Greedy Algorithms

Antonio Carzaniga

Faculty of Informatics Università della Svizzera italiana

May 15, 2018

Outline

- Greedy strategy
- Examples
- Activity selection
- Huffman coding

Find the MST of G = (V, E) with $w : E \to \mathbb{R}$

• find a $T \subseteq E$ that is a *minimum-weight spanning tree*

Find the MST of G = (V, E) with $w : E \to \mathbb{R}$

• find a $T \subseteq E$ that is a *minimum-weight spanning tree*

• We naturally decompose the problem in a series of choices

Find the MST of G = (V, E) with $w : E \to \mathbb{R}$

• find a $T \subseteq E$ that is a *minimum-weight spanning tree*

• We naturally decompose the problem in a series of choices

• at each point we have a partial solution $A \subseteq T$

Find the MST of G = (V, E) with $w : E \to \mathbb{R}$

• find a $T \subseteq E$ that is a *minimum-weight spanning tree*

• We naturally decompose the problem in a series of choices

- at each point we have a partial solution $A \subseteq T$
- we have a number of choices on how to extend A

Find the MST of G = (V, E) with $w : E \to \mathbb{R}$

• find a $T \subseteq E$ that is a *minimum-weight spanning tree*

■ We naturally decompose the problem in a series of choices

- at each point we have a partial solution $A \subseteq T$
- we have a number of choices on how to extend A
- we make a "greedy" choice by selecting the *lightest* edge that does not violate the constraints of the MST problem

Find the MST of G = (V, E) with $w : E \to \mathbb{R}$

• find a $T \subseteq E$ that is a *minimum-weight spanning tree*

• We naturally decompose the problem in a series of choices

- at each point we have a partial solution $A \subseteq T$
- we have a number of choices on how to extend A
- we make a "greedy" choice by selecting the *lightest* edge that does not violate the constraints of the MST problem

GENERIC-MST(*G*, *w*) 1 $A = \emptyset$ 2 **while** *A* is not a spanning tree 3 find a *safe* edge e = (u, v) // the *lightest* that... 4 $A = A \cup \{e\}$

- 1. Cast the problem as one where
 - we make a greedy choice, and
 - we are left with a *subproblem*

- 1. Cast the problem as one where
 - we make a greedy choice, and
 - we are left with a subproblem
- 2. Prove that there is always a solution to the original problem that contains the greedy choice we make
 - i.e., that the greedy choice always leads to an optimal solution
 - not necessarily always the same one

- 1. Cast the problem as one where
 - we make a greedy choice, and
 - we are left with a subproblem
- 2. Prove that there is always a solution to the original problem that contains the greedy choice we make
 - i.e., that the greedy choice always leads to an optimal solution
 - not necessarily always the same one
- 3. Prove that the remaining subproblem is such that
 - combining the greedy choice with the optimal solution of the subproblem gives an optimal solution to the original problem

The Greedy-Choice Property

■ The first key ingredient of a greedy strategy is the following

greedy-choice property: one can always arrive at a globally optimal solution by making a locally optimal choice

The Greedy-Choice Property

■ The first key ingredient of a greedy strategy is the following

greedy-choice property: one can always arrive at a globally optimal solution by making a locally optimal choice

At every step, we consider only what is best in the current problem

not considering the results of the subproblems

Optimal Substructure

■ The second key ingredient of a greedy strategy is the following

optimal-substructure property: an optimal solution to the problem contains within it optimal solutions to subproblems

Optimal Substructure

■ The second key ingredient of a greedy strategy is the following

optimal-substructure property: an optimal solution to the problem contains within it optimal solutions to subproblems

■ It is natural to prove this by induction

 if the solution to the subproblem is optimal, then combining the greedy choice with that solution yields an optimal solution

■ The absolutely trivial *gift-selection problem*

■ The absolutely trivial *gift-selection problem*

▶ out of a set X = {x₁, x₂,..., x_n} of valuable objects, where v(x_i) is the value of x_i

- The absolutely trivial *gift-selection problem*
 - ▶ out of a set X = {x₁, x₂,..., x_n} of valuable objects, where v(x_i) is the value of x_i
 - ▶ you will be given, as a gift, *k* objects of your choice

■ The absolutely trivial *gift-selection problem*

- ▶ out of a set X = {x₁, x₂,..., x_n} of valuable objects, where v(x_i) is the value of x_i
- you will be given, as a gift, k objects of your choice
- how do you maximize the total value of your gifts?

■ The absolutely trivial *gift-selection problem*

- ▶ out of a set X = {x₁, x₂,..., x_n} of valuable objects, where v(x_i) is the value of x_i
- ▶ you will be given, as a gift, *k* objects of your choice
- how do you maximize the total value of your gifts?

Decomposition: choice plus subproblem

■ The absolutely trivial *gift-selection problem*

- ▶ out of a set X = {x₁, x₂, ..., x_n} of valuable objects, where v(x_i) is the value of x_i
- ▶ you will be given, as a gift, *k* objects of your choice
- how do you maximize the total value of your gifts?
- *Decomposition:* choice plus subproblem
 - **greedy choice:** pick x_i such that $v(x_i) = \max_{x \in X} v(x)$
 - **subproblem:** $X' = X \{x_i\}, k' = k 1$ (same value function *v*)

■ The absolutely trivial *gift-selection problem*

- ▶ out of a set X = {x₁, x₂,..., x_n} of valuable objects, where v(x_i) is the value of x_i
- ▶ you will be given, as a gift, *k* objects of your choice
- how do you maximize the total value of your gifts?
- *Decomposition:* choice plus subproblem
 - **greedy choice:** pick x_i such that $v(x_i) = \max_{x \in X} v(x)$
 - **subproblem:** $X' = X \{x_i\}, k' = k 1$ (same value function *v*)

Greedy-choice property

■ The absolutely trivial *gift-selection problem*

- ▶ out of a set X = {x₁, x₂,..., x_n} of valuable objects, where v(x_i) is the value of x_i
- ▶ you will be given, as a gift, *k* objects of your choice
- how do you maximize the total value of your gifts?
- *Decomposition:* choice plus subproblem
 - **greedy choice:** pick x_i such that $v(x_i) = \max_{x \in X} v(x)$
 - **subproblem:** $X' = X \{x_i\}, k' = k 1$ (same value function *v*)
- Greedy-choice property
 - if $v(x_i) = \max_{x \in X} v(x)$, then there is a globally optimal solution A that contains x_i

■ The absolutely trivial *gift-selection problem*

- ▶ out of a set X = {x₁, x₂,..., x_n} of valuable objects, where v(x_i) is the value of x_i
- you will be given, as a gift, k objects of your choice
- how do you maximize the total value of your gifts?
- *Decomposition:* choice plus subproblem
 - **greedy choice:** pick x_i such that $v(x_i) = \max_{x \in X} v(x)$
 - **subproblem:** $X' = X \{x_i\}, k' = k 1$ (same value function *v*)
- Greedy-choice property
 - if $v(x_i) = \max_{x \in X} v(x)$, then there is a globally optimal solution A that contains x_i

Optimal-substructure property

■ The absolutely trivial *gift-selection problem*

- ▶ out of a set X = {x₁, x₂, ..., x_n} of valuable objects, where v(x_i) is the value of x_i
- you will be given, as a gift, k objects of your choice
- how do you maximize the total value of your gifts?
- Decomposition: choice plus subproblem
 - **greedy choice:** pick x_i such that $v(x_i) = \max_{x \in X} v(x)$
 - **subproblem:** $X' = X \{x_i\}, k' = k 1$ (same value function *v*)
- Greedy-choice property
 - if $v(x_i) = \max_{x \in X} v(x)$, then there is a globally optimal solution A that contains x_i

Optimal-substructure property

• if $v(x_i) = \max_{x \in X} v(x)$ and A' is an optimal solution for $X' = X - \{x_i\}$, then $A' \subset A$

Observation

- *Inventing* a greedy algorithm is easy
 - it is easy to come up with greedy choices

Observation

- *Inventing* a greedy algorithm is easy
 - it is easy to come up with greedy choices
- Proving it optimal may be difficult
 - requires deep understanding of the structure of the problem

My favorite pasta lunch typically costs Fr. 15.20; I usually pay with a Fr. 20 bill, and get Fr. 4.80 of change

My favorite pasta lunch typically costs Fr. 15.20; I usually pay with a Fr. 20 bill, and get Fr. 4.80 of change

Question: how can I get the least amount of coins?

(Available denominations: 5, 2, 1, 0.5, 0.2, 0.1)

My favorite pasta lunch typically costs Fr. 15.20; I usually pay with a Fr. 20 bill, and get Fr. 4.80 of change

Question: how can I get the least amount of coins?

(Available denominations: 5, 2, 1, 0.5, 0.2, 0.1)

Solution: $2 \times 2 + 0.5 + 0.2 + 0.1 = 4.8$ (5 coins/bills)

My favorite pasta lunch typically costs Fr. 15.20; I usually pay with a Fr. 20 bill, and get Fr. 4.80 of change

Question: how can I get the least amount of coins?

(Available denominations: 5, 2, 1, 0.5, 0.2, 0.1)

Solution: $2 \times 2 + 0.5 + 0.2 + 0.1 = 4.8$ (5 coins/bills)

■ Is this a greedy problem?

My favorite pasta lunch typically costs Fr. 15.20; I usually pay with a Fr. 20 bill, and get Fr. 4.80 of change

Question: how can I get the least amount of coins?

(Available denominations: 5, 2, 1, 0.5, 0.2, 0.1)

Solution: $2 \times 2 + 0.5 + 0.2 + 0.1 = 4.8$ (5 coins/bills)

■ Is this a greedy problem?

Suppose you are in the US and need to make \$4.80 of change; available denominations are \$5, \$1, \$0.25, \$0.1, and \$.01 (you are out of "nickels")

My favorite pasta lunch typically costs Fr. 15.20; I usually pay with a Fr. 20 bill, and get Fr. 4.80 of change

Question: how can I get the least amount of coins?

(Available denominations: 5, 2, 1, 0.5, 0.2, 0.1)

Solution: $2 \times 2 + 0.5 + 0.2 + 0.1 = 4.8$ (5 coins/bills)

■ Is this a greedy problem?

■ Suppose you are in the US and need to make \$4.80 of change; available denominations are \$5, \$1, \$0.25, \$0.1, and \$.01 (you are out of "nickels")
 Greedy: 4 × 1 + 3 × 0.25 + 5 × 0.01 = 4.8 (12 coins/bills)

My favorite pasta lunch typically costs Fr. 15.20; I usually pay with a Fr. 20 bill, and get Fr. 4.80 of change

Question: how can I get the least amount of coins?

(Available denominations: 5, 2, 1, 0.5, 0.2, 0.1)

Solution: $2 \times 2 + 0.5 + 0.2 + 0.1 = 4.8$ (5 coins/bills)

■ Is this a greedy problem?

Suppose you are in the US and need to make \$4.80 of change; available denominations are \$5, \$1, \$0.25, \$0.1, and \$.01 (you are out of "nickels")
 Greedy: 4 × 1 + 3 × 0.25 + 5 × 0.01 = 4.8 (12 coins/bills)
 Optimal: 4 × 1 + 2 × 0.25 + 3 × 0.1 = 4.8 (9 coins/bills)

Knapsack Problem

- A thief robbing a store finds *n* items
 - *v_i* is the value of item *i*
 - *w_i* is the weight of item *i*
 - *W* is the maximum weight that the thief can carry

Problem: choose which items to take to maximize the total value of the robbery

Knapsack Problem

- A thief robbing a store finds *n* items
 - *v_i* is the value of item *i*
 - *w_i* is the weight of item *i*
 - *W* is the maximum weight that the thief can carry

Problem: choose which items to take to maximize the total value of the robbery

■ Is this a greedy problem?

Knapsack Problem

- A thief robbing a store finds *n* items
 - *v_i* is the value of item *i*
 - *w_i* is the weight of item *i*
 - *W* is the maximum weight that the thief can carry

Problem: choose which items to take to maximize the total value of the robbery

- Is this a greedy problem?
- **Exercise:** 1. formulate a reasonable greedy choice
 - 2. prove that it doesn't work with a counter-example
 - 3. go back to (1) and repeat a couple of times

- A thief robbing a store finds *n* items
 - *v_i* is the value of item *i*
 - *w_i* is the weight of item *i*
 - *W* is the maximum weight that the thief can carry
 - the thief may take any *fraction* of an item (with the corresponding proportional value)

Problem: choose which items, or fractions of items to take to maximize the total value of the robbery

- A thief robbing a store finds *n* items
 - *v_i* is the value of item *i*
 - *w_i* is the weight of item *i*
 - *W* is the maximum weight that the thief can carry
 - the thief may take any *fraction* of an item (with the corresponding proportional value)

Problem: choose which items, or fractions of items to take to maximize the total value of the robbery

■ Is this a greedy problem?

- A thief robbing a store finds *n* items
 - *v_i* is the value of item *i*
 - *w_i* is the weight of item *i*
 - *W* is the maximum weight that the thief can carry
 - the thief may take any *fraction* of an item (with the corresponding proportional value)

Problem: choose which items, or fractions of items to take to maximize the total value of the robbery

■ Is this a greedy problem?

Exercise: prove that it is a greedy problem

Activity-Selection Problem

A conference room is shared among different activities

- $S = \{a_1, a_2, \dots, a_n\}$ is the set of proposed activities
- activity a_i has a start time s_i and a finish time f_i
- activities a_i and a_j are *compatible* if either $f_i \le s_j$ or $f_j \le s_i$

Activity-Selection Problem

A conference room is shared among different activities

- $S = \{a_1, a_2, \dots, a_n\}$ is the set of proposed activities
- activity a_i has a start time s_i and a finish time f_i
- activities a_i and a_j are *compatible* if either $f_i \le s_j$ or $f_j \le s_i$

Problem: find the largest set of compatible activities

Activity-Selection Problem

A conference room is shared among different activities

- $S = \{a_1, a_2, \dots, a_n\}$ is the set of proposed activities
- activity a_i has a start time s_i and a finish time f_i
- activities a_i and a_j are *compatible* if either $f_i \le s_j$ or $f_j \le s_i$

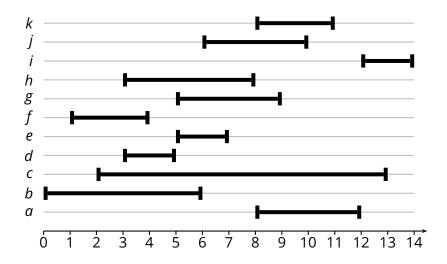
Problem: find the largest set of compatible activities

Example

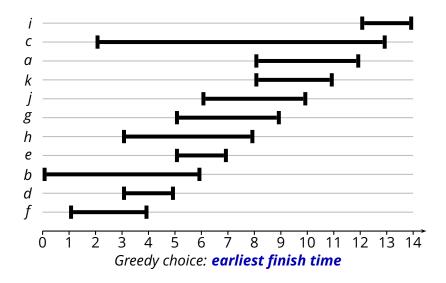
activity	а	b	С	d	е	f	g	h	i	j	k
start	8	0	2	3	5	1	5	3	12	6	8
finish	12	6	13	5	7	4	9	8	14	10	11

■ Is there a greedy solution for this problem?

Activity-Selection Problem (2)



Activity-Selection Problem (3)



Activity-Selection Problem (3)

Greedy choice: take $a_x \in S$ s.t. $f_x \leq f_i$ for all $a_i \in S$

Greedy choice: take $a_x \in S$ s.t. $f_x \leq f_i$ for all $a_i \in S$

Prove: there is an optimal solution OPT^* that contains a_x

Greedy choice: take $a_x \in S$ s.t. $f_x \leq f_i$ for all $a_i \in S$

Prove: there is an optimal solution *OPT*^{*} that contains a_x

Proof: (by contradiction)

▶ assume $a_x \notin OPT$

Greedy choice: take $a_x \in S$ s.t. $f_x \leq f_i$ for all $a_i \in S$

Prove: there is an optimal solution *OPT*^{*} that contains a_x

- assume $a_x \notin OPT$
- ▶ let $a_m \in OPT$ be the earliest-finish activity in OPT

Greedy choice: take $a_x \in S$ s.t. $f_x \leq f_i$ for all $a_i \in S$

Prove: there is an optimal solution *OPT*^{*} that contains a_x

- ▶ assume $a_x \notin OPT$
- ▶ let $a_m \in OPT$ be the earliest-finish activity in OPT
- construct $OPT^* = OPT \setminus \{a_m\} \cup \{a_x\}$

Greedy choice: take $a_x \in S$ s.t. $f_x \leq f_i$ for all $a_i \in S$

Prove: there is an optimal solution OPT^* that contains a_x

- ► assume $a_x \notin OPT$
- ▶ let $a_m \in OPT$ be the earliest-finish activity in OPT
- construct $OPT^* = OPT \setminus \{a_m\} \cup \{a_x\}$
- OPT* is valid
 Proof:
 - every activity $a_i \in OPT \setminus \{a_m\}$ has a starting time $s_i \ge f_m$, because a_m is compatible with a_i (so either $f_i < s_m$ or $s_i > f_m$) and $f_i > f_m$, because a_m is the earliest-finish activity in OPT
 - ▶ therefore, every activity a_i is compatible with a_x , because $s_i \ge f_m \ge f_x$

Greedy choice: take $a_x \in S$ s.t. $f_x \leq f_i$ for all $a_i \in S$

Prove: there is an optimal solution OPT^* that contains a_x

- ► assume $a_x \notin OPT$
- ▶ let $a_m \in OPT$ be the earliest-finish activity in OPT
- construct $OPT^* = OPT \setminus \{a_m\} \cup \{a_x\}$
- OPT* is valid
 Proof:
 - every activity $a_i \in OPT \setminus \{a_m\}$ has a starting time $s_i \ge f_m$, because a_m is compatible with a_i (so either $f_i < s_m$ or $s_i > f_m$) and $f_i > f_m$, because a_m is the earliest-finish activity in OPT
 - ▶ therefore, every activity a_i is compatible with a_x , because $s_i \ge f_m \ge f_x$
- ▶ thus *OPT*^{*} is an *optimal* solution, because |*OPT*^{*}| = |*OPT*|

■ **Optimal-substructure property:** having chosen a_x , let $S' \subset S$ be the set of activities compatible with a_x , that is, $S' = \{a_i \mid s_i \ge f_x\}$

■ **Optimal-substructure property:** having chosen a_x , let $S' \subset S$ be the set of activities compatible with a_x , that is, $S' = \{a_i \mid s_i \ge f_x\}$

Prove: $OPT^* = \{a_x\} \cup OPT'$ is optimal for *S* if OPT' is optimal for *S'*

• **Optimal-substructure property:** having chosen a_x , let $S' \subset S$ be the set of activities compatible with a_x , that is, $S' = \{a_i \mid s_i \geq f_x\}$

Prove: $OPT^* = \{a_x\} \cup OPT'$ is optimal for *S* if OPT' is optimal for *S'*

- Proof: (by contradiction)
 - assume to the contrary that $|OPT^*| < |OPT|$, and therefore |OPT'| < |OPT| 1

• **Optimal-substructure property:** having chosen a_x , let $S' \subset S$ be the set of activities compatible with a_x , that is, $S' = \{a_i \mid s_i \geq f_x\}$

Prove: $OPT^* = \{a_x\} \cup OPT'$ is optimal for *S* if OPT' is optimal for *S'*

- Proof: (by contradiction)
 - assume to the contrary that $|OPT^*| < |OPT|$, and therefore |OPT'| < |OPT| 1
 - ▶ let a_m be the earliest-finish activity in *OPT*, and let $\overline{S} = \{a_i | s_i \ge f_m\}$

• **Optimal-substructure property:** having chosen a_x , let $S' \subset S$ be the set of activities compatible with a_x , that is, $S' = \{a_i \mid s_i \geq f_x\}$

Prove: $OPT^* = \{a_x\} \cup OPT'$ is optimal for *S* if OPT' is optimal for *S'*

- ▶ assume to the contrary that $|OPT^*| < |OPT|$, and therefore |OPT'| < |OPT| 1
- ▶ let a_m be the earliest-finish activity in *OPT*, and let $\overline{S} = \{a_i | s_i \ge f_m\}$
- by construction, $OPT \setminus \{a_m\}$ is a solution for \overline{S}

• **Optimal-substructure property:** having chosen a_x , let $S' \subset S$ be the set of activities compatible with a_x , that is, $S' = \{a_i \mid s_i \ge f_x\}$

Prove: $OPT^* = \{a_x\} \cup OPT'$ is optimal for *S* if OPT' is optimal for *S'*

- assume to the contrary that $|OPT^*| < |OPT|$, and therefore |OPT'| < |OPT| 1
- ▶ let a_m be the earliest-finish activity in *OPT*, and let $\overline{S} = \{a_i | s_i \ge f_m\}$
- by construction, $OPT \setminus \{a_m\}$ is a solution for \overline{S}
- ▶ by construction, $\overline{S} \subseteq S'$, so $OPT \setminus \{a_m\}$ is a solution also for S'

• **Optimal-substructure property:** having chosen a_x , let $S' \subset S$ be the set of activities compatible with a_x , that is, $S' = \{a_i \mid s_i \geq f_x\}$

Prove: $OPT^* = \{a_x\} \cup OPT'$ is optimal for *S* if OPT' is optimal for *S'*

- assume to the contrary that $|OPT^*| < |OPT|$, and therefore |OPT'| < |OPT| 1
- ▶ let a_m be the earliest-finish activity in *OPT*, and let $\overline{S} = \{a_i | s_i \ge f_m\}$
- by construction, $OPT \setminus \{a_m\}$ is a solution for \overline{S}
- ▶ by construction, $\overline{S} \subseteq S'$, so $OPT \setminus \{a_m\}$ is a solution also for S'
- ▶ which means that there is a solution S' of size |OPT| 1, which contradicts the main assumption that |OPT'| < |OPT| 1</p>

■ Suppose you have a large sequence S of the six characters: 'a', 'b', 'c', 'd', 'e', and 'f'

• e.g.,
$$n = |S| = 10^9$$

■ What is the most efficient way to store that sequence?

■ Suppose you have a large sequence S of the six characters: 'a', 'b', 'c', 'd', 'e', and 'f'

• e.g.,
$$n = |S| = 10^9$$

■ What is the most efficient way to store that sequence?

First approach: compact fixed-width encoding

■ Suppose you have a large sequence S of the six characters: 'a', 'b', 'c', 'd', 'e', and 'f'

• e.g.,
$$n = |S| = 10^9$$

■ What is the most efficient way to store that sequence?

- First approach: compact fixed-width encoding
 - 6 symbols require 3 bits per symbol

■ Suppose you have a large sequence S of the six characters: 'a', 'b', 'c', 'd', 'e', and 'f'

• e.g.,
$$n = |S| = 10^9$$

■ What is the most efficient way to store that sequence?

- First approach: compact fixed-width encoding
 - 6 symbols require 3 bits per symbol
 - $3 \times 10^9/8 = 3.75 \times 10^8$ (a bit less than 400Mb)

■ Suppose you have a large sequence S of the six characters: 'a', 'b', 'c', 'd', 'e', and 'f'

• e.g.,
$$n = |S| = 10^9$$

■ What is the most efficient way to store that sequence?

First approach: compact fixed-width encoding

- 6 symbols require 3 bits per symbol
- $3 \times 10^9/8 = 3.75 \times 10^8$ (a bit less than 400Mb)

Can we do better?

Huffman Coding (2)

Huffman Coding (2)

Consider the following encoding table:

symbol	code			
а	000			
b	001			
С	010			
d	011			
е	100			
f	101			

Huffman Coding (2)

Consider the following encoding table:

symbol	code			
а	000			
b	001			
С	010			
d	011			
е	100			
f	101			

- *Observation:* the encoding of 'e' and 'f' is a bit redundant
 - the second bit does not help us in distinguishing 'e' from 'f'
 - in other words, if the first (most significant) bit is 1, then the second bit gives us no information, so it can be removed

Idea

Idea

Variable-length code

symbol	code
а	000
b	001
С	010
d	011
е	10
f	11

Encoding and decoding are well-defined and unambiguous

Variable-length code

symbol	code
а	000
b	001
С	010
d	011
е	10
f	11

- Encoding and decoding are well-defined and unambiguous
- How much space do we save?

Variable-length code

symbol	code
а	000
b	001
С	010
d	011
е	10
f	11

- Encoding and decoding are well-defined and unambiguous
- How much space do we save?
 - not knowing the frequency of 'e' and 'f', we can't tell exactly

Variable-length code

symbol	code
а	000
b	001
С	010
d	011
е	10
f	11

- Encoding and decoding are well-defined and unambiguous
- How much space do we save?
 - not knowing the frequency of 'e' and 'f', we can't tell exactly
- Given the frequencies f_a, f_b, f_c, \ldots of all the symbols in S

$$M = 3n(f_a + f_b + f_c + f_d) + 2n(f_e + f_f)$$

- Given a set of symbols C and a frequency function $f : C \rightarrow [0, 1]$
- Find a code $E : C \rightarrow \{0, 1\}^*$ such that

- Given a set of symbols *C* and a frequency function $f : C \rightarrow [0, 1]$
- Find a code $E : C \rightarrow \{0, 1\}^*$ such that
- E is a prefix code
 - no codeword $E(c_1)$ is the prefix of another codeword $E(c_2)$

- Given a set of symbols C and a frequency function $f : C \rightarrow [0, 1]$
- Find a code $E : C \rightarrow \{0, 1\}^*$ such that
- E is a prefix code
 - no codeword $E(c_1)$ is the prefix of another codeword $E(c_2)$
- The average codeword size

$$B(S) = \sum_{c \in C} f(c) |E(c)|$$

is minimal

• $E: C \to \{0, 1\}^*$ defines binary strings, so we can represent *E* as a binary tree *T*

E : $C \rightarrow \{0, 1\}^*$ defines binary strings, so we can represent *E* as a binary tree *T*

sym.	freq.	code
а	45%	000
b	13%	001
С	12%	010
d	16%	011
е	9%	10
f	5%	11

■ $E: C \rightarrow \{0, 1\}^*$ defines binary strings, so we can represent *E* as a binary tree *T*

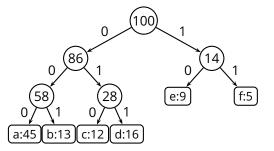
sym.	freq.	code
а	45%	000
b	13%	001
С	12%	010
d	16%	011
е	9%	10
f	5%	11



- leaves represent symbols; internal nodes are prefixes
- the code of a symbol *c* is the path from the root to *c*
- the weight f(v) of a node v is the frequency of its code/prefix

■ $E: C \rightarrow \{0, 1\}^*$ defines binary strings, so we can represent *E* as a binary tree *T*

sym.	freq.	code
а	45%	000
b	13%	001
С	12%	010
d	16%	011
е	9%	10
f	5%	11



- leaves represent symbols; internal nodes are prefixes
- the code of a symbol c is the path from the root to c
- the weight f(v) of a node v is the frequency of its code/prefix

$$B(S) = n \sum_{c \in leaves(T)} f(c) depth(c) = n \sum_{v \in T} f(v)$$

Huffman Algorithm

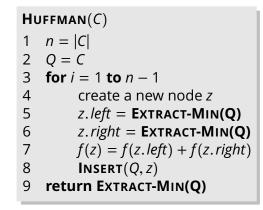
HUFFMAN(C)n = |C|1 2 Q = C3 **for** *i* = 1 **to** *n* − 1 4 create a new node z 5 z.left = EXTRACT-MIN(Q)6 z.right = EXTRACT-MIN(Q)7 f(z) = f(z.left) + f(z.right)8 INSERT(Q, Z)9 return Extract-Min(Q)

Huffman Algorithm

HUFFMAN(C)n = |C|1 2 Q = C3 **for** *i* = 1 **to** *n* − 1 4 create a new node z 5 z.left = EXTRACT-MIN(Q)6 z.right = EXTRACT-MIN(Q)7 f(z) = f(z.left) + f(z.right)8 INSERT(Q, z)9 return Extract-Min(Q)

■ We build the code bottom-up

Huffman Algorithm



- We build the code bottom-up
- Each time we make the "greedy" choice of merging the two least frequent nodes (symbols or prefixes)

HUFFMAN(C) 1 n = |C|2 Q = C3 for i = 1 to n - 14 create a new node z5 z.left = Extract-Min(Q) 6 z.right = Extract-Min(Q) 7 f(z) = f(z.left) + f(z.right)8 INSERT(Q, z) 9 return Extract-Min(Q)

sym.	freq.	code
а	45%	
b	13%	
С	12%	
d	16%	
е	9%	
f	5%	

HUFFMAN(C) 1 n = |C|2 Q = C3 for i = 1 to n - 14 create a new node z 5 z.left = EXTRACT-MIN(Q) 6 z.right = EXTRACT-MIN(Q) 7 f(z) = f(z.left) + f(z.right) 8 INSERT(Q, z) 9 return EXTRACT-MIN(Q)

sym.	freq.	code
а	45%	
b	13%	
С	12%	
d	16%	
е	9%	
f	5%	

HUFFMAN(C)n = |C|1 2 Q = C3 for i = 1 to n - 14 create a new node z 5 6 7 8 z.left = EXTRACT-MIN(Q)*z*.*right* = **Extract-Min(Q)** f(z) = f(z.left) + f(z.right)INSERT(Q, Z)9 return Extract-MIN(Q)

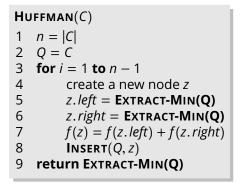
sym.	freq.	code
а	45%	
b	13%	
с	12%	
d	16%	
e	9%	
f	5%	

HUFFMAN(C) 1 n = |C|2 Q = C3 for i = 1 to n - 14 create a new node z 5 z.left = EXTRACT-MIN(Q) 6 z.right = EXTRACT-MIN(Q) 7 f(z) = f(z.left) + f(z.right) 8 INSERT(Q, z) 9 return EXTRACT-MIN(Q)

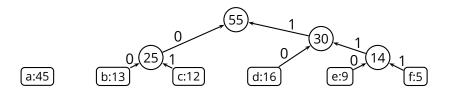
sym.	freq.	code
а	45%	
b	13%	
С	12%	
d	16%	
e	9%	
f	5%	

HUFFMAN(C) 1 n = |C|2 Q = C3 for i = 1 to n - 14 create a new node z 5 z.left = Extract-Min(Q) 6 z.right = Extract-Min(Q) 7 f(z) = f(z.left) + f(z.right) 8 INSERT(Q, z) 9 return Extract-Min(Q)

sym.	freq.	code
а	45%	
b	13%	
С	12%	
d	16%	
e	9%	
f	5%	



sym.	freq.	code
а	45%	
b	13%	
с	12%	
d	16%	
e	9%	
f	5%	



HUFFMAN(C) 1 n = |C|2 Q = C3 for i = 1 to n - 14 create a new node z5 z.left = Extract-Min(Q)6 z.right = Extract-Min(Q)7 f(z) = f(z.left) + f(z.right)8 INSERT(Q, z) 9 return Extract-Min(Q)

sym.	freq.	code
а	45%	
b	13%	
С	12%	
d	16%	
е	9%	
f	5%	



HUFFMAN(C) 1 n = |C|2 Q = C3 for i = 1 to n - 14 create a new node z 5 z.left = Extract-Min(Q)6 z.right = Extract-Min(Q)7 f(z) = f(z.left) + f(z.right)8 INSERT(Q, z) 9 return Extract-Min(Q)

sym.	freq.	code
а	45%	0
b	13%	100
с	12%	101
d	16%	110
e	9%	1110
f	5%	1111

