a1, a2, . . . , an〉, and a value x, output TRUE if A
contains x

FIND(A, x)

1 for i = 1 to length(A)
2 if A[i] == x
3 return TRUE

4 return FALSE

T(n) = Cn



Worst-Case Complexity

In general we measure the complexity of an algorithm in the worst case



Worst-Case Complexity

In general we measure the complexity of an algorithm in the worst case

Example: given a sequence A = 〈a1, a2, . . . , an〉, output TRUE if A contains two
equal values ai = aj (with i , j)



Worst-Case Complexity

In general we measure the complexity of an algorithm in the worst case

Example: given a sequence A = 〈a1, a2, . . . , an〉, output TRUE if A contains two
equal values ai = aj (with i , j)

FINDEQUALS(A)

1 for i = 1 to length(A) − 1
2 for j = i + 1 to length(A)
3 if A[i] == A[j]
4 return TRUE

5 return FALSE



Worst-Case Complexity

In general we measure the complexity of an algorithm in the worst case

Example: given a sequence A = 〈a1, a2, . . . , an〉, output TRUE if A contains two
equal values ai = aj (with i , j)

FINDEQUALS(A)

1 for i = 1 to length(A) − 1
2 for j = i + 1 to length(A)
3 if A[i] == A[j]
4 return TRUE

5 return FALSE

T(n) = C
n(n − 1)

2



Constant Factors

Does a load/store operation cost more than, say, an arithmetic operation?

x = 0 vs. y + z



Constant Factors

Does a load/store operation cost more than, say, an arithmetic operation?

x = 0 vs. y + z

We do not care about the specific costs of each basic step

◮ these costs are likely to vary significantly with languages, implementations, and
processors

◮ so, we assume c1 = c2 = c3 = · · · = ci



Constant Factors

Does a load/store operation cost more than, say, an arithmetic operation?

x = 0 vs. y + z

We do not care about the specific costs of each basic step

◮ these costs are likely to vary significantly with languages, implementations, and
processors

◮ so, we assume c1 = c2 = c3 = · · · = ci

◮ we also ignore the specific value ci, and in fact we ignore every constant cost factor



Order of Growth

We care only about the order of growth or rate of growth of T(n)



Order of Growth

We care only about the order of growth or rate of growth of T(n)

◮ so we ignore lower-order terms

E.g., in

T(n) = an2 + bn + c

we only consider the n2 term and say that T(n) is a quadratic function in n



Order of Growth

We care only about the order of growth or rate of growth of T(n)

◮ so we ignore lower-order terms

E.g., in

T(n) = an2 + bn + c

we only consider the n2 term and say that T(n) is a quadratic function in n

We write

T(n) = Θ(n2)

and say that “T(n) is theta of n-squared”



Don Knuth’s A-notation

Let A(c) indicate a quantity that is absolutely at most c



Don Knuth’s A-notation

Let A(c) indicate a quantity that is absolutely at most c

Example: x = A(2)means that `x` ≤ 2



Don Knuth’s A-notation

Let A(c) indicate a quantity that is absolutely at most c

Example: x = A(2)means that `x` ≤ 2

When x = A(y) we say that “x is absolutely at most y”

◮ warning: this does not mean that x equals A(y)!

◮ A(y) denotes a set of values

◮ x = A(y) really means x ∈ A(y)



Don Knuth’s A-notation

Let A(c) indicate a quantity that is absolutely at most c

Example: x = A(2)means that `x` ≤ 2

When x = A(y) we say that “x is absolutely at most y”

◮ warning: this does not mean that x equals A(y)!

◮ A(y) denotes a set of values

◮ x = A(y) really means x ∈ A(y)

Caluclating with the A notation

Examples:

◮ π = 3.14159265 . . .



Don Knuth’s A-notation

Let A(c) indicate a quantity that is absolutely at most c

Example: x = A(2)means that `x` ≤ 2

When x = A(y) we say that “x is absolutely at most y”

◮ warning: this does not mean that x equals A(y)!

◮ A(y) denotes a set of values

◮ x = A(y) really means x ∈ A(y)

Caluclating with the A notation

Examples:

◮ π = 3.14159265 . . . = 3.14 + A(0.005)



Don Knuth’s A-notation

Let A(c) indicate a quantity that is absolutely at most c

Example: x = A(2)means that `x` ≤ 2

When x = A(y) we say that “x is absolutely at most y”

◮ warning: this does not mean that x equals A(y)!

◮ A(y) denotes a set of values

◮ x = A(y) really means x ∈ A(y)

Caluclating with the A notation

Examples:

◮ π = 3.14159265 . . . = 3.14 + A(0.005)

◮ A(3) + A(4) =



Don Knuth’s A-notation

Let A(c) indicate a quantity that is absolutely at most c

Example: x = A(2)means that `x` ≤ 2

When x = A(y) we say that “x is absolutely at most y”

◮ warning: this does not mean that x equals A(y)!

◮ A(y) denotes a set of values

◮ x = A(y) really means x ∈ A(y)

Caluclating with the A notation

Examples:

◮ π = 3.14159265 . . . = 3.14 + A(0.005)

◮ A(3) + A(4) = A(7)



Don Knuth’s A-notation

Let A(c) indicate a quantity that is absolutely at most c

Example: x = A(2)means that `x` ≤ 2

When x = A(y) we say that “x is absolutely at most y”

◮ warning: this does not mean that x equals A(y)!

◮ A(y) denotes a set of values

◮ x = A(y) really means x ∈ A(y)

Caluclating with the A notation

Examples:

◮ π = 3.14159265 . . . = 3.14 + A(0.005)

◮ A(3) + A(4) = A(7)

◮ x = A(3) ⇒ x = A(4)



Don Knuth’s A-notation

Let A(c) indicate a quantity that is absolutely at most c

Example: x = A(2)means that `x` ≤ 2

When x = A(y) we say that “x is absolutely at most y”

◮ warning: this does not mean that x equals A(y)!

◮ A(y) denotes a set of values

◮ x = A(y) really means x ∈ A(y)

Caluclating with the A notation

Examples:

◮ π = 3.14159265 . . . = 3.14 + A(0.005)

◮ A(3) + A(4) = A(7)

◮ x = A(3) ⇒ x = A(4), but x = A(4); x = A(3)



Don Knuth’s A-notation

Let A(c) indicate a quantity that is absolutely at most c

Example: x = A(2)means that `x` ≤ 2

When x = A(y) we say that “x is absolutely at most y”

◮ warning: this does not mean that x equals A(y)!

◮ A(y) denotes a set of values

◮ x = A(y) really means x ∈ A(y)

Caluclating with the A notation

Examples:

◮ π = 3.14159265 . . . = 3.14 + A(0.005)

◮ A(3) + A(4) = A(7)

◮ x = A(3) ⇒ x = A(4), but x = A(4); x = A(3)

◮ A(2)A(7) =



Don Knuth’s A-notation

Let A(c) indicate a quantity that is absolutely at most c

Example: x = A(2)means that `x` ≤ 2

When x = A(y) we say that “x is absolutely at most y”

◮ warning: this does not mean that x equals A(y)!

◮ A(y) denotes a set of values

◮ x = A(y) really means x ∈ A(y)

Caluclating with the A notation

Examples:

◮ π = 3.14159265 . . . = 3.14 + A(0.005)

◮ A(3) + A(4) = A(7)

◮ x = A(3) ⇒ x = A(4), but x = A(4); x = A(3)

◮ A(2)A(7) = A(14)



Don Knuth’s A-notation

Let A(c) indicate a quantity that is absolutely at most c

Example: x = A(2)means that `x` ≤ 2

When x = A(y) we say that “x is absolutely at most y”

◮ warning: this does not mean that x equals A(y)!

◮ A(y) denotes a set of values

◮ x = A(y) really means x ∈ A(y)

Caluclating with the A notation

Examples:

◮ π = 3.14159265 . . . = 3.14 + A(0.005)

◮ A(3) + A(4) = A(7)

◮ x = A(3) ⇒ x = A(4), but x = A(4); x = A(3)

◮ A(2)A(7) = A(14)

◮ (10 + A(2))(20 + A(1)) =



Don Knuth’s A-notation

Let A(c) indicate a quantity that is absolutely at most c

Example: x = A(2)means that `x` ≤ 2

When x = A(y) we say that “x is absolutely at most y”

◮ warning: this does not mean that x equals A(y)!

◮ A(y) denotes a set of values

◮ x = A(y) really means x ∈ A(y)

Caluclating with the A notation

Examples:

◮ π = 3.14159265 . . . = 3.14 + A(0.005)

◮ A(3) + A(4) = A(7)

◮ x = A(3) ⇒ x = A(4), but x = A(4); x = A(3)

◮ A(2)A(7) = A(14)

◮ (10 + A(2))(20 + A(1)) = 200 + A(52)



Don Knuth’s A-notation

Let A(c) indicate a quantity that is absolutely at most c

Example: x = A(2)means that `x` ≤ 2

When x = A(y) we say that “x is absolutely at most y”

◮ warning: this does not mean that x equals A(y)!

◮ A(y) denotes a set of values

◮ x = A(y) really means x ∈ A(y)

Caluclating with the A notation

Examples:

◮ π = 3.14159265 . . . = 3.14 + A(0.005)

◮ A(3) + A(4) = A(7)

◮ x = A(3) ⇒ x = A(4), but x = A(4); x = A(3)

◮ A(2)A(7) = A(14)

◮ (10 + A(2))(20 + A(1)) = 200 + A(52) = 200 + A(100)



Don Knuth’s A-notation

Let A(c) indicate a quantity that is absolutely at most c

Example: x = A(2)means that `x` ≤ 2

When x = A(y) we say that “x is absolutely at most y”

◮ warning: this does not mean that x equals A(y)!

◮ A(y) denotes a set of values

◮ x = A(y) really means x ∈ A(y)

Caluclating with the A notation

Examples:

◮ π = 3.14159265 . . . = 3.14 + A(0.005)

◮ A(3) + A(4) = A(7)

◮ x = A(3) ⇒ x = A(4), but x = A(4); x = A(3)

◮ A(2)A(7) = A(14)

◮ (10 + A(2))(20 + A(1)) = 200 + A(52) = 200 + A(100)

◮ A(n − 1) = A(n2)



Don Knuth’s A-notation

Let A(c) indicate a quantity that is absolutely at most c

Example: x = A(2)means that `x` ≤ 2

When x = A(y) we say that “x is absolutely at most y”

◮ warning: this does not mean that x equals A(y)!

◮ A(y) denotes a set of values

◮ x = A(y) really means x ∈ A(y)

Caluclating with the A notation

Examples:

◮ π = 3.14159265 . . . = 3.14 + A(0.005)

◮ A(3) + A(4) = A(7)

◮ x = A(3) ⇒ x = A(4), but x = A(4); x = A(3)

◮ A(2)A(7) = A(14)

◮ (10 + A(2))(20 + A(1)) = 200 + A(52) = 200 + A(100)

◮ A(n − 1) = A(n2) for all n



From A to O



From A to O

If f (n) is such that f (n) = kA(g(n)) for all n sufficiently large and for some
constant k > 0, then we say that

f (n) = O(g(n))

◮ read “f (n) is big-oh of g(n)” or simply “f (n) is oh of g(n)”



From A to O

If f (n) is such that f (n) = kA(g(n)) for all n sufficiently large and for some
constant k > 0, then we say that

f (n) = O(g(n))

◮ read “f (n) is big-oh of g(n)” or simply “f (n) is oh of g(n)”

Examples:

◮ 3n + 2 = O(n)



From A to O

If f (n) is such that f (n) = kA(g(n)) for all n sufficiently large and for some
constant k > 0, then we say that

f (n) = O(g(n))

◮ read “f (n) is big-oh of g(n)” or simply “f (n) is oh of g(n)”

Examples:

◮ 3n + 2 = O(n)

◮ 2
√
n + log n = O(n2)



From A to O

If f (n) is such that f (n) = kA(g(n)) for all n sufficiently large and for some
constant k > 0, then we say that

f (n) = O(g(n))

◮ read “f (n) is big-oh of g(n)” or simply “f (n) is oh of g(n)”

Examples:

◮ 3n + 2 = O(n)

◮ 2
√
n + log n = O(n2)

◮ let TSF(n) be the computational complexity of SMARTFIBONACCI (the efficient
algorithm); then



From A to O

If f (n) is such that f (n) = kA(g(n)) for all n sufficiently large and for some
constant k > 0, then we say that

f (n) = O(g(n))

◮ read “f (n) is big-oh of g(n)” or simply “f (n) is oh of g(n)”

Examples:

◮ 3n + 2 = O(n)

◮ 2
√
n + log n = O(n2)

◮ let TSF(n) be the computational complexity of SMARTFIBONACCI (the efficient
algorithm); then

TSF(n) = O(n)



From O to Ω and Θ

If f (n) = O(g(n)) then we can also say that g(n) asymptotically dominates f (n),
which we can also write as

g(n) = Ω(f (n))

◮ which we read as “f (n) is big-omega of g(n)” of simply “f (n) is omega of g(n)”



From O to Ω and Θ

If f (n) = O(g(n)) then we can also say that g(n) asymptotically dominates f (n),
which we can also write as

g(n) = Ω(f (n))

◮ which we read as “f (n) is big-omega of g(n)” of simply “f (n) is omega of g(n)”

Examples:

◮ 3n + 2 = Ω(log n)



From O to Ω and Θ

If f (n) = O(g(n)) then we can also say that g(n) asymptotically dominates f (n),
which we can also write as

g(n) = Ω(f (n))

◮ which we read as “f (n) is big-omega of g(n)” of simply “f (n) is omega of g(n)”

Examples:

◮ 3n + 2 = Ω(log n)

◮ let TF(n) be the computational complexity of FIBONACCI (the inefficient algorithm);
then

TF(n) = Ω((1.4)n)



From O to Ω and Θ

If f (n) = O(g(n)) then we can also say that g(n) asymptotically dominates f (n),
which we can also write as

g(n) = Ω(f (n))

◮ which we read as “f (n) is big-omega of g(n)” of simply “f (n) is omega of g(n)”

Examples:

◮ 3n + 2 = Ω(log n)

◮ let TF(n) be the computational complexity of FIBONACCI (the inefficient algorithm);
then

TF(n) = Ω((1.4)n)

When f (n) = O(g(n)) and f (n) = Ω(g(n)) we also write

f (n) = Θ(g(n))



Characterizing Unknown Functions

The idea of the O, Ω, andΘ notations is very often to characterize a function
that is not completely known



Characterizing Unknown Functions

The idea of the O, Ω, andΘ notations is very often to characterize a function
that is not completely known

Example:

Let π(n) be the number of primes less than or equal to n

What is the asymptotic behavior of π(n)?



Characterizing Unknown Functions

The idea of the O, Ω, andΘ notations is very often to characterize a function
that is not completely known

Example:

Let π(n) be the number of primes less than or equal to n

What is the asymptotic behavior of π(n)?

◮ π(n) = O(n) trivial upper bound



Characterizing Unknown Functions

The idea of the O, Ω, andΘ notations is very often to characterize a function
that is not completely known

Example:

Let π(n) be the number of primes less than or equal to n

What is the asymptotic behavior of π(n)?

◮ π(n) = O(n) trivial upper bound

◮ π(n) = Ω(1) trivial lower bound



Characterizing Unknown Functions

The idea of the O, Ω, andΘ notations is very often to characterize a function
that is not completely known

Example:

Let π(n) be the number of primes less than or equal to n

What is the asymptotic behavior of π(n)?

◮ π(n) = O(n) trivial upper bound

◮ π(n) = Ω(1) trivial lower bound

◮ π(n) = Θ(n/log n) non-trivial tight bound



Characterizing Unknown Functions

The idea of the O, Ω, andΘ notations is very often to characterize a function
that is not completely known

Example:

Let π(n) be the number of primes less than or equal to n

What is the asymptotic behavior of π(n)?

◮ π(n) = O(n) trivial upper bound

◮ π(n) = Ω(1) trivial lower bound

◮ π(n) = Θ(n/log n) non-trivial tight bound

In fact, the fundamental prime number theorem says that

lim
n→∞

π(n) ln n

n
= 1



Θ-Notation



Θ-Notation

Given a function g(n), we define the family of functions Θ(g(n))



Θ-Notation

Given a function g(n), we define the family of functions Θ(g(n))

f (n)



Θ-Notation

Given a function g(n), we define the family of functions Θ(g(n))

f (n)

c2g(n)

c1g(n)



Θ-Notation

Given a function g(n), we define the family of functions Θ(g(n))

f (n)

c2g(n)

c1g(n)

n0

Θ(g(n)) = {f (n) : \c1 > 0,\c2 > 0,\n0 > 0

: 0 ≤ c1g(n) ≤ f (n) ≤ c2g(n) for all n ≥ n0}



Θ-Notation

Given a function g(n), we define the family of functions Θ(g(n))

f (n)

c2g(n)

c1g(n)

n0

f (n) = Θ(g(n))
i.e., f(n) ∈ Θ(g(n))

“f (n) is theta of g(n)”

Θ(g(n)) = {f (n) : \c1 > 0,\c2 > 0,\n0 > 0

: 0 ≤ c1g(n) ≤ f (n) ≤ c2g(n) for all n ≥ n0}



Examples

T(n) = n2 + 10n + 100



Examples

T(n) = n2 + 10n + 100 ⇒ T(n) = Θ(n2)



Examples

T(n) = n2 + 10n + 100 ⇒ T(n) = Θ(n2)

T(n) = n + 10 log n



Examples

T(n) = n2 + 10n + 100 ⇒ T(n) = Θ(n2)

T(n) = n + 10 log n ⇒ T(n) = Θ(n)



Examples

T(n) = n2 + 10n + 100 ⇒ T(n) = Θ(n2)

T(n) = n + 10 log n ⇒ T(n) = Θ(n)

T(n) = n log n + n
√
n



Examples

T(n) = n2 + 10n + 100 ⇒ T(n) = Θ(n2)

T(n) = n + 10 log n ⇒ T(n) = Θ(n)

T(n) = n log n + n
√
n ⇒ T(n) = Θ(n

√
n)



Examples

T(n) = n2 + 10n + 100 ⇒ T(n) = Θ(n2)

T(n) = n + 10 log n ⇒ T(n) = Θ(n)

T(n) = n log n + n
√
n ⇒ T(n) = Θ(n

√
n)

T(n) = 2
n
6 + n7



Examples

T(n) = n2 + 10n + 100 ⇒ T(n) = Θ(n2)

T(n) = n + 10 log n ⇒ T(n) = Θ(n)

T(n) = n log n + n
√
n ⇒ T(n) = Θ(n

√
n)

T(n) = 2
n
6 + n7 ⇒ T(n) = Θ(2

n
6 )



Examples

T(n) = n2 + 10n + 100 ⇒ T(n) = Θ(n2)

T(n) = n + 10 log n ⇒ T(n) = Θ(n)

T(n) = n log n + n
√
n ⇒ T(n) = Θ(n

√
n)

T(n) = 2
n
6 + n7 ⇒ T(n) = Θ(2

n
6 )

T(n) = 10+n
n2



Examples

T(n) = n2 + 10n + 100 ⇒ T(n) = Θ(n2)

T(n) = n + 10 log n ⇒ T(n) = Θ(n)

T(n) = n log n + n
√
n ⇒ T(n) = Θ(n

√
n)

T(n) = 2
n
6 + n7 ⇒ T(n) = Θ(2

n
6 )

T(n) = 10+n
n2

⇒ T(n) = Θ(1
n
)



Examples

T(n) = n2 + 10n + 100 ⇒ T(n) = Θ(n2)

T(n) = n + 10 log n ⇒ T(n) = Θ(n)

T(n) = n log n + n
√
n ⇒ T(n) = Θ(n

√
n)

T(n) = 2
n
6 + n7 ⇒ T(n) = Θ(2

n
6 )

T(n) = 10+n
n2

⇒ T(n) = Θ(1
n
)

T(n) = complexity of SMARTFIBONACCI



Examples

T(n) = n2 + 10n + 100 ⇒ T(n) = Θ(n2)

T(n) = n + 10 log n ⇒ T(n) = Θ(n)

T(n) = n log n + n
√
n ⇒ T(n) = Θ(n

√
n)

T(n) = 2
n
6 + n7 ⇒ T(n) = Θ(2

n
6 )

T(n) = 10+n
n2

⇒ T(n) = Θ(1
n
)

T(n) = complexity of SMARTFIBONACCI ⇒ T(n) = Θ(n)



Examples

T(n) = n2 + 10n + 100 ⇒ T(n) = Θ(n2)

T(n) = n + 10 log n ⇒ T(n) = Θ(n)

T(n) = n log n + n
√
n ⇒ T(n) = Θ(n

√
n)

T(n) = 2
n
6 + n7 ⇒ T(n) = Θ(2

n
6 )

T(n) = 10+n
n2

⇒ T(n) = Θ(1
n
)

T(n) = complexity of SMARTFIBONACCI ⇒ T(n) = Θ(n)

We characterize the behavior of T(n) in the limit

The Θ-notation is an asymptotic notation



O-Notation



O-Notation

Given a function g(n), we define the family of functions O(g(n))



O-Notation

Given a function g(n), we define the family of functions O(g(n))

f (n)



O-Notation

Given a function g(n), we define the family of functions O(g(n))

f (n)

cg(n)



O-Notation

Given a function g(n), we define the family of functions O(g(n))

f (n)

cg(n)

n0

O(g(n)) = {f (n) : \c > 0,\n0 > 0

: 0 ≤ f (n) ≤ cg(n) for all n ≥ n0}



O-Notation

Given a function g(n), we define the family of functions O(g(n))

f (n)

cg(n)

n0

f (n) = O(g(n))
i.e., f(n) ∈ O(g(n))

“f (n) is big-oh of g(n)”

O(g(n)) = {f (n) : \c > 0,\n0 > 0

: 0 ≤ f (n) ≤ cg(n) for all n ≥ n0}



Examples

f (n) = n2 + 10n + 100



Examples

f (n) = n2 + 10n + 100 ⇒ f (n) = O(n2)



Examples

f (n) = n2 + 10n + 100 ⇒ f (n) = O(n2) ⇒ f (n) = O(n3)



Examples

f (n) = n2 + 10n + 100 ⇒ f (n) = O(n2) ⇒ f (n) = O(n3)

f (n) = n + 10 log n



Examples

f (n) = n2 + 10n + 100 ⇒ f (n) = O(n2) ⇒ f (n) = O(n3)

f (n) = n + 10 log n ⇒ f (n) = O(2n)



Examples

f (n) = n2 + 10n + 100 ⇒ f (n) = O(n2) ⇒ f (n) = O(n3)

f (n) = n + 10 log n ⇒ f (n) = O(2n)

f (n) = n log n + n
√
n



Examples

f (n) = n2 + 10n + 100 ⇒ f (n) = O(n2) ⇒ f (n) = O(n3)

f (n) = n + 10 log n ⇒ f (n) = O(2n)

f (n) = n log n + n
√
n ⇒ f (n) = O(n2)



Examples

f (n) = n2 + 10n + 100 ⇒ f (n) = O(n2) ⇒ f (n) = O(n3)

f (n) = n + 10 log n ⇒ f (n) = O(2n)

f (n) = n log n + n
√
n ⇒ f (n) = O(n2)

f (n) = 2
n
6 + n7



Examples

f (n) = n2 + 10n + 100 ⇒ f (n) = O(n2) ⇒ f (n) = O(n3)

f (n) = n + 10 log n ⇒ f (n) = O(2n)

f (n) = n log n + n
√
n ⇒ f (n) = O(n2)

f (n) = 2
n
6 + n7 ⇒ f (n) = O((1.5)n)



Examples

f (n) = n2 + 10n + 100 ⇒ f (n) = O(n2) ⇒ f (n) = O(n3)

f (n) = n + 10 log n ⇒ f (n) = O(2n)

f (n) = n log n + n
√
n ⇒ f (n) = O(n2)

f (n) = 2
n
6 + n7 ⇒ f (n) = O((1.5)n)

f (n) = 10+n
n2



Examples

f (n) = n2 + 10n + 100 ⇒ f (n) = O(n2) ⇒ f (n) = O(n3)

f (n) = n + 10 log n ⇒ f (n) = O(2n)

f (n) = n log n + n
√
n ⇒ f (n) = O(n2)

f (n) = 2
n
6 + n7 ⇒ f (n) = O((1.5)n)

f (n) = 10+n
n2

⇒ f (n) = O(1)



Examples

f (n) = n2 + 10n + 100 ⇒ f (n) = O(n2) ⇒ f (n) = O(n3)

f (n) = n + 10 log n ⇒ f (n) = O(2n)

f (n) = n log n + n
√
n ⇒ f (n) = O(n2)

f (n) = 2
n
6 + n7 ⇒ f (n) = O((1.5)n)

f (n) = 10+n
n2

⇒ f (n) = O(1)

f (n) = Θ(g(n)) ⇒ f (n) = O(g(n))



Examples

f (n) = n2 + 10n + 100 ⇒ f (n) = O(n2) ⇒ f (n) = O(n3)

f (n) = n + 10 log n ⇒ f (n) = O(2n)

f (n) = n log n + n
√
n ⇒ f (n) = O(n2)

f (n) = 2
n
6 + n7 ⇒ f (n) = O((1.5)n)

f (n) = 10+n
n2

⇒ f (n) = O(1)

f (n) = Θ(g(n)) ⇒ f (n) = O(g(n))

f (n) = Θ(g(n)) ∧ g(n) = O(h(n)) ⇒ f (n) = O(h(n))



Examples

f (n) = n2 + 10n + 100 ⇒ f (n) = O(n2) ⇒ f (n) = O(n3)

f (n) = n + 10 log n ⇒ f (n) = O(2n)

f (n) = n log n + n
√
n ⇒ f (n) = O(n2)

f (n) = 2
n
6 + n7 ⇒ f (n) = O((1.5)n)

f (n) = 10+n
n2

⇒ f (n) = O(1)

f (n) = Θ(g(n)) ⇒ f (n) = O(g(n))

f (n) = Θ(g(n)) ∧ g(n) = O(h(n)) ⇒ f (n) = O(h(n))

f (n) = O(g(n)) ∧ g(n) = Θ(h(n)) ⇒ f (n) = O(h(n))



Examples

n2 − 10n + 100 = O(n log n)?



Examples

n2 − 10n + 100 = O(n log n)? NO



Examples

n2 − 10n + 100 = O(n log n)? NO

f (n) = O(2n)⇒ f (n) = O(n2)?



Examples

n2 − 10n + 100 = O(n log n)? NO

f (n) = O(2n)⇒ f (n) = O(n2)? NO



Examples

n2 − 10n + 100 = O(n log n)? NO

f (n) = O(2n)⇒ f (n) = O(n2)? NO

f (n) = Θ(2n)⇒ f (n) = O(n22n)?



Examples

n2 − 10n + 100 = O(n log n)? NO

f (n) = O(2n)⇒ f (n) = O(n2)? NO

f (n) = Θ(2n)⇒ f (n) = O(n22n)? YES



Examples

n2 − 10n + 100 = O(n log n)? NO

f (n) = O(2n)⇒ f (n) = O(n2)? NO

f (n) = Θ(2n)⇒ f (n) = O(n22n)? YES

f (n) = Θ(n22n)⇒ f (n) = O(2n+2 log2 n)?



Examples

n2 − 10n + 100 = O(n log n)? NO

f (n) = O(2n)⇒ f (n) = O(n2)? NO

f (n) = Θ(2n)⇒ f (n) = O(n22n)? YES

f (n) = Θ(n22n)⇒ f (n) = O(2n+2 log2 n)? YES



Examples

n2 − 10n + 100 = O(n log n)? NO

f (n) = O(2n)⇒ f (n) = O(n2)? NO

f (n) = Θ(2n)⇒ f (n) = O(n22n)? YES

f (n) = Θ(n22n)⇒ f (n) = O(2n+2 log2 n)? YES

f (n) = O(2n)⇒ f (n) = Θ(n2)?



Examples

n2 − 10n + 100 = O(n log n)? NO

f (n) = O(2n)⇒ f (n) = O(n2)? NO

f (n) = Θ(2n)⇒ f (n) = O(n22n)? YES

f (n) = Θ(n22n)⇒ f (n) = O(2n+2 log2 n)? YES

f (n) = O(2n)⇒ f (n) = Θ(n2)? NO



Examples

n2 − 10n + 100 = O(n log n)? NO

f (n) = O(2n)⇒ f (n) = O(n2)? NO

f (n) = Θ(2n)⇒ f (n) = O(n22n)? YES

f (n) = Θ(n22n)⇒ f (n) = O(2n+2 log2 n)? YES

f (n) = O(2n)⇒ f (n) = Θ(n2)? NO

√
n = O(log2 n)?



Examples

n2 − 10n + 100 = O(n log n)? NO

f (n) = O(2n)⇒ f (n) = O(n2)? NO

f (n) = Θ(2n)⇒ f (n) = O(n22n)? YES

f (n) = Θ(n22n)⇒ f (n) = O(2n+2 log2 n)? YES

f (n) = O(2n)⇒ f (n) = Θ(n2)? NO

√
n = O(log2 n)? NO



Examples

n2 − 10n + 100 = O(n log n)? NO

f (n) = O(2n)⇒ f (n) = O(n2)? NO

f (n) = Θ(2n)⇒ f (n) = O(n22n)? YES

f (n) = Θ(n22n)⇒ f (n) = O(2n+2 log2 n)? YES

f (n) = O(2n)⇒ f (n) = Θ(n2)? NO

√
n = O(log2 n)? NO

n2 + (1.5)n = O(2
n
2 )?



Examples

n2 − 10n + 100 = O(n log n)? NO

f (n) = O(2n)⇒ f (n) = O(n2)? NO

f (n) = Θ(2n)⇒ f (n) = O(n22n)? YES

f (n) = Θ(n22n)⇒ f (n) = O(2n+2 log2 n)? YES

f (n) = O(2n)⇒ f (n) = Θ(n2)? NO

√
n = O(log2 n)? NO

n2 + (1.5)n = O(2
n
2 )? NO



Example

So, what is the complexity of FINDEQUALS?

FINDEQUALS(A)

1 for i = 1 to length(A) − 1
2 for j = i + 1 to length(A)
3 if A[i] == A[j]
4 return TRUE

5 return FALSE



Example

So, what is the complexity of FINDEQUALS?

FINDEQUALS(A)

1 for i = 1 to length(A) − 1
2 for j = i + 1 to length(A)
3 if A[i] == A[j]
4 return TRUE

5 return FALSE

T(n) = Θ(n2)

◮ n = length(A) is the size of the input

◮ we measure the worst-case complexity



Ω-Notation



Ω-Notation

Given a function g(n), we define the family of functions Ω(g(n))



Ω-Notation

Given a function g(n), we define the family of functions Ω(g(n))

f (n)



Ω-Notation

Given a function g(n), we define the family of functions Ω(g(n))

f (n)

cg(n)



Ω-Notation

Given a function g(n), we define the family of functions Ω(g(n))

f (n)

cg(n)

n0

Ω(g(n)) = {f (n) : \c > 0, \n0 > 0

: 0 ≤ cg(n) ≤ f (n) for all n ≥ n0}



Ω-Notation

Given a function g(n), we define the family of functions Ω(g(n))

f (n)

cg(n)

n0

f (n) = Ω(g(n))
i.e., f(n) ∈ Ω(g(n))

“f (n) is omega of g(n)”

Ω(g(n)) = {f (n) : \c > 0, \n0 > 0

: 0 ≤ cg(n) ≤ f (n) for all n ≥ n0}



Θ, O, and Ω as Relations

Theorem: for any two functions f (n) and g(n),
f (n) = Ω(g(n)) ∧ f (n) = O(g(n)) ⇔ f (n) = Θ(g(n))



Θ, O, and Ω as Relations

Theorem: for any two functions f (n) and g(n),
f (n) = Ω(g(n)) ∧ f (n) = O(g(n)) ⇔ f (n) = Θ(g(n))

The Θ-notation, Ω-notation, and O-notation can be viewed as the “asymptotic”
=, ≥, and ≤ relations for functions, respectively



Θ, O, and Ω as Relations

Theorem: for any two functions f (n) and g(n),
f (n) = Ω(g(n)) ∧ f (n) = O(g(n)) ⇔ f (n) = Θ(g(n))

The Θ-notation, Ω-notation, and O-notation can be viewed as the “asymptotic”
=, ≥, and ≤ relations for functions, respectively

The above theorem can be interpreted as saying

f ≥ g ∧ f ≤ g ⇔ f = g



Θ, O, and Ω as Relations

Theorem: for any two functions f (n) and g(n),
f (n) = Ω(g(n)) ∧ f (n) = O(g(n)) ⇔ f (n) = Θ(g(n))

The Θ-notation, Ω-notation, and O-notation can be viewed as the “asymptotic”
=, ≥, and ≤ relations for functions, respectively

The above theorem can be interpreted as saying

f ≥ g ∧ f ≤ g ⇔ f = g

When f (n) = O(g(n)) we say that g(n) is an upper bound for f (n), and that g(n)
dominates f (n)



Θ, O, and Ω as Relations

Theorem: for any two functions f (n) and g(n),
f (n) = Ω(g(n)) ∧ f (n) = O(g(n)) ⇔ f (n) = Θ(g(n))

The Θ-notation, Ω-notation, and O-notation can be viewed as the “asymptotic”
=, ≥, and ≤ relations for functions, respectively

The above theorem can be interpreted as saying

f ≥ g ∧ f ≤ g ⇔ f = g

When f (n) = O(g(n)) we say that g(n) is an upper bound for f (n), and that g(n)
dominates f (n)

When f (n) = Ω(g(n)) we say that g(n) is a lower bound for f (n)



Θ, O, and Ω as Anonymous Functions

We can use the Θ-, O-, and Ω-notation to represent anonymous (unknown or
unsecified) functions
E.g.,

f (n) = 10n2 + O(n)

means that f (n) is equal to 10n2 plus a function we don’t know or we don’t care
to know that is asymptotically at most linear in n.



Θ, O, and Ω as Anonymous Functions

We can use the Θ-, O-, and Ω-notation to represent anonymous (unknown or
unsecified) functions
E.g.,

f (n) = 10n2 + O(n)

means that f (n) is equal to 10n2 plus a function we don’t know or we don’t care
to know that is asymptotically at most linear in n.

Examples

n2 + 4n − 1 = n2 + Θ(n)?



Θ, O, and Ω as Anonymous Functions

We can use the Θ-, O-, and Ω-notation to represent anonymous (unknown or
unsecified) functions
E.g.,

f (n) = 10n2 + O(n)

means that f (n) is equal to 10n2 plus a function we don’t know or we don’t care
to know that is asymptotically at most linear in n.

Examples

n2 + 4n − 1 = n2 + Θ(n)? YES



Θ, O, and Ω as Anonymous Functions

We can use the Θ-, O-, and Ω-notation to represent anonymous (unknown or
unsecified) functions
E.g.,

f (n) = 10n2 + O(n)

means that f (n) is equal to 10n2 plus a function we don’t know or we don’t care
to know that is asymptotically at most linear in n.

Examples

n2 + 4n − 1 = n2 + Θ(n)? YES

n2 + Ω(n) − 1 = O(n2)?



Θ, O, and Ω as Anonymous Functions

We can use the Θ-, O-, and Ω-notation to represent anonymous (unknown or
unsecified) functions
E.g.,

f (n) = 10n2 + O(n)

means that f (n) is equal to 10n2 plus a function we don’t know or we don’t care
to know that is asymptotically at most linear in n.

Examples

n2 + 4n − 1 = n2 + Θ(n)? YES

n2 + Ω(n) − 1 = O(n2)? NO



Θ, O, and Ω as Anonymous Functions

We can use the Θ-, O-, and Ω-notation to represent anonymous (unknown or
unsecified) functions
E.g.,

f (n) = 10n2 + O(n)

means that f (n) is equal to 10n2 plus a function we don’t know or we don’t care
to know that is asymptotically at most linear in n.

Examples

n2 + 4n − 1 = n2 + Θ(n)? YES

n2 + Ω(n) − 1 = O(n2)? NO

n2 + O(n) − 1 = O(n2)?



Θ, O, and Ω as Anonymous Functions

We can use the Θ-, O-, and Ω-notation to represent anonymous (unknown or
unsecified) functions
E.g.,

f (n) = 10n2 + O(n)

means that f (n) is equal to 10n2 plus a function we don’t know or we don’t care
to know that is asymptotically at most linear in n.

Examples

n2 + 4n − 1 = n2 + Θ(n)? YES

n2 + Ω(n) − 1 = O(n2)? NO

n2 + O(n) − 1 = O(n2)? YES



Θ, O, and Ω as Anonymous Functions

We can use the Θ-, O-, and Ω-notation to represent anonymous (unknown or
unsecified) functions
E.g.,

f (n) = 10n2 + O(n)

means that f (n) is equal to 10n2 plus a function we don’t know or we don’t care
to know that is asymptotically at most linear in n.

Examples

n2 + 4n − 1 = n2 + Θ(n)? YES

n2 + Ω(n) − 1 = O(n2)? NO

n2 + O(n) − 1 = O(n2)? YES

n log n + Θ(
√
n) = O(n

√
n)?



Θ, O, and Ω as Anonymous Functions

We can use the Θ-, O-, and Ω-notation to represent anonymous (unknown or
unsecified) functions
E.g.,

f (n) = 10n2 + O(n)

means that f (n) is equal to 10n2 plus a function we don’t know or we don’t care
to know that is asymptotically at most linear in n.

Examples

n2 + 4n − 1 = n2 + Θ(n)? YES

n2 + Ω(n) − 1 = O(n2)? NO

n2 + O(n) − 1 = O(n2)? YES

n log n + Θ(
√
n) = O(n

√
n)? YES



o-Notation



o-Notation

The upper bound defined by the O-notation may or may not be asymptotically
tight



o-Notation

The upper bound defined by the O-notation may or may not be asymptotically
tight

E.g.,

n log n = O(n2) is not asymptotically tight

n2 − n + 10 = O(n2) is asymptotically tight



o-Notation

The upper bound defined by the O-notation may or may not be asymptotically
tight

E.g.,

n log n = O(n2) is not asymptotically tight

n2 − n + 10 = O(n2) is asymptotically tight

We use the o-notation to denote upper bounds that are not asymtotically tight.
So, given a function g(n), we define the family of functions o(g(n))

o(g(n)) = {f (n) : \c > 0, \n0 > 0

: 0 ≤ f (n) < cg(n) for all n ≥ n0}



ω-Notation



ω-Notation

The lower bound defined by the Ω-notation may or may not be asymptotically
tight



ω-Notation

The lower bound defined by the Ω-notation may or may not be asymptotically
tight

E.g.,

2n = Ω(n log n) is not asymptotically tight

n + 4n log n = Ω(n log n) is asymptotically tight



ω-Notation

The lower bound defined by the Ω-notation may or may not be asymptotically
tight

E.g.,

2n = Ω(n log n) is not asymptotically tight

n + 4n log n = Ω(n log n) is asymptotically tight

We use the ω-notation to denote lower bounds that are not asymtotically tight.
So, given a function g(n), we define the family of functions ω(g(n))

ω(g(n)) = {f (n) : \c > 0,\n0 > 0

: 0 ≤ cg(n) < f (n) for all n ≥ n0}


