
Exercises for Algorithms and Data Structures

Antonio Carzaniga

Faculty of Informatics

USI

(Università della Svizzera italiana)

Edition 2.5

February 2018

(with some solutions)

◮Exercise 1. Answer the following questions on the big-oh notation.

Question 1: Explain what g(n) = O(f(n)) means. (5’)

Question 2: Explain why it is meaningless to state that “the running time of algorithm A is at least

O(n2).” (5’)

Question 3: Given two functions f = Ω(logn) and g = O(n), consider the following statements.

For each statement, write whether it is true or false. For each false statement, write two functions

f and g that show a counter-example. (5’)

• g(n) = O(f(n))

• f (n) = O(g(n))

• f (n) = Ω(log (g(n)))

• f (n) = Θ(log (g(n)))

• f (n)+ g(n) = Ω(logn)

Question 4: For each one of the following statements, write two functions f and g that satisfy the

given condition. (5’)

• f (n) = O(g2(n))

• f (n) =ω(g(n))

• f (n) =ω(log (g(n)))

• f (n) = Ω(f (n)g(n))

• f (n) = Θ(g(n)) +Ω(g2(n))

◮Exercise 2. Write an algorithm called Find-Largest that finds the largest number in an array

using a divide-and-conquer strategy. Also, write the time complexity of your algorithm in terms of

big-oh notation. Briefly justify your complexity analysis. (20’)

◮Exercise 3. Illustrate the execution of the merge-sort algorithm on the array

A = 〈3,13,89,34,21,44,99,56,9〉

For each fundamental iteration or recursion of the algorithm, write the content of the array. As-

sume the algorithm performs an in-place sort. (20’)

◮Exercise 4. Consider the array A = 〈29,18,10,15,20,9,5,13,2,4,15〉.
Question 1: Does A satisfy the max-heap property? If not, fix it by swapping two elements. (5’)

Question 2: Using array A (possibly corrected), illustrate the execution of the heap-extract-max

algorithm, which extracts the max element and then rearranges the array to satisfy the max-heap

property. For each iteration or recursion of the algorithm, write the content of the array A. (15’)

◮Exercise 5. Consider the following binary search tree (BST).

24

9

3 15

1 4

Question 1: List all the possible insertion orders (i.e., permutations) of the keys that could have

produced this BST. (5’)

Question 2: Draw the same BST after the insertion of keys: 6, 45, 32, 98, 55, and 69, in this order. (5’)

Question 3: Draw the BST resulting from the deletion of keys 9 and 45 from the BST resulting from

question 2. (5’)

Question 4: Write at least three insertion orders (permutations) of the keys remaining in the BST

after question 3 that would produce a balanced tree (i.e., a minimum-height tree). (5’)

◮Exercise 6. Implement a function that returns the successor of a node in a binary search tree (the

BST stores integer keys). A successor of a node n is defined as the smallest key x in the BST such

that x is bigger than the value of n, or null if that does not exist. You may assume that the BST

does not contain duplicate keys. The signature of the function you have to implement and the

interface of the TreeNode class, which implements the BST, are given below. Note that getLeft(),

getRight(), and getParent() return null if the node does not have a left, a right child, or is the root,

respectively. (10’)

interface TreeNode {

int getValue();

TreeNode getLeft();

TreeNode getRight();

TreeNode getParent();

}

/* Returns -1 if no successor exists */

int successor(TreeNode x) {

◮Exercise 7. Consider a hash table that stores integer keys. The keys are 32-bit unsigned values,

and are always a power of 2. Give the minimum table size t and the hash function h(x) that takes

a key x and produces a number between 1 and t, such that no collision occurs. (10’)

◮Exercise 8. Explain why the time complexity of searching for elements in a hash table, where

conflicts are resolved by chaining, decreases as its load factor α decreases. Recall that α is defined

as the ratio between the total number of elements stored in the hash table and the number of slots

in the table.

◮Exercise 9. For each statement below, write whether it is true or false. For each false statement,

write a counter-example. (10’)

• f (n) = Θ(n) ∧ g(n) = Ω(n) ⇒ f (n)g(n) = Ω(n2)

• f (n) = Θ(1) ⇒ nf (n) = O(n)

• f (n) = Ω(n)∧ g(n) = O(n2)⇒ g(n)/f (n) = O(n)

• f (n) = O(n2)∧ g(n) = O(n) ⇒ f (g(n)) = O(n3)

• f (n) = O(logn)⇒ 2f (n) = O(n)

• f = Ω(logn)⇒ 2f (n) = Ω(n)

◮Exercise 10. Write tight asymptotic bounds for each one of the following definitions of f (n). (10’)

• g(n) = Ω(n)∧ f (n) = g(n)2 +n3 ⇒ f (n) =

• g(n) = O(n2)∧ f (n) = n log (g(n)) ⇒ f (n) =

• g(n) = Ω(√n)∧ f (n) = g(n+ 216)⇒ f (n) =

• g(n) = Θ(n) ∧ f (n) = 1+ 1/
√
g(n) ⇒ f (n) =

• g(n) = O(n)∧ f (n) = 1+ 1/
√
g(n) ⇒ f (n) =

• g(n) = O(n)∧ f (n) = g(g(n)) ⇒ f (n) =

◮Exercise 11. Write the ternary-search trie (TST) that represents a dictionary of the strings: “gnu”

“emacs” “gpg” “else” “gnome” “go” “eps2eps” “expr” “exec” “google” “elif” “email” “exit” “epstopdf”

(10’)

◮Exercise 12. Answer the following questions.

Question 1: A hash table with chaining is implemented through a table of K slots. What is the

expected number of steps for a search operation over a set of N = K/2 keys? Briefly justify your

answers.

Question 2: What are the worst-case, average-case, and best-case complexities of insertion-sort,

bubble-sort, merge-sort, and quicksort? (5’)

◮Exercise 13. Write the pseudo code of the in-place insertion-sort algorithm, and illustrate its

execution on the array

A = 〈7,17,89,74,21,7,43,9,26,10〉
Do that by writing the content of the array at each main (outer) iteration of the algorithm. (20’)

◮Exercise 14. Consider a binary tree containing N integer keys whose values are all less than K,

and the following Find-Prime algorithm that operates on this tree.

Find-Prime(T)

1 x = Tree-Min(T)
2 while x ≠ nil

3 x = Tree-Successor(x)
4 if Is-Prime(x.key)
5 return x
6 return x

Is-Prime(n)

1 i = 2

2 while i · i ≤ n
3 if i divides n
4 return false

5 i = i+ 1

6 return true

Hint: these are the relevant binary-tree algorithms.

Tree-Successor(x)

1 if x.right ≠ nil

2 return Tree-Minimum(x.right)
3 y = x.parent

4 while y ≠ nil and x == y.right

5 x = y
6 y = y.parent

7 return y

Tree-Minimum(x)

1 while x. left ≠ nil

2 x = x. left

3 return x

Write the time complexity of Find-Prime. Justify your answer. (10’)

◮Exercise 15. Consider the following max-heap

H = 〈37,12,30,10,3,9,20,3,7,1,1,7,5〉
Write the exact output of the following Extract-All algorithm run on H

Extract-All(H)

1 while H.heap-size > 0

2 Heap-Extract-Max(H)
3 for i = 1 to H.heap-size

4 output H[i]
5 output “.” end-of-line

Heap-Extract-Max(H)

1 if H.heap-size > 0

2 k = H[1]
3 H[1] = H[H.heap-size]
4 H.heap-size = H.heap-size− 1

5 Max-Heapify(H)

6 return k
(20’)

◮Exercise 16. Develop an efficient in-place algorithm called Partition-Even-Odd(A) that parti-

tions an array A in even and odd numbers. The algorithm must terminate with A containing all its

even elements preceding all its odd elements. For example, for input A = 〈7,17,74,21,7,9,26,10〉,
the result might be A = 〈74,10,26,17,7,21,9,7〉. Partition-Even-Odd must be an in-place algo-

rithm, which means that it may use only a constant memory space in addition to A. In practice,

this means that you may not use another temporary array.

Question 1: Write the pseudo-code for Partition-Even-Odd. (20’)

Question 2: Characterize the complexity of Partition-Even-Odd. Briefly justify your answer. (10’)

Question 3: Formalize the correctness of the partition problem as stated above, and prove that

Partition-Even-Odd is correct using a loop-invariant. (20’)

Question 4: If the complexity of your algorithm is not already linear in the size of the array, write

a new algorithm Partition-Even-Odd-Optimal with complexity O(N) (with N = |A|). (20’)

◮Exercise 17. The binary string below is the title of a song encoded using Huffman codes.

0011000101111101100111011101100000100111010010101

Given the letter frequencies listed in the table below, build the Huffman codes and use them to

decode the title. In cases where there are multiple “greedy” choices, the codes are assembled by

combining the first letters (or groups of letters) from left to right, in the order given in the table.

Also, the codes are assigned by labeling the left and right branches of the prefix/code tree with ‘0’

and ‘1’, respectively.

letter a h v w ‘ ’ e t l o

frequency 1 1 1 1 2 2 2 3 3

(20’)

◮Exercise 18. Consider the text and pattern strings:
text: momify my mom please

pattern: mom

Use the Boyer-Moore string-matching algorithm to search for the pattern in the text. For each char-

acter comparison performed by the algorithm, write the current shift and highlight the character

position considered in the pattern string. Assume that indexes start from 0. The following table

shows the first comparison as an example. Fill the rest of the table. (10’)

n. shift m o m i f y m y m o m p l e a s e

1 0 m o m

2

.

◮Exercise 19. You wish to create a database of stars. For each star, the database will store several

megabytes of data. Considering that your database will store billions of stars, choose the data

structure that will provide the best performance. With this data structure you should be able to

find, insert, and delete stars. Justify your choice. (10’)

◮Exercise 20. You are given a set of persons P and their friendship relation R. That is, (a, b) ∈ R
if and only if a is a friend of b. You must find a way to introduce person x to person y through a

chain of friends. Model this problem with a graph and describe a strategy to solve the problem. (10’)

◮Exercise 21. Answer the following questions

Question 1: Explain what f (n) = Ω(g(n)) means. (5’)

Question 2: Explain what kind of problems are in the P complexity class. (5’)

Question 3: Explain what kind of problems are in the NP complexity class. (5’)

Question 4: Explain what it means for problem A to be polynomially-reducible to problem B. (5’)

Question 5: Write true, false, or unknown depending on whether the assertions below are true,

false, or we do not know. (5’)

• P ⊆ NP

• NP ⊆ P

• n! = O(n100)

• √n = Ω(logn)

• 3n2 + 1
n + 4 = Θ(n2)

Question 6: Consider the exact change problem characterized as follows. Input: a multiset of values

V = {v1, v2, . . . , vn} representing coins and bills in a cash register; a value X; Output: 1 if there

exists a subset of V whose total value is equal to X, or 0 otherwise. Is the exact-change problem in

NP? Justify your answer. (5’)

◮Exercise 22. A thief robbing a gourmet store finds n pieces of precious cheeses. For each piece

i, vi designates its value and wi designates its weight. Considering that W is the maximum weight

the robber can carry, and considering that the robber may take any fraction of each piece, you

must find the quantity of each piece the robber must take to maximize the value of the robbery. (20’)

Question 1: Devise an algorithm that solves the problem using a greedy or dynamic programming

strategy.

Question 2: Prove the problem exhibits an optimal substructure. Moreover, if you used a greedy

strategy, show that the greedy choice property holds for your algorithm. (Hint: the greedy-choice

property holds if and only if every greedy choice is contained in an optimal solution; the optimiza-

tion problem exhibits an optimal substructure if and only if an optimal solution to the problem

contains within it optimal solutions to subproblems.)

Question 3: Compute the time complexity of your solution.

/* Outputs the quantity of each piece taken */

float[] knapSack(int[] v, int[] w, int W) {

◮Exercise 23. You are in front of a stack of pancakes of different diameter. Unfortunately, you

cannot eat them unless they are sorted according to their size, with the biggest one at the bottom.

To sort them, you are given a spatula that you can use to split the stack in two parts and then flip

the top part of the stack. Write the pseudo-code of a function sortPancakes that sorts the stack.

The i-th element of array pancakes contains the diameter of the i-th pancake, counting from

the bottom. The sortPancakes algorithm can modify the stack only through the spatulaFlip

function whose interface is specified below.

(Hint: Notice that you can move a pancake at position x to position y , without modifying the

positions of the order of the other pancakes, using a sequence of spatula flips.) (20’)

/* Flips over the stack of pancakes from position pos and returns the result */

int[] spatulaFlip(int pos, int[] pancakes);

int[] sortPancakes(int[] pancakes) {

◮Exercise 24. The following matrix represents a directed graph over vertices a,b, c, . . . , ℓ. Rows

and columns represent the source and destination of edges, respectively.

a

b

c

d

e

f

g

h

i

j

k

ℓ

a b c d e f g h i j k ℓ

1 1

11

11

1

1 1

11

1 1

1 1

1

1

Sort the vertices in a reverse topological order using the depth-first search algorithm. (Hint: if

you order the vertices from left to right in reverse topological order, then all edges go from right

to left.) Justify your answer by showing the relevant data maintained by the depth-first search

algorithm, and by explaining how that can be used to produce a reverse topological order. (15’)

◮Exercise 25. Answer the following questions on the complexity classes P an NP. Justify your

answers.

Question 1: P ⊆ NP? (5’)

Question 2: A problem Q is in P and there is a polynomial-time reduction from Q to Q′. What can

we say about Q′? Is Q′ ∈ P? Is Q′ ∈ NP? (5’)

Question 3: Let Q be a problem defined as follows. Input: a set of numbers A = {a1, a2, . . . , aN}
and a number x; Output: 1 if and only if there are two values ai, ak ∈ A such that ai + ak = x. Is

Q in NP? Is Q in P? (5’)

◮Exercise 26. Consider the subset-sum problem: given a set of numbers A = {a1, a2, . . . , an} and

a number x, output true if there is a subset of numbers in A that add up to x, otherwise output

false. Formally, ∃S ⊆ A such that
∑
y∈S y = x. Write a dynamic-programming algorithm to solve

the subset-sum problem and informally analyze its complexity. (20’)

◮Exercise 27. Explain the idea of dynamic programming using the shortest-path problem as an

example. (The shortest path problem amounts to finding the shortest path in a given graph G =
(V, E) between two given vertices a and b.) (15’)

◮Exercise 28. Consider an initially empty B-Tree with minimum degree t = 3. Draw the B-Tree after

the insertion of the keys 27,33,39,1,3,10,7,200,23,21,20, and then after the additional insertion

of the keys 15,18,19,13,34,200,100,50,51. (10’)

◮Exercise 29. There are three containers whose sizes are 10 pints, 7 pints, and 4 pints, respec-

tively. The 7-pint and 4-pint containers start out full of water, but the 10-pint container is initially

empty. Only one type of operation is allowed: pouring the contents of one container into another,

stopping only when the source container is empty, or the destination container is full. Is there a

sequence of pourings that leaves exactly two pints in either the 7-pint or the 4-pint container?

Question 1: Model this as a graph problem: give a precise definition of the graph involved (type of

the graph, labels on vertices, meaning of an edge). Provide the set of all reachable vertices, identify

the initial vertex and the goal vertices. (Hint: all vertices that satisfy the condition imposed by the

problem are reachable, so you don’t have to draw a graph.)

Question 2: State the specific question about this graph that needs to be answered?

Question 3: What algorithm should be applied to solve the problem? Justify your answer. (15’)

◮Exercise 30. Write an algorithm called MoveToRoot(x, k) that, given a binary tree rooted at node

x and a key k, moves the node containing k to the root position and returns that node if k is in the

tree. If k is not in the tree, the algorithm must return x (the original root) without modifying the

tree. Use the typical notation whereby x.key is the key stored at node x, x. left and x.right are the

left and right children of x, respectively, and x.parent is x’s parent node. (15’)

◮Exercise 31. Given a sequence of numbers A = 〈a1, a2, . . . , an〉, an increasing subsequence is a

sequence ai1 , ai2 , . . . , aik of elements of A such that 1 ≤ i1 < i2 < . . . < ik ≤ n, and such that

ai1 < ai2 < . . . < aik . You must find the longest increasing subsequence. Solve the problem using

dynamic programming.

Question 1: Define the subproblem structure and the solution of each subproblem. (5’)

Question 2: Write an iterative algorithm that solves the problem. Illustrate the execution of the

algorithm on the sequence A = 〈2,4,5,6,7,9〉. (10’)

Question 3: Write a recursive algorithm that solves the problem. Draw a tree of recursive calls for

the algorithm execution on the sequence A = 〈1,2,3,4,5〉. (10’)

Question 4: Compare the time complexities of the iterative and recursive algorithms. (5’)

◮Exercise 32. One way to implement a disjoint-set data structure is to represent each set by a

linked list. The first node in each linked list serves as the representative of its set. Each node

contains a key, a pointer to the next node, and a pointer back to the representative node. Each list

maintains the pointers head, to the representative, and tail, to the last node in the list.

Question 1: Write the pseudo-code and analyze the time complexity for the following operations:

• Make-Set(x): creates a new set whose only member is x.

• Union(x,y): returns the representative of the union of the sets that contain x and y .

• Find-Set(x): returns a pointer to the representative of the set containing x.

Note that x and y are nodes. (15’)

Question 2: Illustrate the linked list representation of the following sets:

• {c,a,d, b}
• {e, g, f }
• Union(d, g)

(5’)

◮Exercise 33. Explain what it means for a hash function to be perfect for a given set of keys. Con-

sider the hash function h(x) = x mod m that maps an integer x to a table entry in {0,1, . . .m−1}.
Find an m ≤ 12 such that h is a perfect hash function on the set of keys {0,6,9,12,22,31}. (10’)

◮Exercise 34. Draw the binary search tree obtained when the keys 1,2,3,4,5,6,7 are inserted in

the given order into an initially empty tree. What is the problem of the tree you get? Why is it

a problem? How could you modify the insertion algorithm to solve this problem. Justify your

answer. (10’)

◮Exercise 35. Consider the following array:

A = 〈4,33,6,90,33,32,31,91,90,89,50,33〉
Question 1: Is A a min-heap? Justify your answer by briefly explaining the min-heap property. (10’)

Question 2: If A is a min-heap, then extract the minimum value and then rearrange the array with

the min-heapify procedure. In doing that, show the array at every iteration of min-heapify. If A is

not a min-heap, then rearrange it to satisfy the min-heap property. (10’)

◮Exercise 36. Write the pseudo-code of the insertion-sort algorithm. Illustrate the execution of the

algorithm on the array A = 〈3,13,89,34,21,44,99,56,9〉, writing the intermediate values of A at

each iteration of the algorithm. (20’)

◮Exercise 37. Encode the following sentence with a Huffman code

Common sense is the collection of prejudices acquired by age eighteen

Write the complete construction of the code. (20’)

◮Exercise 38. Consider the text and query strings:
text: It ain’t over till it’s over.

query: over

Use the Boyer-Moore string-matching algorithm to search for the query in the text. For each char-

acter comparison performed by the algorithm, write the current shift and highlight the character

position considered in the query string. Assume that indexes start from 0. The following table

shows the first comparison as an example. Fill the rest of the table. (10’)

n. shift I t a i n ’ t o v e r t i l l i t ’ s o v e r .

1 0 o v e r

2

...

◮Exercise 39. Briefly answer the following questions

Question 1: What does f (n) = Θ(g(n)) mean? (5’)

Question 2: What kind of problems are in the P class? Give an example of a problem in P. (5’)

Question 3: What kind of problems are in the NP class? Give an example of a problem in NP. (5’)

Question 4: What does it mean for a problem A to be reducible to a problem B? (5’)

◮Exercise 40. For each of the following assertions, write “true,” “false,” or “?” depending on

whether the assertion is true, false, or it may be either true or false. (10’)

Question 1: P ⊆ NP

Question 2: The knapsack problem is in P

Question 3: The minimal spanning tree problem is in NP

Question 4: n! = O(n100)

Question 5:
√
n = Ω(log(n))

Question 6: insertion-sort performs like quicksort on an almost sorted sequence

◮Exercise 41. An application must read a long sequence of numbers given in no particular order,

and perform many searches on that sequence. How would you implement that application to

minimize the overall time-complexity? Write exactly what algorithms you would use, and in what

sequence. In particular, write the high-level structure of a read function, to read and store the

sequence, and a find function too look up a number in the sequence. (10’)

◮Exercise 42. Write an algorithm that takes a set of (x,y) coordinates representing points on a

plane, and outputs the coordinates of two points with the maximal distance. The signature of the

algorithm is Maximal-Distance(X, Y), where X and Y are two arrays of the same length repre-

senting the x and y coordinates of each point, respectively. Also, write the asymptotic complexity

of Maximal-Distance. Briefly justify your answer. (10’)

◮Exercise 43. A directed tree is represented as follows: for each vertex v, v.first-child is either the

first element in a list of child-vertices, or nil if v is a leaf. For each vertex v, v.next-sibling is the

next element in the list of v’s siblings, or nil if v is the last element in the list. For example, the

arrays on the left represent the tree on the right:

v 1 2 3 4 5 6 7 8 9

first-child 2 4 6 nil nil nil nil nil nil

next-sibling nil 3 9 5 nil 7 8 nil nil
4 5 6 7 8

92 3

1

Question 1: Write two algorithms, Max-Depth(root) and Min-Depth(root), that, given a tree, re-

turn the maximal and minimal depth of any leaf vertex, respectively. (E.g., the results for the

example tree above are 2 and 1, respectively.) (15’)

Question 2: Write an algorithm Depth-First-Order(root) that, given a tree, prints the vertices in

depth-first visitation order, such that a vertices is always preceded by all its children (e.g., the

result for the example tree above is 4,5,2,6,7,8,3,9,1). (10’)

Question 3: Analyze the complexity of Max-Depth, Min-Depth and Depth-First-Order. (5’)

◮Exercise 44. Write an algorithm called In-Place-Sort(A) that takes an array of numbers, and

sorts the array in-place. That is, using only a constant amount of extra memory. Also, give an

informal analysis of the asymptotic complexity of your algorithm. (10’)

◮Exercise 45. Given a sequence A = 〈a1, . . . , an〉 of numbers, the zero-sum-subsequence problem

amounts to deciding whether A contains a subsequence of consecutive elements ai, ai+1, . . . , ak,
with 1 ≤ i ≤ k ≤ n, such that ai + ai+1 + · · · + ak = 0. Model this as a dynamic-programming

problem and write a dynamic-programming algorithm Zero-Sum-Sequence(A) that, given an array

A, returns true if A contains a zero-sum subsequence, or false otherwise. Also, give an informal

analysis of the complexity of Zero-Sum-Sequence. (30’)

◮Exercise 46. Give an example of a randomized algorithm derived from a deterministic algorithm.

Explain why there is an advantage in using the randomized variant. (10’)

◮Exercise 47. Implement a Ternary-Tree-Search(x, k) algorithm that takes the root of a ternary

tree and returns the node containing key k. A ternary tree is conceptually identical to a binary

tree, except that each node x has two keys, x.key1 and x.key2, and three links to child nodes,

x. left, x.center , and x.right, such that the left, center, and right subtrees contains keys that are,

respectively, less than x.key1, between x.key1 and x.key2, and greater than x.key2 . Assume there

are no duplicate keys. Also, assuming the tree is balanced, what is the asymptotic complexity of

the algorithm? (10’)

◮Exercise 48. Answer the following questions. Briefly justify your answers.

Question 1: A hash table that uses chaining has M slots and holds N keys. What is the expected

complexity of a search operation? (5’)

Question 2: The asymptotic complexity of algorithm A is Ω(N logN), while that of B is Θ(N2). Can

we compare the two algorithms? If so, which one is asymptotically faster? (5’)

Question 3: What is the difference between “Las Vegas” and “Monte Carlo” randomized algorithms?

(5’)

Question 4: What is the main difference between the Knuth-Morris-Pratt algorithm and Boyer-Moore

string-matching algorithms in terms of complexity? Which one as the best worst-case complexity?

(5’)

◮Exercise 49. A ternary search trie (TST) is used to implement a dictionary of strings. Write the

TST corresponding to the following set of strings: “doc” “fun” “algo” “cat” “dog” “data” “car” “led”

“function”. Assume the strings are inserted in the given order. Use ‘#’ as the terminator character.

(10’)

◮Exercise 50. The following declarations define a ternary search trie in C and Java, respectively:

struct TST {

char value;

struct TST * higher;

struct TST * lower;

struct TST * equal;

};

void print(const struct TST * t);

public class TST {

byte value;

TST higher;

TST lower;

TST equal;

void print() {/* ... */}

};

The TST represents a dictionary of byte strings. The print method must output all the strings

stored in the given TST, in alphabetical order. Assume the terminator value is 0. Write an imple-

mentation of the print method, either in C or in Java. You may assume that the TST contains

strings of up to 100 characters. (Hint: store the output strings in a static array of characters.) (20’)

◮Exercise 51. Consider quick-sort as an in-place sorting algorithm.

Question 1: Write the pseudo-code using only swap operations to modify the input array. (10’)

Question 2: Apply the algorithm of question 1 to the array A = 〈8,2,12,17,4,8,7,1,12〉. Write the

content of the array after each swap operation. (10’)

◮Exercise 52. Consider this minimal vertex cover problem: given a graphG = (V, E), find a minimal

set of vertices S such that for every edge (u,v) ∈ E, u or v (or both) are in S.

Question 1: Model minimal vertex cover as a dynamic-programming problem. Write the pseudo-

code of a dynamic-programming solution. (15’)

Question 2: Do you think that your model of minimal vertex cover admits a greedy choice? Try at

least one meaningful greedy strategy. Show that it does not work, giving a counter-example graph

for which the strategy produces the wrong result. (Hint: one meaningful strategy is to choose a

maximum-degree vertex first. The degree of a vertex is the number of its incident edges.) (5’)

◮Exercise 53. The graph G = (V, E) represents a social network in which each vertex represents a

person, and an edge (u,v) ∈ E represents the fact that u and v know each other. Your problem

is to organize the largest party in which nobody knows each other. This is also called the maximal

independent set problem. Formally, given a graph G = (V, E), find a set of vertices S of maximal

size in which no two vertices are adjacent. (I.e., for all u ∈ S and v ∈ S, (u,v) ∉ E.)

Question 1: Formulate a decision variant of maximal independent set. Say whether the problem is

in NP, and briefly explain what that means. (10’)

Question 2: Write a verification algorithm for the maximal independent set problem. This algo-

rithm, called TestIndependentSet(G, S), takes a graph G represented through its adjacency ma-

trix, and a set S of vertices, and returns true if S is a valid independent set for G. (10’)

◮Exercise 54. A Hamilton cycle is a cycle in a graph that touches every vertex exactly once. For-

mally, in G = (V, E), an ordering of all vertices H = v1, v2, . . . , vn forms a Hamilton cycle if

(vn, v1) ∈ E, and (vi, vi+1) ∈ E for all i between 1 and n − 1. Deciding whether a given graph is

Hamiltonian (has a Hamilton cycle) is a well known NP-complete problem.

Question 1: Write a verification algorithm for the Hamiltonian graph problem. This algorithm,

called TestHamiltonCycle(G,H), takes a graph G represented through adjacency lists, and an

array of vertices H , and returns true if H is a valid Hamilton cycle in G. (10’)

Question 2: Give the asymptotic complexity of your implementation of TestHamiltonCycle. (5’)

Question 3: Explain what it means for a problem to be NP-complete. (5’)

◮Exercise 55. Consider using a b-tree with minimum degree t = 2 as an in-memory data structure

to implement dynamic sets.

Question 1: Compare this data structure with a red-black tree. Is this data structure better, worse,

or the same as a red-black tree in terms of time complexity? Briefly justify your answer. In partic-

ular, characterize the complexity of insertion and search. (10’)

Question 2: Write an iterative (i.e., non-recursive) search algorithm for this degree-2 b-tree. Re-

member that the data structure is in-memory, so there is no need to perform any disk read/write

operation. (10’)

Question 3: Write the data structure after the insertion of keys 10,3,8,21,15,4,6,19,28,31, in this

order, and then after the insertion of keys 25,33,7,1,23,35,24,11,2,5. (10’)

Question 4: Write the insertion algorithm for this degree-2 b-tree. (Hint: since the minimum degree

is fixed at 2, the insertion algorithm may be implemented in a simpler fashion without all the loops

of the full b-tree insertion.) (15’)

◮Exercise 56. Consider a breadth-first search (BFS) on the following graph, starting from vertex a.

a b c

d e i j

f g h ok

ℓ n z

m p

t

u yw

q

r

s v x

Write the two vectors π (previous) and d (distance), resulting from the BFS algorithm. (10’)

◮Exercise 57. Write a sorting algorithm that runs with in time O(n logn) in the average case (on

an input array of size n). Also, characterize the best- and worst-case complexity of your solution. (20’)

◮Exercise 58. The following algorithms take an array A of integers. For each algorithm, write

the asymptotic, best- and worst-case complexities as functions of the size of the input n = |A|.
Your characterizations should be as tight as possible. Justify your answers by writing a short

explanation of what each algorithm does. (20’)

Algorithm-I(A)

1 for i = |A| downto 2

2 s = true

3 for j = 2 to i
4 if A[j − 1] > A[j]
5 swap A[j − 1]↔ A[j]
6 s = false

7 if s == true

8 return

Algorithm-II(A)

1 i = 1

2 j = |A|
3 while i < j
4 if A[i] > A[j]
5 swap A[i]↔ A[i+ 1]
6 if i+ 1 < j
7 swap A[i]↔ A[j]
8 i = i+ 1

9 else j = j − 1

◮Exercise 59. The following algorithms take a binary search tree T containing n keys. For each

algorithm, write the asymptotic, best- and worst-case complexities as functions of n. Your charac-

terizations should be as tight as possible. Justify your answers by writing a short explanation of

what each algorithm does. (20’)

Algorithm-III(T , k)

1 if T == nil

2 return false

3 if T .key == k
4 return true

5 if Algorithm-III(T . left)
6 return true

7 else return Algorithm-III(T .right)

Algorithm-IV(T , k1, k2)

1 if T == nil

2 return 0

3 if k1 > k2

4 swap k1 ↔ k2

5 r = 0

6 if T .key < k2

7 r = r +Algorithm-IV(T .right, k1, k2)
8 if T .key > k1

9 r = r +Algorithm-IV(T . left, k1, k2)
10 if T .key < k2 and T .key > k1

11 r = r + 1

12 return r

◮Exercise 60. Answer the following questions on complexity theory. Justify your answers. All

problems are decision problems. (Hint: answers are not limited to “yes” or “no.”) (20’)

Question 1: An algorithm A solves a problem P of size n in time O(n3). Is P in NP?

Question 2: An algorithm A solves a problem P of size n in time Ω(n logn). Is P in P? Is it in NP?

Question 3: A problem P in NP can be polynomially reduced into a problem Q. Is Q in P? Is Q in

NP?

Question 4: A problem P can be polynomially reduced into a problem Q in NP. Is P in P? Is P
NP-hard?

Question 5: A problem P of size n does not admit to any algorithmic solution with complexity

O(2n). Is P in P? Is P in NP?

Question 6: An algorithm A takes an instance of a problem P of size n and a “certificate” of

size O(nc), for some constant c, and verifies in time O(n2) that the solution to given problem is

affirmative. Is P in P? Is P in NP? Is P NP-complete?

◮Exercise 61. Write an algorithm TSTCountGreater(T , s) that takes the root T of a ternary-

search trie (TST) and a string s, and returns the number of strings stored in the trie that are

lexicographically greater than s. Given a node T , T . left, T .middle, and T .right are the left, middle,

and right subtrees, respectively; T .value is the value stored in T . The TST uses the special char-

acter ‘#’ as the string terminator. Given two characters a and b, the relation a < b defines the

lexicographical order, and the terminator character is less than every other character. (Hint: first

write an algorithm that, given a tree (node) counts all the strings stored in that tree.) (20’)

◮Exercise 62. Consider a depth-first search (DFS) on the following graph.

a b c

d e i j

f g h o

k ℓ n z

m p

t

u ywq r

s v x

Write the three vectors π , d, and f that, for each vertex represent the previous vertex in the

depth-first forest, the discovery time, and the finish time, respectively. Whenever necessary, iterate

through vertexes in alphabetic order. (20’)

◮Exercise 63. Write an implementation of a radix tree in Java. The tree must store 32-bit integer

keys. Each node in the tree must contain at most 256 links or keys, so each node would cover

at most 8 bits of the key. You must implement a class called RadixTree with two methods,

void insert(int k) and boolean find(int k). You must also specify every other class you

might use. For example, you would probably want to define a class RadixTreeNode to represent

nodes in the tree. (20’)

◮Exercise 64. Answer the following questions about red-black trees.

Question 1: Describe the structure and the properties of a red-black tree. (5’)

Question 2: Write an algorithm RB-Tree-Search(T , k) that, given a red-black tree T and a key k,

returns true if T contains key k, or false otherwise. (5’)

Question 3: Let h be the height of a red-black tree containing n keys, prove that

h ≤ 2 log (n+ 1)

Hint: first give an outline of the proof. Even if you can not give a complete proof, try to explain

informally how the red-black tree property limits the height of a red-black tree. (10’)

◮Exercise 65. Sort the following functions in ascending order of asymptotic growth rate:

f1(n) = 3n f2(n) = n1/3 f3(n) = log
2n

f4(n) = nlogn f5(n) = n3 f6(n) = 4logn

f7(n) = n2
√
n f8(n) = 22n f9(n) =

√
logn

That is, write the sequence of sorted indexes a1, a2, . . . , a9 such that for all indexes ai, aj with

i < j, fai(n) = O(faj(n)). (Notice that logn means log2n.) (10’)

◮Exercise 66. Consider the following algorithm:

Algo-A(X)

1 d = ∞
2 for i = 1 to X. length− 1

3 for j = i+ 1 to X. length

4 if |X[i]−X[j]| < d
5 d = |X[i]−X[j]|
6 return d

Question 1: Interpreting X as an array of coordinates of points on the x-axis, explain concisely

what algorithm Algo-A does, and give a tight asymptotic bound for the complexity of Algo-A. (5’)

Question 2: Write an algorithm Better-A(X) that is functionally equivalent to Algo-A(X), but with

a better asymptotic complexity. (15’)

◮Exercise 67. The following defines a ternary search trie (TST) for character strings, in Java and in

pseudo-code notation:

class TSTNode {

char c; x.c character at node x
boolean have_key; x.have-key true if node x represents a key

TSTNode left; x. left left child of node x
TSTNode middle; x.middle middle child of node x
TSTNode right; x.right right child of node x

}

Write an algorithm, void TSTPrint(TSTNode t) in Java or TST-Print(x) in pseudo-code that,

given the root of a TST, prints all its keys in alphabetical order. (20’)

◮Exercise 68. A set of keys is stored in a max-heap H and in a binary search tree T . Which data

structure offers the most efficient algorithm to output all the keys in descending order? Or are the

two equivalent? Write both algorithms. Your algorithms may change the data structures. (20’)

◮Exercise 69. Answer the following questions. Briefly justify your answers. (10’)

Question 1: Let A be an array of numbers sorted in descending order. Does A represent a max-heap

(with A.heap-size = A. length)?

Question 2: A hash table has T slots and uses chaining to resolve collisions. What are the worst-

case and average-case complexities of a search operation when the hash table contains N keys?

Question 3: A hash table with 9 slots, uses chaining to resolve collision, and uses the hash function

h(k) = k mod 9 (slots are numbered 0, . . . ,8). Draw the hash table after the insertion of keys 5,

28, 19, 15, 20, 33, 12, 17, and 10.

Question 4: Is the operation of deletion in a binary search tree commutative in the sense that

deleting x and then y from a binary search tree leaves the same tree as deleting y and then x?

Argue why it is or give a counter-example.

◮Exercise 70. Draw a binary search tree containing keys 8,27,13,15,32,20,12,50,29,11, inserted

in this order. Then, add keys 14,18,30,31, in this order, and again draw the tree. Then delete keys

29 and 27, in this order, and again draw the tree. (10’)

◮Exercise 71. Consider a max-heap containing keys 8,27,13,15,32,20,12,50,29,11, inserted in

this order in an initially empty heap. Write the content of the array that stores the heap. Then,

insert keys 43 and 51, and again write the content of the array. Then, extract the maximum value

three times, and again write the content of the array. In all three cases, write the heap as an array. (10’)

◮Exercise 72. Consider a min-heap H and the following algorithm.

BST-From-Min-Heap(H)

1 T = New-Empty-Tree()
2 for i = 1 to H.heap-length

3 Tree-Insert(T ,H[i]) // binary-search-tree insertion

4 return T

Prove that BST-From-Min-Heap does not always produce minimum-height binary trees. (10’)

◮Exercise 73. Consider an array A containing n numbers and satisfying the min-heap property.

Write an algorithm Min-Heap-Fast-Search(A, k) that finds k in A with a time complexity that is

better than linear in n whenever at most
√
n of the values in A are less than k. (20’)

◮Exercise 74. Write an algorithm B-Tree-Top-K(R, k) that, given the root R of a b-tree of minimum

degree t, and an integer k, outputs the largest k keys in the b-tree. You may assume that the entire

b-tree resides in main memory, so no disk access is required. (Reminder: a node x in a b-tree has

the following properties: x.n is the number of keys, X.key[1] ≤ x.key[2] ≤ . . . x.key[x.n] are the

keys, x. leaf tells whether x is a leaf, and x.c[1], x.c[2], . . . , x.c[x.n + 1] are the pointers to x’s

children.) (30’)

◮Exercise 75. Your computer has a special machine instruction called Sort-Five(A, i) that, given

an array A and a position i, sorts in-place and in a single step the elements A[i . . . i + 5] (or

A[i . . . |A|] if |A| < i + 5). Write an in-place sorting algorithm called Sort-With-Sort-Five that

uses only Sort-Five to modify the array A. Also, analyze the complexity of Sort-With-Sort-Five.

(20’)

◮Exercise 76. For each of the following statements, briefly argue why they are true, or show a

counter-example. (10’)

Question 1: f (n) = O(n!) =⇒ log (f (n)) = O(n logn)

Question 2: f (n) = Θ(f (n/2))
Question 3: f (n)+ g(n) = Θ(min (f (n), g(n)))

Question 4: f (n)g(n) = O(max (f (n), g(n)))

Question 5: f (g(n)) = Ω(min (f (n), g(n)))

◮Exercise 77. Characterize the complexity of the following algorithm. Briefly justify your answer. (10’)

Shuffle-A-Bit(A)

1 i = 1

2 j = A. length

3 if j > i
4 while j > i
5 p = Choose-Uniformly({0,1})
6 if p == 1

7 swap A[i] ↔ A[j]
8 j = j − 1

9 i = i+ 1

10 Shuffle-A-Bit(A[1 . . . j])
11 Shuffle-A-Bit(A[i . . . A. length])

◮Exercise 78. Answer the following questions. For each question, write “yes” when the answer is

always true, “no” when it is always false, “undefined” when it can be true or false. (10’)

Question 1: Algorithm A solves decision problem X in time O(n logn). Is X in NP?

Question 2: Is X in P?

Question 3: Decision problem X in P can be polynomially reduced to problem Y . Is there a

polynomial-time algorithm to solve Y?

Question 4: Decision problem X can be polynomially reduced to a problem Y for which there is a

polynomial-time verification algorithm. Is X in NP?

Question 5: Is X in P?

Question 6: An NP-hard decision problem X can be polynomially reduced to problem Y . Is Y in

NP?

Question 7: Is Y NP-hard?

Question 8: Algorithm A solves decision problem X in time Θ(2n). Is X in NP?

Question 9: Is X in P?

◮Exercise 79. Write a minimal character-based binary code for the following sentence:

in theory, there is no difference between theory and practice; in practice, there is.

The code must map each character, including spaces and punctuation marks, to a binary string

so that the total length of the encoded sentence is minimal. Use a Huffman code and show the

derivation of the code. (20’)

◮Exercise 80. The following matrix represents a directed graph over 12 vertices labeled a,b, . . . , ℓ.

Rows and columns represent the source and destination of edges, respectively. For example, the

value 1 in row a and column f indicates an edge from a to f .

a

b

c

d

e

f

g

h

i

j

k

ℓ

a b c d e f g h i j k ℓ

1 1

1 1 1

1 1 1

1

1 1 1 1 1

1

1 1 1 1

1 1 1

1 1 1 1

1 1

1 1 1

1

Run a breadth-first search on the graph starting from vertex a. Using the table below, write the two

vectors π (previous) and d (distance) at each main iteration of the BFS algorithm. Write the pair

π,d in each cell; for each iteration, write only the values that change. Also, write the complete BFS

tree after the termination of the algorithm. (20’)

a b c d e f g h i j k ℓ
a,0 −,∞ −,∞ −,∞ −,∞ −,∞ −,∞ −,∞ −,∞ −,∞ −,∞ −,∞

◮Exercise 81. A graph coloring associates a color with each vertex of a graph so that adjacent

vertices have different colors. Write a greedy algorithm that tries to color a given graph with the

least number of colors. This is a well known and difficult problem for which, most likely, there is no

perfect greedy strategy. So, you should use a reasonable strategy, and it is okay if your algorithm

does not return the absolute best coloring. The result must be a color array, where v.color is a

number representing the color of vertex v. Write the algorithm, analyze its complexity, and also

show an example in which the algorithm does not achieve the best possible result. (20’)

◮Exercise 82. Given an array A and a positive integer k, the selection problem amounts to finding

the largest element x ∈ A such that at most k elements of A are less than or equal to x, or nil if

no such element exists. A simple way to implement it is as follows:

SimpleSelection(A, k)

1 if k > A. length

2 return nil

3 else sort A in ascending order

4 return A[k]

Write another algorithm that solves the selection problem without first sorting A. (Hint: use

a divide-and-conquer strategy that “divides” A using one of its elements.) Also, illustrate the

execution of the algorithm on the following input by writing its state at each main iteration or

recursion.

A = 〈29,28,35,20,9,33,8,9,11,6,21,28,18,36,1〉 k = 6
(20’)

◮Exercise 83. Consider the following maximum-value contiguous subsequence problem: given a

sequence of numbers A = 〈a1, a2, . . . , an〉, find two positions i and j, with 1 ≤ i ≤ j ≤ n, such that

the sum ai + ai+1 + · · · + aj is maximal.

Question 1: Write an algorithm to solve the problem and analyze its complexity. (10’)

Question 2: If you have not already done so for question 1, write an algorithm that solves the

maximum-value contiguous subsequence problem in time O(n). (Hint: one such algorithm uses

dynamic-programming.) (20’)

◮Exercise 84. Consider the following intuitive definition of the size of a binary search (sub)tree t:
size(t) = 0 if t is nil, or size(t) = 1 + size(t. left) + size(t.right) otherwise. For each node t in a

tree, let attribute t.size denote the size of the subtree rooted at t.

Question 1: Prove that, if for each node t in a tree T , max{size(t. left), size(t.right)} ≤ 2
3size(t),

then the height of T is O(logn), where n = size(T). (10’)

Question 2: Write the rotation procedures Rotate-Left(t) and Rotate-Right(t) that return the

left- and right rotation of tree t maintaining the correct size attributes. (10’)

Question 3: Write an algorithm called Selection(T , i) that, given a tree T where each node t carries

its size in t.size, returns the i-th key in T . (10’)

Question 4: A tree T is perfectly balanced when max{size(t. left), size(t.right)} = ⌊size(t)/2⌋ for all

nodes t ∈ T . Write an algorithm called Balance(T) that, using the rotation procedures defined in

question 2, balances T perfectly. (Hint: the essential operation is to move the median value of a

subtree to the root of that subtree.) (30’)

◮Exercise 85. Write the heap-sort algorithm and illustrate its execution on the following sequence.

A = 〈1,1,24,8,3,36,34,23,4,30〉

Assuming the sequence A is stored in an array passed to the algorithm, for each main iteration (or

recursion) of the algorithm, write the content of the array. (10’)

◮Exercise 86. A radix tree is used to represent a dictionary of words defined over the alphabet of

the 26 letters of the English language. Assume that letters from A to Z are represented as numbers

from 1 to 26. For each node x of the tree, x. links is the array of links to other nodes, and x.value

is a Boolean value that is true when x represents a word in the dictionary. Write an algorithm

Print-Radix-Tree(T) that outputs all the words in the dictionary rooted at T . (10’)

◮Exercise 87. Consider the following algorithm that takes an array A of length A. length:

Algo-X(A)

1 for i = 3 to A. length

2 for j = 2 to i− 1

3 for k = 1 to j − 1

4 if |A[i]−A[j]| == |A[j] −A[k]|
or |A[i]−A[k]| == |A[k]−A[j]|
or |A[k]−A[i]| == |A[i]−A[j]|

5 return true

6 return false

Write an algorithm Better-Algo-X(A) equivalent to Algo-X(A) (for all A) but with a strictly better

asymptotic complexity than Algo-X(A). (20’)

◮Exercise 88. For each of the following statements, write whether it is correct or not. Justify your

answer by briefly arguing why it is correct, or otherwise by giving a counter example. (10’)

Question 1: If f (n) = O(g2(n)) then f (n) = Ω(g(n)).
Question 2: If f (n) = Θ(2n) then f (n) = Θ(3n).
Question 3: If f (n) = O(n3) then log (f (n)) = O(logn).

Question 4: f (n) = Θ(f (2n))
Question 5: f (2n) = Ω(f (n))

◮Exercise 89. Write an algorithm Partition(A, k) that, given an array A of numbers and a value

k, changes A in-place by only swapping two of its elements at a time so that all elements that are

less then or equal to k precede all other elements. (10’)

◮Exercise 90. Consider an initially empty B-Tree with minimum degree t = 2.

Question 1: Draw the tree after the insertion of keys 81, 56, 16, 31, 50, 71, 58, 83, 0, and 60 in this

order. (10’)

Question 2: Can a different insertion order produce a different tree? If so, write the same set of

keys in a different order and the corresponding B-Tree. If not, explain why. (10’)

◮Exercise 91. Consider the following decision problem. Given a set of integers A, output 1 if some

of the numbers in A add up to a multiple of 10, or 0 otherwise.

Question 1: Is this problem in NP? If it is, then write a corresponding verification algorithm. If not,

explain why not. (5’)

Question 2: Is this problem in P? If it is, then write a polynomial-time solution algorithm. Other-

wise, argue why not. (Hint: consider the input values modulo 10. That is, for each input value,

consider the remainder of its division by 10.) (15’)

◮Exercise 92. The following greedy algorithm is intended to find the shortest path between vertices

u and v in a graph G = (V, E,w), where w(x,y) is the length of edge (x,y) ∈ E.

Greedy-Shortest-Path(G = (V, E,w),u,v)
1 Visited = {u} // this is a set

2 path = 〈u〉 // this is a sequence

3 while path not empty

4 x = last vertex in path

5 if x == v
6 return path

7 y = vertex y ∈ Adj[x] such that y 6∈ Visited and w(x,y) is minimal

// y is x’s closest neighbor not already visited

8 if y == undefined // all neighbors of x have already been visited

9 path = path− 〈x〉 // removes the last element y from path

10 else Visited = Visited ∪ {y}
11 path = path+ 〈y〉 // append y to path

12 return undefined // there is no path between u and v

Does this algorithm find the shortest path always, sometimes, or never? If it always works, then

explain its correctness by defining a suitable invariant for the main loop, or explain why the greedy

choice is correct. If it works sometimes (but not always) show a positive example and a negative

example, and briefly explain why the greedy choice does not work. If it is never correct, show an

example and briefly explain why the greedy choice does not work. (20’)

◮Exercise 93. Write the quick-sort algorithm as a deterministic in-place algorithm, and then apply

it to the array

〈50,47,92,78,76,7,60,36,59,30,50,43〉
Show the application of the algorithm by writing the content of the array after each main iteration

or recursion. (20’)

◮Exercise 94. Consider an undirected graph G of n vertices represented by its adjacency matrix

A. Write an algorithm called Is-Cyclic(A) that, given the adjacency matrix A, returns true if G
contains a cycle, or false if G is acyclic. Also, give a precise analysis of the complexity of your

algorithm. (20’)

◮Exercise 95. A palindrome is a sequence of characters that is identical when read left-to-right

and right-to-left. For example, the word “racecar” is a palindrome, as is the phrase “rats live on no

evil star.” Write an algorithm called Longest-Palindrome(T) that, given an array of characters T ,

prints the longest palindrome in T , or any one of them if there are more than one. For example, if

T is the text “radar radiations” then your algorithm should output “dar rad”. Also, give a precise

analysis of the complexity of your algorithm. (20’)

◮Exercise 96. Write an algorithm called occurrences that, given an array of numbers A, prints

all the distinct values in A each followed by its number of occurrences. For example, if A =
〈28,1,0,1,0,3,4,0,0,3〉, the algorithm should output the following five lines (here separated by a

semicolon) “28 1; 1 2; 0 4; 3 2; 4 1”. The algorithm may modify the content of A, but may not use

any other memory. Each distinct value must be printed exactly once. Values may be printed in any

order. The complexity of the algorithm must be o(n2), that is, strictly lower than O(n2). (20’)

◮Exercise 97. The following algorithm takes an array of line segments. Each line segment s is

defined by its two end-points s.a and s.b, each defined by their Cartesian coordinates (s.a.x, s.a.y)
and (s.b.x, s.b.y), respectively, and ordered such that either s.a.x < s.b.x or s.a.x = s.b.x and

s.a.y < s.b.y. That is, s.b is never to the left of s.a, and if s.a and s.b have the same x coordinates,

then s.a is below s.b.

Equals(p, q)

// tests whether p and q are the same point

1 if p.x == q.x and p.y == q.y
2 return true

3 else return false

Algo-X(A)

1 for i = 1 to A. length

2 for j = 1 to A. length

3 if Equals(A[i].b, A[j].a)
4 for k = 1 to A. length

5 if Equals(A[j].b, A[k].b) and Equals(A[i].a, A[k].a)
6 return true

7 return false

Question 1: Analyze the asymptotic complexity of Algo-X (10’)

Question 2: Write an algorithm Algo-Y that does exactly what Algo-X does but with a better

asymptotic complexity. Also, write the asymptotic complexity of Algo-Y. (20’)

◮Exercise 98. Write an algorithm called Tree-to-Vine that, given a binary search tree T , returns the

same tree changed into a vine, that is, a tree containing exactly the same nodes but restructured so

that no node has a left child (i.e., the returned tree looks like a linked list). The algorithm must not

destroy or create nodes or use any additional memory other than what is already in the tree, and

therefore must operate through a sequence of rotations. Write explicitly all the rotation algorithms

used in Tree-to-Vine. Also, analyze the complexity of Tree-to-Vine. (15’)

◮Exercise 99. We say that a binary tree T is perfectly balanced if, for each node n in T , the number

of keys in the left and right subtrees of n differ at most by 1. Write an algorithm called Is-

Perfectly-Balanced that, given a binary tree T returns true if T is perfectly balanced, and false

otherwise. Also, analyze the complexity of Is-Perfectly-Balanced. (15’)

◮Exercise 100. Two graphs G and H are isomorphic if there exists a bijection f : V(G) → V(H)
between the vertexes of G and H (i.e., a one-to-one correspondence) such that any two vertices

u and v in G are adjacent (in G) if and only if f (u) and f (v) are adjacent in H . The graph-

isomorphism problem is the problem of deciding whether two given graphs are isomorphic.

Question 1: Is graph isomorphism in NP? If so, explain why and write a verification procedure. If

not, argue why not. (10’)

Question 2: Consider the following algorithm to solve the graph-isomorphism problem:

Isomorphic(G,H)

1 if |V(G)| 6= |V(H)|
2 return false

3 A = V(G) sorted by degree // A is a sequence of the vertices of G
4 B = V(H) sorted by degree // B is a sequence of the vertices of H
5 for i = 1 to |V(G)|
6 if degree(A[i]) 6= degree(B[i])
7 return false

8 return true

Is Isomorphic correct? If so, explain at a high level what the algorithm does and informally but

precisely why it works. If not, show a counter-example. (10’)

◮Exercise 101. Write an algorithm Heap-Print-In-Order(H) that takes a min heap H containing

unique elements (no element appears twice in H) and prints the elements of H in increasing order.

The algorithm must not modify H and may only use a constant amount of additional memory.

Also, analyze the complexity of Heap-Print-In-Order. (20’)

◮Exercise 102. Write an algorithm BST-Range-Weight(T ,a, b) that takes a well balanced binary

search tree T (or more specifically the root T of such a tree) and two keys a and b, with a ≤ b, and

returns the number of keys in T that are between a and b. Assuming there are o(n) such keys,

then the algorithm should have a complexity of o(n), that is, strictly better than linear in the size

of the tree. Analyze the complexity of BST-Range-Weight. (10’)

◮Exercise 103. Let (a, b) represent an interval (or range) of values x such that a ≤ x ≤ b. Consider

an array X = 〈a1, b1, a2, b2, . . . , an, bn〉 of 2n numbers representing n intervals (ai, bi), where

ai = X[2i − 1] and bi = X[2i] and ai ≤ bi. Write an algorithm called Simplify-Intervals(X)
that takes an array X representing n intervals, and simplifies X in-place. The “simplification” of

a set of intervals X is a minimal set of intervals representing the union of all the intervals in X.

Notice that the union of two disjoint intervals can not be simplified, but the union of two partially

overlapping intervals can be simplified into a single interval. For example, a correct solution for

the simplification of X = 〈3,7,1,5,10,12,6,8〉 is X = 〈10,12,1,8〉. An array X can be shrunk

by setting its length (effectively removing elements at the end of the array). In this example,

X.length should be 4 after the execution of the simplification algorithm. Analyze the complexity

of Simplify-Intervals. (30’)

◮Exercise 104. Write an algorithm Simplify-Intervals-Fast(X) that solves exercise 103 with a

complexity of O(n logn). If your solution for exercise 103 already has an O(n logn) complexity,

then simply say so. (20’)

◮Exercise 105. Consider the following algorithm:

Algo-X(A, k)

1 i = 1

2 while i ≤ A. length

3 if A[i] == k
4 Algo-Y(A, i)
5 else i = i+ 1

Algo-Y(A, i)

1 while i < A. length

2 A[i] = A[i+ 1]
3 i = i+ 1

4 A. length = A. length− 1 // discards last element

Analyze the complexity of Algo-X and write an algorithm called Better-Algo-X that does exactly

the same thing, but with a strictly better asymptotic complexity. Analyze the complexity of Better-

Algo-X. (20’)

◮Exercise 106. Write an in-place partition algorithm called Modulo-Partition(A) that takes an

array A of n numbers and changes A in such a way that (1) the final content of A is a permutation

of the initial content of A, and (2) all the values that are equivalent to 0 mod 10 precede all

the values equivalent to 1 mod 10, which precede all the values equivalent to 2 mod 10, etc.

Being an in-place algorithm, Modulo-Partition must not allocate more than a constant amount

of memory. For example, for an input array A = 〈7,62,5,57,12,39,5,8,16,48〉, a correct result

would be A = 〈12,62,5,5,16,57,7,8,48,39〉. Analyze the complexity of Modulo-Partition. (30’)

◮Exercise 107. Write the merge sort algorithm and analyze its complexity. (10’)

◮Exercise 108. Write an algorithm called Longest-Repeated-Substring(T) that takes a string T
representing some text, and finds the longest string that occurs at least twice in T . The algorithm

returns three numbers begin1, end1, and begin2, where begin1 ≤ end1 represent the first and last

position of the longest substring of T that also occurs starting at another position begin2 6= begin1

in T . If no such substring exist, then the algorithm returns “None.” Analyze the time and space

complexity of your algorithm. (20’)

◮Exercise 109. Answer the following questions on complexity theory. Reminder: SAT is the

Boolean satisfiability problem, which is a well-known NP-complete problem.

Question 1: A decision problem Q is polynomially-reducible to SAT. Can we say for sure that Q is

NP-complete? (2’)

Question 2: SAT is polynomially-reducible to a decision problem Q. Can we say for sure that Q is

NP-complete? (2’)

Question 3: A decision problemQ is polynomially reducible to a problemQ′ andQ′ is polynomially

reducible to SAT. Can we say for sure that Q is in NP? (2’)

Question 4: An algorithm A solves every instance of a decision problem Q of size n in O(n3) time.

Also, Q is polynomially reducible to another problem Q′. Can we say for sure that Q′ is in NP? (2’)

Question 5: A decision problem Q is polynomially reducible to another decision problem Q′, and

an algorithm A solves Q′ with complexity O(n logn). Can we say for sure that Q is in NP? (2’)

Question 6: Consider the following decision problemQ: given a graph G, output 1 if G is connected

(i.e., there exists a path between each pair of vertices) or 0 otherwise. Is Q in P? If so, outline an

algorithm that proves it, if not argue why not. (10’)

Question 7: Consider the following decision problem Q: given a graph G and an integer k, output

1 if G contains a cycle of size k. Is Q in NP? If so, outline an algorithm that proves it, if not argue

why not. (10’)

◮Exercise 110. Consider an initially empty B-tree with minimum degree t = 3. Draw the B-tree after

the insertion of the keys 84, 13, 36, 91, 98, 14, 81, 95, 12, 63, 31, and then after the additional

insertion of the keys 65, 62, 187, 188, 57, 127, 6, 195, 25. (10’)

◮Exercise 111. Write an algorithm B-Tree-Range(T , k1, k2) that takes a B-tree T and two keys

k1 ≤ k2, and prints all the keys in T between k1 and k2 (inclusive). (20’)

◮Exercise 112. Write an algorithm called Find-Triangle(G) that takes a graph represented by

its adjacency list G and returns true if G contains a triangle. A triangle in a graph G is a triple

of vertices u,v,w such that all three edges (u,v), (v,w), and (u,w) are in G. Analyze the

complexity of Find-Triangle. (15’)

◮Exercise 113. Write an algorithm Min-Heap-Insert(H, k) that inserts a key k in a min-heap H .

Also, illustrate the algorithm by writing the content of the array H after the insertion of keys 84,

13, 36, 91, 98, 14, 81, 95, 12, 63, 31, and then after the additional insertion of the key 15. (15’)

◮Exercise 114. Implement a priority queue by writing two algorithms:

• Enqueue(Q,x,p) enqueues an object x with priority p, and

• Dequeue(Q) extracts and returns an object from the queue.

The behavior of Enqueue and Dequeue is such that, if a call Enqueue(Q,x1, p1) is followed (not

necessarily immediately) by another call Enqueue(Q,x2, p2), then x1 is dequeued before x2 unless

p2 > p1. Implement Enqueue and Dequeue such that their complexity is o(n) for a queue of n
elements (i.e., strictly less than linear). (20’)

◮Exercise 115. Write an algorithm called Max-Heap-Merge-New(H1,H2) that takes two max-heaps

H1 and H2, and returns a new max-heap that contains all the elements of H1 and H2. Max-Heap-

Merge-New must create a new max heap, therefore it must allocate a new heap H and somehow

copy all the elements from H1 and H2 into H without modifying H1 and H2. Also, analyze the

complexity of Max-Heap-Merge-New. (20’)

◮Exercise 116. Write an algorithm called BST-Merge-Inplace(T1, T2) that takes two binary-search

trees T1 and T2, and returns a new binary-search tree by merging all the elements of T1 and T2.

BST-Merge-Inplace is in-place in the sense that it must rearrange the nodes of T1 and T2 in a

single binary-search tree without creating any new node. Also, analyze the complexity of BST-

Merge-Inplace. (20’)

◮Exercise 117. Let A be an array of points in the 2D Euclidean space, each with its Cartesian

coordinates A[i].x and A[i].y. Write an algorithm Minimum-Bounding-Rectangle(A) that, given

an array A of n points, in O(n) time returns the smallest axis-aligned rectangle that contains all

the points in A. Minimum-Bounding-Rectangle must return a pair of points corresponding to

the bottom-left and top-right corners of the rectangle, respectively. (10’)

◮Exercise 118. Let A be an array of points in the 2D Euclidean space, each with its Cartesian

coordinates A[i].x and A[i].y. Write an algorithm Largest-Cluster(A, ℓ) that, given an array A
of points and a length ℓ, returns the maximum number of points in A that are contained in a

square of size ℓ. Also, analyze the complexity of Largest-Cluster. (30’)

◮Exercise 119. Consider the following algorithm that takes an array of numbers:

Algo-X(A)

1 i = 1

2 j = 1

3 m = 0

4 c = 0

5 while i ≤ |A|
6 if A[i] == A[j]
7 c = c + 1

8 j = j + 1

9 if j > |A|
10 if c > m
11 m = c
12 c = 0

13 i = i+ 1

14 j = i
15 return m

Question 1: Analyze the complexity of Algo-X. (5’)

Question 2: Write an algorithm that does exactly the same thing as Algo-X but with a strictly better

asymptotic time complexity. (15’)

◮Exercise 120. Write a Three-Way-Merge(A, B,C) algorithm that merges three sorted sequences

into a single sorted sequence, and use it to implement a Three-Way-Merge-Sort(L) algorithm.

Also, analyze the complexity of Three-Way-Merge-Sort. (20’)

◮Exercise 121. Write an algorithm Is-Simple-Polygon(A) that takes a sequence A of 2D points,

where each point A[i] is defined by its Cartesian coordinates A[i].x and A[i].y , and returns true

if A defines a simple polygon, or false otherwise. Also, analyze the complexity of Is-Simple-

Polygon. A polygon is simple if its line segments do not intersect.

Example:
A

b

b

b

b

b

b

Is-Simple-Polygon(A) = true

A

b

b

b

b

b

b

Is-Simple-Polygon(A) = false

Hint: Use the following Direction-ABC algorithm to determine whether a point c is on the left

side, collinear, or on the right side of a segment ab:

Direction-ABC(a, b, c)

1 d = (b.x − a.x)(c.y − a.y)− (b.y − a.y)(c.x − a.x)
2 if d > 0

3 return left

4 elseif d == 0

5 return co-linear

6 else return right

Example:
c

a

b

Direction-ABC(a, b, c) = left
(20’)

◮Exercise 122. Implement a dictionary that supports longest prefix matching. Specifically, write

the following algorithms:

• Build-Dictionary(W) takes a list W of n strings and builds the dictionary.

• Longest-Prefix(k) takes a string k and returns the longest prefix of k found in the dictionary,

or null if none exists. The time complexity of Longest-Prefix(k) must be o(n), that is,

sublinear in the size n of the dictionary.

For example, assuming the dictionary was built with strings, “luna”, “lunatic”, “a”, “al”, “algo”, “an”,

“anto”, then if k is “algorithms”, then Longest-Prefix(k) should return “algo”, or if k is “anarchy”

then Longest-Prefix(k) should return “an”, or if k is “lugano” then Longest-Prefix(k) should

return null. (20’)

◮Exercise 123. Consider the following decision problem: given a set S of character strings, with

characters of a fixed alphabet (e.g., the Roman alphabet), and given an integer k, return true if

there are at least k strings in S that have a common substring.

Question 1: Is the problem in NP? Write an algorithm that proves it is, or argue the opposite. (5’)

Question 2: Is the problem in P? Write an algorithm that proves it is, or argue the opposite. (15’)

◮Exercise 124. Draw a red-black tree containing the following set of keys, clearly indicating the

color of each node.

{8,7,7,35,23,35,13,7,23,18,3,19,22}
(10’)

◮Exercise 125. Consider the following algorithm Algo-X that takes an array A of n numbers:

Algo-X(A)

1 return Algo-XR(A,0,1,2)

Algo-XR(A, t, i, r)

1 while i ≤ A. length

2 if r == 0

3 if A[i] == t
4 return true

5 else if Algo-XR(A, t −A[i], i+ 1, r − 1)
6 return true

7 i = i+ 1

8 return false

Analyze the complexity of Algo-X and then write an algorithm Better-Algo-X that does exactly

the same thing but with a strictly better time complexity. (30’)

◮Exercise 126. A Eulerian cycle in a graph is a cycle that goes through each edge exactly once. As

it turns out, a graph contains a Eulerian cycle if (1) it is connected, and (2) all its vertexes have even

degree. Write an algorithm Eulerian(G) that takes a graph G represented as an adjacency matrix,

and returns true when G contains a Eulerian cycle. (10’)

◮Exercise 127. Consider a social network system that, for each user u, stores u’s friends in a

list friends(u). Implement an algorithm Top-Three-Friends-Of-Friends(u) that, given a user

u, recommends the three other users that are not already among u’s friends but are among the

friends of most of u’s friends. Also, analyze the complexity of the Top-Three-Friends-Of-Friends

algorithm. (20’)

◮Exercise 128. Consider the following algorithm:

Algo-X(A)

1 for i = 3 to A. length

2 for j = 2 to i− 1

3 for k = 1 to j − 1

4 x = A[i]
5 y = A[j]
6 z = A[k]
7 if x > y
8 swap x ↔ y
9 if y > z

10 swap y ↔ z
11 if x > y
12 swap x ↔ y
13 if y − x == z −y
14 return true

15 return false

Analyze the complexity of Algo-X and write an algorithm called Better-Algo-X(A) that does the

same as Algo-X(A) but with a strictly better asymptotic time complexity and with the same space

complexity. (20’)

◮Exercise 129. The weather service stores the daily temperature measurements for each city as

vectors of real numbers.

Question 1: Write an algorithm called Hot-Days(A, t) that takes an array A of daily temperature

measurements for a city and a temperature t, and returns the maximum number of consecutive

days with a recorded temperature above t. Also, analyze the complexity of Hot-Days(A, t). (5’)

Question 2: Now imagine that a particular analysis would call the Hot-Days algorithm several

times with the same series A of temperature measurements (but with different temperature values)

and therefore it would be more efficient to somehow index or precompute the results. To do that,

write the following two algorithms:

• A preprocessing algorithm called Hot-Days-Init(A) that takes the series of temperature mea-

surements A and creates an auxiliary data structure X (an index of some sort).

• An algorithm called Hot-Days-Fast(X, t) that takes the index X and a temperature t and

returns the maximum number of consecutive days with a temperature above t. Hot-Days-

Fast must run in sub-linear time in the size of A.

Also, analyze the complexity of Hot-Days-Init and Hot-Days-Fast. (25’)

◮Exercise 130. Consider the following decision problem: given a sequence A of numbers and given

an integer k, return true if A contains either an increasing or a decreasing subsequence of length k.

The elements of the subsequence must maintain their order in A but do not have to be contiguous.

Question 1: Is the problem in NP? Write an algorithm that proves it is, or argue the opposite. (10’)

Question 2: Is the problem in P? Write an algorithm that proves it is, or argue the opposite. (20’)

◮Exercise 131. Write an algorithm Heap-Delete(H, i) that, given a max-heap H , deletes the ele-

ment at position i from H . (10’)

◮Exercise 132. Write an algorithm Max-Cluster(A,d) that takes an array A of numbers (not nec-

essarily integers) and a number d, and prints a maximal set of numbers in A that differ by at most

d. The output can be given in any order. Your algorithm must have a complexity that is strictly

better than O(n2). For example, with

A = 〈7,15,16,3,10,43,8,1,29,13,4.5,28〉 d = 5

Max-Cluster(A,d) would output 7,3,4.5,8 (or the same numbers in any other order) since those

numbers differ by at most 5 and there is no larger set of numbers in A that differ by at most 5.

Also, analyze the complexity of Max-Cluster. (20’)

◮Exercise 133. Consider the following algorithm that takes a non-empty array of numbers

Algo-X(A)

1 B = make a copy of A
2 i = 1

3 while i ≤ B. length

4 j = i+ 1

5 while j ≤ B. length

6 if B[j] == B[i]
7 i = i+ 1

8 swap B[i]↔ B[j]
9 j = j + 1

10 i = i+ 1

11 q = B[1]
12 n = 1

13 m = 1

14 for i = 2 to B. length

15 if B[i] == q
16 n = n+ 1

17 if n >m
18 m = m+ 1

19 else q = B[i]
20 n = 1

21 return m

Question 1: Briefly explain what Algo-X does, and analyze the complexity of Algo-X. (10’)

Question 2: Write an algorithm called Better-Algo-X that is functionally identical to Algo-X but

with a strictly better complexity. Analyze the complexity of Better-Algo-X. (10’)

◮Exercise 134. Write the heap-sort algorithm and then illustrate how heap-sort processes the fol-

lowing array in-place:

A = 〈33,28,23,48,32,46,40,12,21,41,14,37,38,0,25〉

In particular, show the content of the array at each main iteration of the algorithm. (20’)

◮Exercise 135. Write an algorithm BST-Print-Longest-Path(T) that, given a binary search tree T ,

outputs the sequence of nodes (values) of the path from the root to any node of maximal depth.

Also, analyze the complexity of BST-Print-Longest-Path. (30’)

◮Exercise 136. Consider insertion in a binary search tree.

Question 1: Write a valid insertion algorithm BST-Insert. (10’)

Question 2: Illustrate how BST-Insert works by drawing the binary search tree resulting from the

insertion of the following keys in this order:

33,28,23,48,32,46,40,12,21,41,14,37,38,0,25

Also, if the resulting tree is not already of minimal depth, write an alternative insertion order that

would result in a tree of minimal depth. (10’)

Question 3: Write an algorithm Best-BST-Insert-Order(A) that takes an array of numbers A and

outputs the elements of A in an order that, if used with BST-Insert would lead to a binary search

tree of minimal depth. (10’)

◮Exercise 137. Write an algorithm called Find-Negative-Cycle that, given a weighted directed

graph G = (V, E), with weight function w : E → R, finds and outputs a negative-weight cycle in G
if one such cycle exists. Also, analyze the complexity of Find-Negative-Cycle. (20’)

◮Exercise 138. Consider a text composed of n lines of up to 80 characters each. The text is stored

in an array T where each line T[i] is an array of characters containing words separated by a single

space.

Question 1: Write an algorithm Sort-Lines-By-Word-Count(T) that, with a worst-case complexity

of O(n), sorts the lines in T in non-decreasing order of the number of words in the line. (Hint:

lines have at most 80 characters, so the number of words in a line is also limited.) (20’)

Question 2: If you did not already do that for exercise 1, write an in-place variant of the Sort-

Lines-By-Word-Count algorithm. This algorithm, called Sort-Lines-By-Word-Count-In-Place,

must also have a O(n) complexity to sort the set of lines, and may use only a constant amount of

extra space to do that. (20’)

◮Exercise 139. Consider a weighted undirected graph G = (V, E) representing a group of program-

mers and their affinity for team work, such that the weight w(e) of an edge e = (u,v) is a number

representing the ability of programmers u and v to work together on the same project. Write an

algorithm Best-Team-Of-Three that outputs the best team of three programmers. The value of a

team is considered to be the lowest affinity level between any two members of the team. So, the

best team is the group of programmers for which the lowest affinity level between members of the

group is maximal. (20’)

◮Exercise 140. Write an algorithm Maximal-Non-Adjacent-Sequence-Weight(A) that, given a

sequence of numbers A = 〈a1, a2, ..., an〉, computes, with worst-case complexity O(n), the maxi-

mal weight of any sub-sequence of non-adjacent elements in A. A sub-sequence of non-adjacent

elements may include ai or ai+1 but not both, for all i. For example, with A = 〈2,9,6,2,6,8,5〉,
Maximal-Non-Adjacent-Sequence-Weight(A) should return 20. (Hint: use a dynamic program-

ming algorithm that scans the input sequence once.) (20’)

◮Exercise 141. Consider a trie rooted at node T that represents a set of character strings. For

simplicity, assume that characters are from the Roman alphabet and that the letters of the alphabet

are encoded with numeric values between 1 and 26. Write an algorithm Print-Trie(T) that prints

all the strings stored in the trie. (20’)

◮Exercise 142. Write an algorithm Print-In-Three-Columns(A) that takes an array of words A
and prints all the words in A, in the given order left-to-right and top-to-bottom, such that the words

are left-aligned in three columns. Words must be separated by at least one space horizontally,

but in order to align words, the algorithm might have to print more spaces between words. For

example, if A contains the words exam, algorithms, asymptotic, complexity, graph, greedy, lugano,

np, quicksort, retake, september, then the output should be

exam algorithms asymptotic

complexity graph greedy

lugano np quicksort

retake september
(20’)

◮Exercise 143. Consider a binary search tree.

Question 1: Write an algorithm BST-Median(T) that takes the root T of a binary search tree and

returns the median element contained in the tree. Also analyze the complexity of BST-Median(T).
Can you do better? (10’)

Question 2: Assume now that the tree is balanced and also that each node t has an attribute

t.weight corresponding to the total number of nodes in the subtree rooted at t (including t it-

self). Write an algorithm Better-BST-Median(T) that improves on the complexity of BST-Median.

Analyze the complexity of Better-BST-Median. (10’)

◮Exercise 144. Consider the following decision problem. Given a set of strings S, a number w,

and a number k, output YES when there are at least k strings in S that share a common sub-string

of length w, or NO otherwise. For example, if S contains the strings exam, algorithms, asymptotic,

complexity, graph, greedy, lugano, np, quicksort, retake, september, theory, practice, programming,

math, art, truth, justice, with w = 2 and k = 3 the output should be YES, because the 3 strings

graph, greedy, and programming share a common substring “gr” of length 2. The output should

also be YES for w = 3 and k = 3 and for w = 2 and k = 4, but it should be NO for w = 3 and k = 4.

Question 1: Is this problem in NP? Write an algorithm that proves it is, or argue that it is not. (10’)

Question 2: Is this problem in P? Write an algorithm that proves it is, or argue that it is not. (Hint:

a string of length ℓ has O(ℓ2) sub-strings of any length.) (20’)

◮Exercise 145. Consider the following sorting problem: you must reorder the elements of an array

of numbers in-place so that odd numbers are in odd positions while even numbers are in even

positions. If there are more even elements than odd ones in A (or vice-versa) then those additional

elements will be grouped at the end of the array. For example, with an initial sequence

A = 〈50,47,92,78,76,7,60,36,59,30,50,43〉

the result could be this:

A = 〈47,50,7,78,59,76,43,92,36,60,30,50〉

Question 1: Write an algorithm called Alternate-Even-Odd(A) that sorts A in place as explained

above. Also, analyze the complexity of Alternate-Even-Odd. (You might want to consider ques-

tion 2 before you start solving this problem.) (20’)

Question 2: If you have not done so already, write a variant of Alternate-Even-Odd that runs in

O(n) steps for an array A of n elements. (10’)

◮Exercise 146. Write an algorithm called Four-Cycle(G) that takes a directed graph represented

with its adjacency matrix G, and that returns true if and only if G contains a 4-cycle. A 4-cycle is a

sequence of four distinct vertexes a,b, c, d such that there is an arc from a to b, from b to c, from

c to d, and from d to a. Also, analyze the complexity of Four-Cycle(G). (20’)

◮Exercise 147. Write an algorithm Find-Equal-Distance(A) that takes an array A of numbers,

and returns four distinct elements a,b, c, d of A such that a−b = c−d, or nil if no such elements

exist. Find-Equal-Distance must run in O(n2 logn) time. (20’)

◮Exercise 148. Consider the following algorithm that takes an array of numbers:

Algo-X(A)

1 i = 1

2 while i < A. length

3 if A[i] > A[i+ 1]
4 swap A[i]↔ A[i+ 1]
5 p = i
6 q = i+ 1

7 for j = i+ 2 to A. length

8 if A[j] < A[p]
9 p = j

10 else if A[j] > A[q]
11 q = j
12 swap A[i]↔ A[p]
13 swap A[i+ 1]↔ A[q]
14 i = i+ 2

Question 1: Explain what Algo-X does and analyze its complexity. (5’)

Question 2: Write an algorithm Better-Algo-X that is functionally equivalent to Algo-X but with

a strictly better time complexity. (15’)

◮Exercise 149. Consider the following definition of the height of a node t in a binary tree:

height(t) =
{

0 if t == nil

1+max{height(t. left),height(t.right)} otherwise.

Question 1: Write an algorithm Height(t) that computes the height of a node t. Also, analyze the

complexity of your Height algorithm when t is the root of a tree of n nodes. (5’)

Question 2: Consider now a binary search tree in which each node t has an attribute t.height that

denotes the height of that node. Write a constant-time rotation algorithm Left-Rotate(t) that

performs a left rotation around node t and also updates the height attributes as needed. (5’)

◮Exercise 150. Consider the following classic insertion algorithm for a binary search tree:

BST-Insert(t, k)

1 if t == nil

2 return new-node(k)
3 else if k ≤ t.key

4 t. left = BST-Insert(t. left, k)
5 else t.right = BST-Insert(t.right, k)
6 return t

Write an algorithm Sort-For-Balanced-BST(A) that takes an array of numbers A, and prints the

elements of A so that, if passed to BST-Insert, the resulting BST would be of minimal height. Also,

analyze the complexity of your solution. (20’)

◮Exercise 151. Consider the array of numbers:

A = 〈69,36,68,18,36,36,50,9,36,36,18,18,8,10〉
Question 1: Does A satisfy the max-heap property? If not, fix it by swapping two elements. (5’)

Question 2: Write an algorithm Max-Heap-Insert(H, k) that inserts a key k in a max-heap H . (10’)

Question 3: Illustrate the behavior of Max-Heap-Insert by applying it to array A (possibly cor-

rected). In particular, write the content of the array after the insertion of each of the following

keys, in this order: 69,50,60,70. (5’)

◮Exercise 152. Consider the following algorithm that takes an array of numbers:

Algo-Y(A)

1 a = 0

2 for i = 1 to A. length− 1

3 for j = i+ 1 to A. length

4 x = 0

5 for k = i to j
6 if A[k] is even:

7 x = x + 1

8 else x = x − 1

9 if x == 0 and j − i > a
10 a = j − i
11 return a

Question 1: Explain what Algo-Y does and analyze its complexity. (5’)

Question 2: Write an algorithm Better-Algo-Y that is functionally equivalent to Algo-Y but with

a strictly better time complexity. Also analyze the time complexity of Better-Algo-Y. (10’)

Question 3: If you have not already done so for question 2, write a Better-Algo-Y that is function-

ally equivalent to Algo-Y but that runs in time O(n). (15’)

◮Exercise 153. Write an algorithm Three-Way-Partition(A,v) that takes an array A of n num-

bers, and partitions A in-place in three parts, some of which might be empty, so that the left part

A[1 . . . p − 1] contains all the elements less than v, the middle part A[p . . . q − 1] contains all

the elements equal to v, and the right part A[q . . . n] contains all the elements greater than v.

Three-Way-Partition must return the positions p and q and must run in time O(n). (20’)

◮Exercise 154. A DNA strand is a sequence of nucleotides, and can be represented as a string over

the alphabet Σ = {A,C,G,T}. Consider the problem of determining whether two DNA strands s1
and s2 are k-related in the sense that they share a sub-sequence of at least k nucleotides.

Question 1: Is the problem in NP? Write an algorithm that proves it is, or argue that it is not. (10’)

Question 2: Is the problem in P? Write an algorithm that proves it is, or argue that it is not. (20’)

◮Exercise 155. Consider the following algorithm that takes an array of numbers:

Algo-X(A)

1 y = −∞
2 i = 1

3 j = 1

4 x = 0

5 while i ≤ A. length

6 x = x +A[j]
7 if x > y
8 y = x
9 if j == A. length

10 i = i+ 1

11 j = i
12 x = 0

13 else j = j + 1

14 return y

Question 1: Explain what Algo-X does and analyze its complexity. (10’)

Question 2: Write an algorithm Better-Algo-X that is functionally equivalent to Algo-X but with

a strictly better time complexity. (20’)

◮Exercise 156. Write an algorithm Maximal-Connected-Subgraph(G) that takes an undirected

graph G = (V, E) and prints the vertices of a maximal connected subgraph of G. (20’)

◮Exercise 157. A system collects the positions of cars along a highway that connects two cities, A

and B. The positions are grouped by direction in two arrays, A and B. Thus A contains the distances

in kilometers from city A of the cars traveling towards city A. Write an algorithm Congestion(A)
that takes the array A and prints a list of congested sections of the highway. A congested interval

is a contiguous stretch of highway of 1km or more in which the density of cars is more than 50

cars per kilometer. Congestion(A) must run in O(n logn) time. (20’)

◮Exercise 158. The following matrix represents a directed graph over vertices a,b, c, . . . , ℓ. Rows

and columns represent the source and destination of edges, respectively.

a

b

c

d

e

f

g

h

i

j

k

ℓ

a b c d e f g h i j k ℓ

1

1 1 1

11

1 1 1

1 1 1

1 1

1 1

1 1

1

1

Write the graph and the DFS numbering of the vertexes using the DFS algorithm. Every iteration

through vertexes or adjacent edges is performed in alphabetic order. (Hint: the DFS numbering of

a vertex v is a pair of numbers representing the “time” at which DFS discovers v and the time DFS

leaves v.) (20’)

◮Exercise 159. Consider an array A of n numbers that is initially sorted, in ascending order, and

then modified so that k of its elements are decreased in value.

Question 1: Write an algorithm that sorts A in-place in time O(kn). (10’)

Question 2: Write an algorithm that sorts A in time O(n+ k logk) but not necessarily in-place. (20’)

◮Exercise 160. Consider the decision version of the well-known vertex cover problem: given a

graph G = (V, E) and an integer k, output 1 if G contains a vertex cover of size k. A vertex cover is

a set of vertexes S ⊆ V such that, for each edge (u,v) ∈ E, either vertex u is in S or vertex v is in

S. Write an algorithm that proves that vertex cover is in NP. (20’)

◮Exercise 161. Write an algorithm that transforms a min-heap H into a max-heap in-place. (10’)

◮Exercise 162. We say that two words x and y are linked to each other if they differ by a single

letter, or more specifically by one edit operation, meaning an insertion, a deletion, or a change in

a single character. For example, “fun” and “pun” are linked, as are “flower” and “lower”, “port”

and“post”, “canton” and “cannon”, and “cat” and “cast”.

Question 1: Write an algorithm Linked(x,y) that takes two words x and y and, in lienar time,

returns true if x and y are linked to each other, or false otherwise. (10’)

Question 2: Write an algorithm Word-Chain(W,x,y) that takes an array of words W and two

words x and y , and outputs a minimal sequence of words x,w1,w2, . . . , y that starts with x and

ends with y wherew1,w2, . . . are all words from W , and each word in the sequence is linked to the

words adjacent to it. For example, if W is a dictionary of English words, and x and y are “first”

and “last”, respectively, then the output might be: first fist list last. (30’)

◮Exercise 163. Write an algorithm Max-Heap-Insert(H, k) that inserts a new value k in a max-heap

H . Briefly analyze the complexity of your solution. (10’)

◮Exercise 164. Consider an algorithm Find-Elements-At-Distance(A, k) that takes an array A of

n integers sorted in non decreasing order and returns true if and only if A contains two elements

ai and aj such that ai − aj = k.

Question 1: Write a version of the Find-Elements-At-Distance algorithm that runs in O(n logn)
time. Briefly analyze the complexity of your solution. (10’)

Question 2: Write a version of the Find-Elements-At-Distance algorithm that runs in O(n) time.

Briefly analyze the complexity of your solution. (20’)

◮Exercise 165. Write an algorithm Partition-Primes-Composites(A) that takes an array A of n
integers such that 1 < A[i] ≤ m for all i, and partitions A in-place so that all primes precede all

composites in A. Analyze the complexity of your solution as a function of n and m. Reminder:

an integer greater than 1 is prime if it is divisible by only two positive integers (itself and 1) or

otherwise it is composite. (20’)

◮Exercise 166. Consider the following classic insertion algorithm for a binary search tree:

BST-Insert(t, k)

1 if t == nil

2 return new-node(k)
3 else if k ≤ t.key

4 t. left = BST-Insert(t. left, k)
5 else t.right = BST-Insert(t.right, k)
6 return t

Write an algorithm Sort-For-Balanced-BST(A) that takes an array of numbers A, and prints the

elements of A in a new order so that, if the printed sequence is passed to BST-Insert, the resulting

BST would be of minimal height. Also, analyze the complexity of your solution. (20’)

◮Exercise 167. Consider a game in which, given a multiset of positive numbers A (possibly with

repeated values) a player can simplify A by removing, one at a time, an element ak if there are two

other elements ai, aj such that ai + aj = ak.
Question 1: Write an algorithm called Minimal-Simplified-Subset(A) that, given a multiset A of n
numbers, returns a minimal simplified subset X ⊆ A. The result X is minimal in the sense that no

smaller set can be obtained with a sequence of simplifications starting from A. For example, with

A = {7,89,11,88,106,4,28,71,17}, a valid result would be X = {7,89,4,71,17}. Briefly analyze

the complexity of your solution. (10’)

Question 2: Write a Minimal-Simplified-Subset(A) algorithm that runs in O(n2). If you have

already done so for exercise 1, then simply say so. (20’)

◮Exercise 168. Consider the following algorithm that takes an integer n as input:

Algorithm-X(n)

1 c = 0

2 a = n
3 while a > 1

4 b = 1

5 while b ≤ a2

6 c = c + 1

7 b = 2b
8 a = a/2
9 return c

Write the complexity of Algorithm-X as a function of n. Justify your answer. (10’)

◮Exercise 169. Write an algorithm Find-Cycle(G) that, given a directed graph G, returns true if

and only if G contains a cycle. You may assume the representation of your choice for G. (20’)

◮Exercise 170. A breadth-first search over a graph G returns a vector π that represents the re-

sulting breadth-first tree, where the parent π[v] of a vertex v is the next-hop from v on the tree

towards the source of the breadth-first search.

Question 1: Write an algorithm BFS-First-Common-Ancestor(π,u,v) that finds the first common

ancestor of two given nodes in the breadth-first tree, or null if u and v are not connected in G. The

complexity of BFS-First-Common-Ancestor must be O(n). Briefly analyze the space complexity

of your solution. (10’)

Question 2: Write an algorithm BFS-First-Common-Ancestor-2(π,D,u,v) that is also given the

distance vector D resulting from the same breadth first search. BFS-First-Common-Ancestor-2

must be functionally equivalent to BFS-First-Common-Ancestor (as defined in Exercise 1) but

with space complexity O(1). (20’)

◮Exercise 171. Consider the height and the black height of a red-black tree.

Question 1: What are the minimum and maximum heights of a red-black tree containing 10 keys?

Exemplify your answers by drawing a minimal and a maximal tree. Clearly identify each node as

red or black. (10’)

Question 2: What are the minimum and maximum black heights of a red-black tree containing 10

keys? Exemplify your answers by drawing a minimal and a maximal tree. Clearly identify each

node as red or black. (10’)

◮Exercise 172. Consider an algorithm BST-Find-Sum(T , v) that, given a binary search tree T con-

taining n distinct numeric keys, and given a target value v, finds and returns two nodes in T whose

keys add up to v. The algorithm returns null if no such keys exist in T . BST-Find-Sum may not

modify the tree, and may only use a constant amount of memory.

Question 1: Write BST-Find-Sum. You may use the basic algorithms that operate on binary search

trees (BST-Min, BST-Successor, BST-Search, etc.) without defining them explicitly. (10’)

Question 2: Write a variant of BST-Find-Sum(T , v) that works in O(n) time. If your solution to

Exercise 1 already has this complexity bound, then simply say so. (20’)

◮Exercise 173. Consider this decision problem: given a set of integers X = {x1, x2, . . . , xn}, and

an integer k, return 1 if there are k elements in X that are pairwise relatively prime, or return 0

otherwise. Two integers are relatively prime if their only common divisor is 1. For example, for

X = {5,6,10,14,18,21,49} and k = 3, the result is 1, since the 3 elements 5,18,49 are pairwise

relatively prime (5 and 18 have no common divisor other than 1, and the same is true for 5 and 49,

and 18 and 49). However, for the same set X = {5,6,10,14,18,21,49} and k = 4, the solution is 0,

since no four elements from X are all pairwise relatively prime.

Question 1: Is this problem in NP? Write an algorithm that proves it is, or argue that it is not. (20’)

Question 2: (BONUS) Is this problem NP-hard? Prove it. (60’)

◮Exercise 174. You are given a square matrix M ∈ Rn×n whose elements are sorted both row-wise

and column-wise. In other words, rows and columns are non-decreasing sequences. Formally,

for every element mi,j ∈ M , (j < n ⇒ mi,j ≤ mi,j+1) ∧ (i < n ⇒ mi,j ≤ mi+1,j). Write an

algorithm Search-In-Sorted-Matrix(M,x) that returns true if x ∈ M or false otherwise. The

time complexity of Search-In-Sorted-Matrix must be O(n logn). Justify that your solution has

such a complexity. (20’)

◮Exercise 175. Consider the following algorithm that takes an array A of positive integers:

Algo-X(A)

1 B = copy of A
2 i = 1

3 x = 1

4 while i ≤ A. length

5 B[i] = B[i]− 1

6 if B[i] == 0

7 B[i] = A[i]
8 i = i+ 1

9 else x = x + 1

10 i = 1

11 return x

Question 1: Briefly explain what Algo-X does and analyze the complexity of Algo-X. (10’)

Question 2: Write an algorithm called Better-Algo-X that is functionally identical to Algo-X but

with a strictly better complexity. Analyze the complexity of Better-Algo-X. (10’)

◮Exercise 176. Consider the following algorithm that takes an array A of numbers:

Algo-Y(A)

1 i = 2

2 j = 1

3 x = −∞
4 while i ≤ A. length

5 if |A[i]−A[j]| > x
6 x = |A[i]−A[j]|
7 j = j + 1

8 if j == i
9 i = i+ 1

10 j = 1

11 return x

Question 1: Briefly explain what Algo-Y does and analyze the complexity of Algo-Y. (10’)

Question 2: Write an algorithm called Better-Algo-Y that is functionally identical to Algo-Y but

with a complexity O(n). (10’)

◮Exercise 177. Write an algorithm BTree-Lower-Bound(T , k) that, given a B-tree T and a value

k, returns the least key v in T such that k ≤ v, or null if no such key exist. Also, analyze the

complexity of BTree-Lower-Bound. (Reminder: a node x in a B-tree has the following properties:

x.n is the number of keys, X.key[1] ≤ x.key[2] ≤ . . . x.key[x.n] are the keys, x. leaf tells whether

x is a leaf, and x.c[1], x.c[2], . . . , x.c[x.n+ 1] are the pointers to x’s children.) (20’)

◮Exercise 178. Write an algorithm BST-Least-Difference(T) that, given a binary search tree T
containing numeric keys, returns in O(n) time the minimal distance between any two keys in the

tree. (20’)

◮Exercise 179. A connected component of an undirected graph G is a maximal set of vertices that

are connected to each other (directly or indirectly). Thus the vertices of a graph can be partitioned

into connected components. Write an algorithm Connected-Components(G) that, given an undi-

rected graph G, returns the number of connected components in G. Also, analyze the complexity

of Connected-Components. (20’)

◮Exercise 180. Rank the following functions in decreasing order of growth by indicating their rank

next to the function, as in the first line (nn
n

is the fastest growing function). If any two functions

fi and fj are such that fi = Θ(fj), then rank them at the same level. (10’)

function rank

f0(n) = nnn 1

f1(n) = log2(n)

f2(n) = n!

f3(n) = log(n2)

f4(n) = n
f5(n) = log(n!)

f6(n) = log logn

f7(n) = n logn

f8(n) =
√
n3

f9(n) = 2n

Hint: as a reminder, consider the following mathematical definitions and facts: (definition of fac-

torial) n! = 1 ·2 ·3 · · · (n−1) ·n; (facts about the logarithm) log (ab) = loga+ logb, and therefore

log (ak) = k loga.

◮Exercise 181. Write an algorithm called Minimal-Covering-Square(P) that takes a sequence P
of n points in the 2D Euclidean plane, each defined by its Cartesian coordinates P[i].x and P[i].y,

and returns the area of a minimal axis-aligned square that covers all points in P . An axis-aligned

square is one in which the sides are parallel to X and Y axes. Minimal-Covering-Square must run

in time O(n). (10’)

◮Exercise 182. A sequence of numbers is called unimodal if it is first strictly increasing and then

strictly decreasing. For example, the sequence 1,5,19,17,12,8,5,3,2 is unimodal, while the se-

quence 1,5,3,7,4,2 is not. Write an algorithm Unimodal-Find-Maximum(A) that finds the maxi-

mum of a unimodal sequence A of n numbers in time O(logn). (20’)

◮Exercise 183. Consider the following algorithm Algo-X(A, k) that takes an array A of n objects

and an integer k:

Algo-X(A, k)

1 l = −∞
2 r = +∞
3 for i = 1 to A. length− k
4 for j = i+ 1 to A. length

5 if Algo-Y(A, i, j) ≥ k
6 if r − l > j − i
7 l = i
8 r = j
9 return l, r

Algo-Y(A,a, b)

1 m = 1

2 for i = a to b
3 c = 1

4 for j = i+ 1 to b
5 if A[i] == A[j]
6 c = c + 1

7 if c > m
8 m = c
9 return m

Question 1: Explain what Algo-X(A, k) does and analyze its complexity. Do not simply paraphrase

the code. Instead, explain the high level semantics, independent of the code. (10’)

Question 2: Write an algorithm Better-Algo-X(A, k)with exactly the same functionality as Algo-X(A, k),
but with a strictly better complexity. Also, analyze the complexity of Better-Algo-X(A, k). (20’)

◮Exercise 184. An algorithm Three-Way-Partition(A,begin, end) chooses a pivot element from

the sub-array A[begin . . . end − 1], and partitions that sub-array in-place into three parts (two

of which might be empty): A[begin . . . q1 − 1] containing all the elements less than the pivot,

A[q1 . . . q2 − 1] containing all the elements equal to the pivot, and A[q2 . . . end − 1] containing all

elements greater than the pivot.

Question 1: Write a Three-Way-Partition(A,begin, end) algorithm that runs in time O(n), where

n = end − begin, and that returns the partition boundaries q1, q2. You may assume that begin <
end. (20’)

Question 2: Use the Three-Way-Partition algorithm to write a better variant of the classic quick-

sort algorithm. Also, describe in which cases this variant would perform significantly better than

the classic algorithm. (10’)

◮Exercise 185. the following algorithm Sum(A, s) takes an array A of n numbers and a number s.
Describe what Sum(A, s) does at a high level and analyze its complexity in the best and worst cases.

Justify your answer by clearly describing the best- and worst-case input, as well as the behavior of

the algorithm in each case. (20’)

Sum(A, s)

1 return Sum-R(A, s,1, A. length)

Sum-R(A, s, b, e)

1 if b > e and s == 0

2 return true

3 elseif b ≤ e and Sum-R(A, s, b + 1, e)
4 return true

5 elseif b ≤ e and Sum-R(A, s −A[b], b + 1, e)
6 return true

7 else return false

◮Exercise 186. Big Brother tracks a set of m cell-phone users by recording every cell antenna

the user connects to. In particular, for each user ui, Big Brother stores a time-ordered sequence

Si = (t1, a1), (t2, a2), . . . that records that user ui was connected to antenna a1 starting at time

t1, and later switched to antenna a2 at time t2 > t1, and so on. Write an algorithm called

Group-Of-K(S1, S2, . . . , Sm, k) that finds whether there is a time t∗ when a group of at least k users

are connected to the same antenna. In this case, Group-Of-K must output the time t∗ and the

antenna a∗. Otherwise, Group-Of-K must output null. Group-Of-K must run in time O(n logm)
where n is the total number of entries in all the sequences, so n = |S1| + |S2| + · · · + |Sm|. You

may use common data structures and algorithms without specifying those algorithms completely.

(20’)

◮Exercise 187. Consider the following algorithm that takes an array A of integers:

Algo-X(A)

1 i = 1

2 j = A. length+ 1

3 while i < j
4 if A[i] ≡ 0 mod 2

// A[i] is even

5 j = j − 1

6 v = A[i]
7 Algo-Y(A, i, j)
8 A[j] = v
9 else i = i+ 1

10 return j

Algo-Y(A,p, q)

1 while p < q
2 A[p] = A[p + 1]
3 p = p + 1

Question 1: Briefly explain what Algo-X does and analyze the complexity of Algo-X. (10’)

Question 2: Write an algorithm Better-Algo-X that is functionally identical to Algo-X but with a

strictly better complexity. Also briefly analyze the complexity of Better-Algo-X. (10’)

◮Exercise 188. Write an algorithm BTree-Print-Range(T ,a, b) that, given a B-tree T and two val-

ues a < b, prints all the keys k in T that are between a and b, that is, a < k < b. (Reminder: a

node x in a B-tree has the following properties: x.n is the number of keys, x.key[1] ≤ x.key[2] ≤
. . . x.key[x.n] are the keys, x. leaf tells whether x is a leaf, and x.c[1], x.c[2], . . . , x.c[x.n + 1]
are the pointers to x’s children.) (20’)

◮Exercise 189. Consider the following decision problem: given a weighted graph G and a number

k, where w(e) is the weight of an edge e = (u,v) ∈ E(G), return true if and only if there are at

least two nodes u and v at distance d(u,v) = k. Is the problem in NP? Write an algorithm that

proves it is, or argue the opposite. Is the problem in P? Write an algorithm that proves it is, or

argue the opposite. (Reminder: the distance d(u,v) in a graph is the minimal length of any path

connecting u and v.) (20’)

◮Exercise 190. A highway traffic app sends the coordinates of each vehicle to a central server that

reports on congested sections of highway. For simplicity, consider the highway as a straight line in

which each position is identified by a single x coordinate. Write an algorithm Most-Congested-Segment(A, ℓ)
that, given an array A of vehicle positions and a length ℓ, outputs the position of a maximally con-

gested highway segment of length at most ℓ. A segment of highway between positions x and

x + ℓ is considered maximally congested if there are no other segments of length at most ℓ with

more vehicles. Coordinates as well as the length ℓ are real numbers, not necessarily integers; ℓ is

positive (it is a distance). (20’)

◮Exercise 191. Consider the following decision problem: given a graph G represented as an adja-

cency matrix G, and an integer k, return true if and only if there are at least k nodes v1, v2, . . . , vk
in G that form a fully connected sub-graph of G, meaning that for every pair i, j ∈ 1, . . . , k, edge

(vi, vj) is in G. Is the problem in NP? Write an algorithm that proves it is, or argue the opposite. (20’)

◮Exercise 192. Write an algorithm Max-Heap-Top-Three(H) that takes a heap H and prints the

three highest values stored in the heap. The algorithm must run in O(1) time, may not allocate

more than a constant amount of memory, and may not modify the heap in any way. If the heap

contains less than three values, then Max-Heap-Top-Three must print whatever elements exist. (20’)

◮Exercise 193. Let P be a sequence of points representing an alpine road, where each point p ∈ P
is defined by two coordinates p.x and p.y where p.x is the distance from the beginning of the road

and p.y is the elevation (meters above see level). Write an algorithm Longest-Stretch(P,h) that

takes a sequence of points P and an altitude range (difference) h, and returns the maximal length

of a stretch of road that remains within an altitude range of at most h. For example, if h = 0, the

algorithm must return the maximal length of road that is absolutely flat (that is, contiguous points

at the same elevation). Analyze the complexity of your solutions showing a worst-case input. (20’)

◮Exercise 194. An undirected graph G is bipartite when its vertices can be partitioned into two

sets VA, VB such that each edge in G connects a vertex in VA with a vertex in VB . In other words,

no two vertices in VA are adjacent, and no two vertices in VB are adjacent. To exemplify, see the

graphs below.

G1 G2 G3 G4

bipartite bipartite not bipartite bipartite

(same as G1)

Write an algorithm Is-Bipartite(G) that takes an undirected graph G and outputs true if and only

if G is bipartite. (Hint: you may use a simple BFS in which you keep track of which vertex is in

which partition.) (20’)

◮Exercise 195. Algorithm Is-Good(x) classifies a number x as “good” or “not good” in constant

time O(1).

Question 1: Write an algorithm Good-Are-Adjacent(A) that takes a sequence of numbers and,

using algorithm Is-Good, returns true if all the “good” numbers in A are adjacent, or false oth-

erwise. Good-Are-Adjacent(A) must not change the input sequence A in any way, may allocate

only a constant amount of memory, and must run in time O(n). (10’)

Question 2: Write an algorithm Make-Good-Adjacent(A) that takes a sequence of numbers A and

changes A in-place so that all “good” numbers are adjacent. Make-Good-Adjacent may allocate

only a constant amount of memory and must run in time O(n). (10’)

◮Exercise 196. Consider the following decision problem: given a sequence of numbers A and an

integer k, returns true if A contains at least k identical values, or false otherwise. Is the problem

in NP? Write an algorithm that proves it is, or argue the opposite. Is the problem in P? Write an

algorithm that proves it is, or argue the opposite. (20’)

◮Exercise 197. Write an algorithm Maximal-Common-Substring(X, Y) that takes two strings X
and Y , and returns the maximal length of a common substring of X and Y . For example, if X =
‘BDDBADCDCCDCBAD’ and Y = ‘DDCBCDAABAAC’, the output should be 3, since there is a 3-

character common substring (’DCB’) but no 4-character common substring. Analyze the complexity

of your solution. (20’)

◮Exercise 198. We say that a node in a binary tree is unbalanced when the number of nodes in

its left subtree is more than twice the number of nodes in its right subtree plus one, or vice-

versa. Write an algorithm BST-Count-Unbalanced-Nodes(t) that takes a binary search tree t
(the root), and returns the number of unbalanced nodes in the tree. Analyze the complexity of

BST-Count-Unbalanced-Nodes(t). (Hint: an algorithm can return multiple values. For example,

the statement return x,y returns a pair of values, and if f() returns a pair of values, you can read

them with a,b = f().) (20’)

◮Exercise 199. Consider the following algorithm that takes an array A of numbers:

Algo-X(A)

1 x = 0

2 for i = 1 to A. length− 1

3 for j = i+ 1 to A. length

4 if Algo-Y(A, i, j) and A[j] −A[i] > x
5 x = A[j] −A[i]
6 return x

Algo-Y(A, i, j)

1 for k = i to j − 1

2 if A[k] > A[k+ 1]
3 return false

4 return true

Question 1: Briefly explain what Algo-X does and analyze the complexity of Algo-X by describing

a worst-case input. (10’)

Question 2: Write an algorithm Linear-Algo-X(A) that is equivalent to Algo-X but runs in linear

time. (20’)

◮Exercise 200. Let P be an array of points on a plane, each with its Cartesian coordinates P[i].x
and P[i].y.

Question 1: Write an algorithm Find-Square(P) that returns true if and only if there are four

points in P that form a square. Briefly analyze the complexity of your solution. (10’)

Question 2: Write an algorithm Find-Square(P) that solves the problem of Exercise 1 in time

O(n2 logn). If your solution for Exercise 1 already does that, then simply say so. (20’)

◮Exercise 201. Implement a priority queue based on a heap. You must implement the following

algorithms:

• Initialize(Q) creates an empty queue. The complexity of Initialize must be O(1).

• Enqueue(Q,obj, p) adds an object obj with priority p to a queue Q. The complexity of

Enqueue must be O(logn).

• Dequeue(Q) extracts and returns an object from a queue Q. The returned object must be

among the objects in the queue that were inserted with the lowest priority. The complexity

of Dequeue must be O(logn).

(Hint: Consider Q as an object to which you can add attributes. For example, you may write

Q.A = new array, and then later write Q.A[i].) (20’)

◮Exercise 202. Implement an algorithm Maximal-Distance(A) that takes an array A of numbers

and returns the maximal distance between any two distinct elements in A, or 0 if A contains less

than two elements. Maximal-Distance(A) must run in time O(n). (10’)

◮Exercise 203. The height of a binary tree is the maximal number of nodes on a branch from the

root to a leaf node. In other words, it is the maximal number of nodes traversed by a simple path

starting at the root. Implement an algorithm BST-Height(t) that returns the height of a binary

search tree rooted at node t. BST-Height(t) must run in time O(n). (10’)

◮Exercise 204. Consider the following decision problem: given a graph G = (V, E) where the edges

are weighted by a weight function w : E → R, and given a number t, output true if there is a set

of non-adjacent edges S = {e1, e2, . . . , ek} of total weight greater or equal to t, so
∑
w(ei) ≥ t;

or output false otherwise. For example, the vertices could represent people, say the students in

the Algorithms class, and an edge e = (u,v) with weight w(e) could represent the affinity of

the couple (u,v). The question is then, given an affinity value t, tell whether the students in the

Algorithms class can form monogamous couples of total affinity value at least t. Argue whether

this decision problem is in NP or not, and if it is, then write an algorithm that proves it. (20’)

◮Exercise 205. Consider the following game: you are given a set of n valuable objects placed on a

2D plane with non-negative x,y coordinates. In practice, you are given three arrays X,Y , V , such

that X[i], Y[i], and V[i] are the x and y coordinates and the value of object i, respectively. You

start from position 0,0, and can only move horizontally to the right (increasing your x coordinate)

or vertically upward (increasing your y coordinate). Your goal is to reach and collect valuable

objects. Write an algorithm Maximal-Game-Value(X, Y , V) that returns the maximal total value

you can achieve in a given game. (30’)

◮Exercise 206. Write an algorithm Maximal-Substring(S) that takes an array S of strings, and

returns a string x of maximal length such that x is a substring of every string S[i]. Also, analyze

the complexity of Maximal-Substring as a function of the size n = |S| of the input array, and the

maximal size m of any string in S. (20’)

◮Exercise 207. Consider the following algorithm that takes an array A of numbers:

Algo-X(A)

1 x = 0

2 y = 0

3 for i = 1 to A. length

4 k = 1

5 for j = i+ 1 to A. length

6 if A[i] == A[j]
7 k = k+ 1

8 if x < k
9 x = k

10 y = A[i]
11 return y

Question 1: Briefly explain what Algo-X does and analyze the complexity of Algo-X by describing

a worst-case input. (10’)

Question 2: Write an algorithm Better-Algo-X that does the same as Algo-X but with a strictly

better time complexity. Also analyze the complexity of Better-Algo-X. (10’)

◮Exercise 208. Write an algorithm Graph-Degree(G) that takes an undirected graph represented

by its adjacency matrix G and computes the degree of G. The degree of a graph is the maximal

degree of any vertex of G. The degree of a vertex v is the number of edges that are adjacent to v.

Also analyze the complexity of Graph-Degree(G). (15’)

◮Exercise 209. Write an algorithm Find-3-Cycle(G) that takes an undirected graph represented

as an adjacency list, and returns true if G contains a cycle of length 3, or false otherwise. Also,

analyze the complexity of Find-3-Cycle(G). (15’)

◮Exercise 210. Write an algorithm Longest-Common-Prefix(S) that takes an array of strings S,

and returns the maximal length of a string that is a prefix of at least two strings in S. Also, analyze

the complexity of your solution as a function of the size n of the input array S, and the maximal

size m of any string in S. For example, with S = [“ciao”, “lugano”, “bella”] the result is 0,

because the only common prefix is the empty string, while with S = [“professor”, “prefers”, “to”,

“teach”,“programming”] the result is 3 because “pro” is a prefix of at least two strings. (20’)

◮Exercise 211. Write an algorithm Longest-K-Common-Prefix(S, k) that takes an array of strings

S and an integer k, and returns the maximal length of a string that is a prefix of at least k strings

in S. Also, analyze the complexity of your solution as a function of k, the size n of the input array

S, and the maximal size m of any string in S. For example, with S = [“algorithms”, “and”, “data”,

“structures”] and k = 3, the result is 0, because the only common prefix common to at least three

strings is the empty string. While with S = [“professor”, “prefers”, “to”, “teach”,“programming”]
and k = 3, the result is 2 because the longest prefix common to at least three strings is “pr”. (20’)

◮Exercise 212. Consider the following decision problem: given a directed and weighted graph G
(with weighted arcs), output true if and only if G contains a path of length 3 and of negative total

weight; otherwise output false. Is the problem in NP? Write an algorithm that proves it is, or argue

the opposite. Is the problem in P? Write an algorithm that proves it is, or argue the opposite. (20’)

◮Exercise 213. Given a collection A of numbers and a number x, the upper bound of x in A is

the minimal value a ∈ A such that x ≤ a, or null if no such value exists. For example, given

A = [7,20,1,3,4,3,31,50,9,11], the upper bound of x = 15 is 20, while the upper bound of x = 9

is 9 and the upper bound of x = 51 is null.

Question 1: Write an algorithm Upper-Bound(A,x) that returns the upper bound of x in an array

A. Also analyze the complexity of Upper-Bound. (20’)

Question 2: Write an algorithm Upper-Bound-Sorted(A,x) that returns the upper bound of x in

a sorted array A in time o(n). Analyze the complexity of Upper-Bound-Sorted. (20’)

Question 3: Write an algorithm Upper-Bound-BST(T ,x) that returns the upper bound of x in a

binary search tree T . Analyze the complexity of Upper-Bound-BST. (20’)

Solutions

WARNING: solutions are very sparse, meaning that many are missing, most of the solutions are

only sketched at a high level, and many may be incorrect! Please, consider contributing your

solutions, including alternative solutions, and please report any error you might find to the author

(Antonio Carzaniga <antonio.carzaniga@usi.ch>).

⊲Solution 57

Quick-sort. Best-case is O(n logn), worst-case is O(n2).

⊲Solution 58

Algorithm-I sorts the input array in-place. In the best case, the algorithm terminates in the first

execution of the outer loop, with the condition s == true. This is the case when the inner loop does

not swap a single element of the array, meaning that the array is already sorted. So, the best-case

complexity is O(n). Conversely, the worst case is when each iteration of the outer loop swaps

at least one element. This happens when the array is sorted in reverse order. So, the worst-case

complexity is O(n2).
Algorithm-II sorts the input array in-place so that the value v = A[0], that is the element origi-

nally at position 0, ends up in position q, and every other element less than v ends up somewhere

in A[1 . . . q − 1], that is to the left of q, and every other element less than or equal to v ends up

somewhere in A[q + 1 . . . |A|]. In other words, Algorithm-II partitions the input array in-place

using the first element as the “pivot”. The loop closes the gap between i and j, which are initially

the first and last position in the array, respectively. Each iteration either moves i to the right or

j to the left, so each iteration reduces the gap by one. Therefore, in any case—worst case is the

same as the best case—the complexity is O(n).

⊲Solution 70

11

12

20

15

13

29 50

32

27

8

40

11

12

14

18

20

15

13

31

30

29 50

32

27

8

11

12

14

18

20

15

13

31 50

32

30

8

⊲Solution 71

a) 50 32 20 29 15 13 12 8 27 11

b) 51 43 50 29 32 20 12 8 27 11 15 13

c) 32 29 20 27 15 13 12 8 11

⊲Solution 72

Proof: Let H = [1,2,3], then T would look like this:

3

2

1

⊲Solution 78.1

yes.

⊲Solution 78.2

yes.

⊲Solution 78.3

undefined.

⊲Solution 78.4

yes.

⊲Solution 78.5

undefined.

⊲Solution 78.6

undefined.

⊲Solution 78.7

yes.

⊲Solution 78.8

undefined.

⊲Solution 78.9

undefined.

⊲Solution 79

First figure out the frequencies and sort the characters by frequency. Then we proceed with the

derivation:

‘;’1

‘.’1

‘b’1

‘f’2

‘d’2

‘s’2

‘,’2

‘y’2

‘p’2

‘a’3

‘o’3

‘h’4

‘c’5

‘n’6

‘r’7

‘t’7

‘i’7

‘ ’13

‘e’14

2
0
1

3
0

1

4
0
1

4
0
1

4
0
1

6
0
1

7

0

1

8
0

1

9
0
1

12

0

1

14

0

1

14
0

1

17

0

1

25

0

1

28

0

1

31
0

1

53

0

1

84

0

1

010000

010001

00001

00010

00011

00000

00001

00010

00011

10000

10001

0010

0011

1001

011

1100

1101

101

111

⊲Solution 81

IsColorValid(G = (V, E), v)
1 for each u adjacent to v
2 if color[u] = color[v]
3 return false

4 return true

Color(G = (V, E))
1 for each v ∈ V
2 color[v] = 0

3 for each v ∈ V
4 color[v] = 1

5 while IsColorValid(G = (V, E), v) = false

6 color[v] = color[v]+ 1

7 return color

⊲Solution 87

Given an array A of number, Algo-X(A) returns true if and only if there are three numbers x ≤
y ≤ z ∈ A such that y −x = z−y . Algo-X does that by testing each triple of distinct elements of

A. There are
(
n
3

)
= n(n− 1)(n− 2)/3! such triples, so the complexity is Θ(n3).

A better way to do the same thing is as follows:

Better-Algo-X(A)

1 sort A
2 for i = 1 to A. length− 2

3 for j = i+ 2 to A. length

4 m = (A[i]+A[j])/2
5 if Binary-Search(A[i+ 1 . . . j − 1],m)
6 return true

7 return false

In essence, after sorting the numbers, this algorithm tests each pair of non-adjacent numbers and

then looks for the median using a binary search. There are O(n2) pairs of non-adjacent numbers

in A, and binary-search costs O(logn), so the complexity is O(n2 logn).

⊲Solution 99

Is-Perfectly-Balanced(t)

1 if t == nil

2 return (true,0)
3 (balancedl,weightl) = Is-Perfectly-Balanced(t. left)
4 (balancedr ,weightr) = Is-Perfectly-Balanced(t.right)
5 if balancedl and balancedl and |weightr −weightl| ≤ 1

6 return (true,weightl +weightr + 1)
7 else return (false,weightl +weightr + 1)

⊲Solution 101

We are not allowed to modify H , and we are not allowed to create a copy of H that we can then

sort. So, we must print the elements in order, by simply reading H . We know that each number is

unique in H , so the idea is this: we start from the minimum value in H , which happens to be in the

first position of H , print that value, and then look for the second-smallest number, which we can

simply find with a linear scan. We then proceed with the third-smallest, and so on, which again we

can find with a linear scan. Notice that we can use a linear scan to find the i-th smallest element by

simply considering only those elements in H that are greater than the smallest element we found

in the previous (i− 1) scan.

In pseudo-code:

Heap-Print-In-Order(H)

1 m = H[0]
2 print m
3 for i = 2 to H. length

4 x = ∞
5 for j = 2 to H. length

6 if H[j] > m and H[j] < x
7 x = H[j]
8 m = x
9 print m

It is easy to see that the complexity of Heap-Print-In-Order is Θ(n2).

⊲Solution 105

Algo-X removes every element equal to k from array A. with a complexity of Θ(n2).
Consider as a worst-case input an array A in which all n values are equal to k. In this case, Algo-

X would iterate over lines 3 and 4 (always with i equal to 1). In each iteration, Algo-X would

then invoke Algo-Y (again with i equal to 1), which would then iterate over the length of the array,

effectively removing the i-th element by shifting every subsequent element to the left by 1 position,

and then by cutting the length of the array by 1.

So, Algo-Y would run for n iterations the first time, then n−1 the second time, then n−2, and so

on, until the array is completely empty. The complexity is therefore n+(n−1)+ . . .+2+1 = Θ(n2).
A better way to remove every element equal to k from an array A is as follows.

Better-Algo-X(A, k)

1 j = 1

2 for i = 1 to A. length

3 if A[i] 6= k
4 A[j] = A[i]
5 j = j + 1

6 A. length = j − 1

⊲Solution 136.2

0

12

14

21

23

25

28

32

33

37

38

40

41

46

48

Optimal sequence: 32, 21, 25, 40, 37, 46, 41, 12, 23, 48, 14, 33, 38, 0, 28.

⊲Solution 140

We can first start by modeling Maximal-Non-Adjacent-Sequence-Weight as a classic recursive

dynamic-programming algorithm. Given a sequence A = a1, a2, . . . , an, there are two cases:

(i) the maximal sequence includes a1, and therefore does not include a2 and instead includes

the maximal sequence for the remaining subsequence a3 . . . an;

(ii) the maximal sequence does not include a1 and therefore is the same as the maximal sequence

for the subsequence starting at a2.

Thus the maximal solution is the best of these two. Let OPT(a1, a2, . . . , an) denote the maximal

weight of non-adjacent elements from a sequence a1, a2, . . . , an. With this, the algorithm is as

follows:

OPT(a1, a2, a3, . . . , an) =max{a1 +OPT(a3, . . . , an),OPT(a2, . . . , an)}
Now we just have to write this simple, recursive dynamic-programming solution as a single itera-

tion. This can be done by remebering only two values in each iteration, namely the optimal value

for the previous two elements in the sequence. We can perform this iteration in either direction, so

here we do it in increasing order, left-to-right. Therefore, for each element ai, we must remember

the two previous optimal values OPT(a1, . . . , ai−1) and OPT(a1, . . . , ai−2). The full algorithm is as

follows:

Maximal-Non-Adjacent-Sequence-Weight(A)

1 p = 0

2 q = 0

3 r = 0

4 for i = 1 to A. length

5 r = max{A[i]+ p,q}
6 p = q
7 q = r
8 return r

⊲Solution 155.1

min, max, min−1, max−1, min−2, max−2, . . .

⊲Solution 155.2

Dynamic programming: with i going from left to right, let x(i) be the value of the maximal con-

tiguous sequence ending at position i. So, x(1) = A[1], x(i) = max{A[i]+ x(i− 1),A[i]}.
⊲Solution 163

Max-Heap-Insert(H, k)

1 H.heap-size = H.heap-size+ 1

2 H[H.heap-size] = k
3 i = H.heap-size

4 while i > 1 and H[i] > H[⌊i/2⌋]
5 swap H[i]↔ H[⌊i/2⌋]
6 i = ⌊i/2⌋
The complexity is Θ(logn).

⊲Solution 164.1

Find-Elements-At-Distance(A, k)

1 for i = 1 to A. length

2 if Binary-Search(A[i+ 1 . . . A. length], k−A[i])
3 return true

4 return false

The complexity is Θ(n logn), since for each of the n elements, we perform a binary search that

runs in Θ(logn).

⊲Solution 164.2

Find-Elements-At-Distance(A, k)

1 i = 1

2 j = 2

3 while j ≤ A. length

4 if A[j] −A[i] < k
5 j = j + 1

6 elseif A[j] −A[i] > k
7 i = i+ 1

8 else return true

9 return false

In each iteration of the loop we either increase j or i by one (or we return). Also, the loop is such

that j ≥ i, so in at most Θ(n) iterations we push j beyond A. length. Thus the complexity is Θ(n).

⊲Solution 165

Is-Prime(x)

1 i = 2

2 while i∗ i < x
3 if i divides x
4 return true

5 i = i+ 1

6 return false

Partition-Primes-Composites(A)

1 i = 1

2 j = 1

3 while i < j
4 if Is-Prime(A[j])
5 swap A[j] ↔ A[i]
6 i = i+ 1

7 elseif not Is-Prime(A[i])
8 swap A[j] ↔ A[i]
9 j = j − 1

10 else i = i+ 1

11 j = j − 1

Is-Prime runs in Θ(
√
m), while Partition-Primes-Composites requires Θ(n) basic operations and

Θ(n) invocations of Is-Prime. The complexity is therefore Θ(n√m).
⊲Solution 166

In this exercise, randomization or rotations cannot be used to balance the height of the BST. So,

input sequence A must be pre-sorted so that, inserting elements in the tree in the new order, the

resulting BST has still minimal height, O(logn), even using the classic insertion algorithm (that

could potentially result in unbalanced trees). Intuitively, this is possible by inserting elements in

this order: median(1, n), median(1, n2), median(n2 , n), median(1, n4), median(n4 ,
n
2), median(n2 ,

3n
4),

median(3n
4
, n). Or, equivalently, median(1, n), median(1, n

2
), median(1, n

4
), median(n

4
, n

2
), median

(
n
2 , n), median(n2 ,

3n
4), median(3n

4 , n). The input array can be sorted in this order by using the

functions below:

Sort-For-Balanced-BST(A)

1 sort A in non-descending order

2 Print-R(A,1, A. length)

Print-R(A, i, j)

1 if i ≤ j
2 m = ⌊(i+ j)/2⌋
3 print A[m]
4 Print-R(A, i,m− 1)
5 Print-R(A,m+ 1, j)

Print-R runs in O(n), since it simply prints one element—the median element, since the input is

sorted—and then recurses on the left and side parts by excluding the element it just printed. In

the end, Print-R runs (recursively) exactly once for each element of the array. So, the complexity

of Print-R is O(n) and the dominating cost for Sort-For-Balanced-BST is the cost of sorting,

which can be done in O(n logn).

⊲Solution 167.1

Minimal-Simplified-Sequence(A)

1 X = ∅
2 sort A in non-decreasing order

3 for i = A. length downto 3

4 for j = A. length downto 3

5 if Binary-Search(A[1 . . . j − 1],A[i]−A[j]) 6= true

6 X = X ∪ {A[i]}
7 return X

Hey, is the solutions above incorrect? An alternative solution is below:

Minimal-Simplified-Sequence(A)

1 X = ∅
2 sort A in non-decreasing order

3 for i = 1 to A. length− 1

4 for j = i+ 1 to A. length

5 i = Binary-Search(A[j + 1 . . . A. length],A[i]+A[j])
6 if i > 0

7 X = X ∪ {A[i]}
8 return X

The complexity is Θ(n2 logn).

⊲Solution 167.2

Minimal-Simplified-Sequence(A)

1 B = array of A. length zeroes

2 sort A in non-decreasing order

3 for i = 1 to A. length− 2

4 j = i+ 1

5 k = i+ 2

6 while k ≤ A. length

7 if A[k]−A[j] < A[i]
8 k = k+ 1

9 elseif A[k]−A[j] > A[i]
10 j = j + 1

11 else B[k] = 1

12 k = k+ 1

13 X = ∅
14 for i = 1 to A. length

15 if B[i] == 0

16 X = X ∪ {A[i]}
17 return X

⊲Solution 168

The algorithm consists of two nested loops. The outer loop takes variable a from n to 1 by dividing

a in half at every iteration. Therefore, the values of a are n,n/2, n/4, n/8 That is, at iteration

i of the outer loop, a = n/2i. The outer loop terminates when n/2i ≤ 1, that is, it runs for ⌈logn⌉
iterations.

The inner loop takes variable b from 1 to a2 by doubling b at every iteration. Therefore the values

of b are 1,2,4, . . ., that is, b = 2j at the j-th iteration of the inner loop. Therefore the inner loop

runs for 2 loga iterations.

Altogether, the complexity is

T(n) =
⌈logn⌉∑

i=1

2 log (n/2i)

= Θ(log2n).

⊲Solution 169

Find-Cycle(G)

1 N = array of size |V(G)| // visited

2 P = array of size |V(G)| // previous

3 for v ∈ V(G)
4 N[v] = false

5 P[v] = null

6 for v ∈ V(G)
7 if not N[v]
8 N[v] = true

9 if Find-Cycle-R(N ,P , v)
10 return true

11 return false

Find-Cycle-R(N ,P , v)

1 for w ∈ v.Adj

2 if N[w]
3 u = P[v]
4 while u 6= null

5 if u == w
6 return true

7 u = P[u]
8 else N[w] = true

9 P[w] = v
10 if Find-Cycle-R(N ,P ,w)
11 return true

12 return false

⊲Solution 170.1

BFS-First-Common-Ancestor(π,u,v)

1 S = array of size |π|
2 for i = 1 to |π|
3 S[i] = 0

4 while u 6= null or v 6= null

5 if u 6= null

6 if S[u] == 1

7 return u
8 else S[u] = 1

9 u = π[u]
10 if v 6= null

11 if S[v] == 1

12 return v
13 else S[v] = 1

14 v = π[v]
15 return null

The time complexity is Θ(n). The space complexity is Θ(n).

⊲Solution 170.2

BFS-First-Common-Ancestor-2(π,D,u,v)

1 if D[u] == ∞ or D[v] == ∞
2 return null

3 while u 6= v
4 if D[u] > D[v]
5 u = π[u]
6 else v = π[v]
7 return u

The time complexity is Θ(n).

⊲Solution 172.1

BST-Find-Sum(T , v)

1 t1 = BST-Min(T)
2 while t1 6= null

3 t2 = BST-Search(T , v − t.key)
4 if t2 6= null

5 return t1, t2
6 else

7 else t1 = BST-Successor(t1)
8 return null

The time complexity is Θ(n2).

⊲Solution 172.2
BST-Lower-Bound(t, v)

// rightmost element whose key is ≤ v, or null

1 while t 6= null

2 if v < t.key

3 t = t. left

4 elseif t.right 6= null and t.right.key < v
5 t = t.right

6 else return t
7 return null

BST-Find-Sum(T , v)

1 t1 = BST-Lower-Bound(T , v/2)
2 t2 = BST-Successor(t1)
3 while t1 6= null and t2 6= null

4 if t1 + t2 = v
5 return t1, t2
6 elseif t1 + t2 < v
7 t2 = BST-Successor(t2)
8 else t1 = BST-Predecessor(t1)
9 return null

The time complexity is Θ(n).

⊲Solution 173.1

Verify-K-Pairwise-Relatively-Prime(X, k, S)

1 if S 6⊆ X or |S| < k
2 return false

3 for i = 1 to |S| − 1

4 for j = i+ 1 to |S|
5 if gcd(S[i], S[j]) > 1

6 return false

7 return true

gcd(a, b)

1 while a 6= b
2 if a > b
3 a = a % b
4 else b = b % a
5 return a

The time complexity is O(k logn+ k2 logm), where m is the maximum value in X.

⊲Solution 180

function rank

f0(n) = nnn 1

f1(n) = log2(n) 7

f2(n) = n! 2

f3(n) = log(n2) 8

f4(n) = n 6

f5(n) = log(n!) 5

f6(n) = log logn 9

f7(n) = n logn 5

f8(n) =
√
n3 4

f9(n) = 2n 3

⊲Solution 181

Minimal-Covering-Square(P)

1 if P. length == 0

2 return 0

3 left = P[1].x
4 right = P[1].x
5 top = P[1].y
6 bottom = P[1].y
7 for i = 2 to P. length

8 if P[i].x > right

9 right = P[i].x
10 elseif P[i].x < left

11 left = P[i].x
12 if P[i].y > top

13 top = P[i].y
14 elseif P[i].y < bottom

15 bottom = P[i].y
16 if right − left > top − bottom

17 return (right − left)2

18 else return (top − bottom)2

⊲Solution 182

Unimodal-Find-Maximum(A)

1 l = 1

2 h = A. length

3 while l < h− 1

4 m = ⌊(l+ h)/2⌋
5 if A[m− 1] > A[m]
6 h = m
7 elseif A[m + 1] > A[m]
8 l = m
9 else return A[m]

10 error “A is not a unimodal sequence”

⊲Solution 183.1

Better-Algo-X(A, k) returns the beginning and ending position of a minimal subsequence of A
that contains at least k equal elements. The complexity of Better-Algo-X is Θ(n4). In essence,

this is because there are four nested loops.

⊲Solution 183.2

Notice that any minimal sequence P[i], P[i + 1], . . . , P[j] that contains at least k equal elements

contains exactly k elements equal to the first and last element of the sequence. Otherwise, P[i], . . . , P[j−
1] would be a smaller sequence that still contains at least k equal elements.

So, we just have to find a sequence that starts and ends with the same element x, and contains

exactly k elements equal to x, including the first and last element:

Better-Algo-X(A, k)

1 l = −∞
2 r = +∞
3 for i = 1 to A. length

4 c = 1

5 j = i+ 1

6 while c < k and j ≤ min(A. length, i+ r − l)
7 if A[i] == A[j]
8 c = c + 1

9 j = j + 1

10 if c == k and r − l > j − i
11 l = i
12 r = j
13 return l, r

The complexity of Better-Algo-X is O(n2).

⊲Solution 184.1

Three-Way-Partition(A,begin, end)

1 q1 = begin

2 q2 = q1 + 1

3 for i = q1 + 1 to end − 1

4 if A[i] ≤ A[q1]
5 swap A[i]↔ A[q2]
6 if A[q2] < A[q1]
7 swap A[q2]↔ A[q1]
8 q1 = q1 + 1

9 q2 = q2 + 1

10 return q1, q2

⊲Solution 184.2

Quick-Sort(A)

1 Quick-Sort-R(A,1, A. length+ 1)

Quick-Sort-R(A,begin, end)

1 if begin < end

2 q1, q2 = Three-Way-Partition(A,begin, end)
3 Quick-Sort-R(A,begin, q1)
4 Quick-Sort-R(A, q2, end)

This variant would be much more efficient with sequences often-repeated elements. In the extreme

case of a sequence with n identical numbers, this variant would terminate in time O(n), while the

classic algorithm would run in time O(n2).

⊲Solution 185

S(A, s) returns true if there is a subset of the elements in A that add up to s. This is also known

as the subset-sum problem.

The best-case complexity is O(n). An example of a best-case input (of size n) is with any array A
and with s = 0. In this case, the algorithm recurses n times in line 3, only then to return true

from line 2 of the last recursion, and then unrolling all the recursions out of line 3 to ultimately

return true out of line 4.

The worst-case complexity is O(2n). A worst-case input (of size n) is one that leads to a false

result. An example would be an array A of positive numbers with s < 0. In this case, every

invocation recurses twice, except for the base case. Each recursion reduces the size of the input

range by 1, so the recursion tree amounts to a full binary tree with n levels, which leads to a

complexity of O(2n).

⊲Solution 186

Group-Of-K(S1, S2, . . . , Sm, k)

1 H = empty min-heap (sorted by time)

2 for i = 1 to m
3 t, a = Si[1]
4 Min-Heap-Insert(H, (t, a, i,1)) (sorted by t)
5 C = dictionary mapping antennas to integers (hash map)

6 while H is not empty

7 t, a, i, j = Min-Heap-Extract-Min(H)
8 if j > 1

9 t′, a′ = Si[j − 1]
10 C[a′] = C[a′]− 1

11 if a ∈ C
12 C[a] = C[a]+ 1

13 else C[a] = 1

14 if C[a] ≥ k
15 return t, a
16 if j ≤ Si. length

17 t, a = Si[j + 1]
18 Min-Heap-Insert(H, (t, a, i, j + 1)) (sorted by t)
19 return null

⊲Solution 187.1

Algo-X(A) sorts the elements of A in-place so that all odd numbers precede all even numbers.

I other words, Algo-X(A) partitions A in two parts, A[1 . . . j − 1] and A[j . . .A. length] so that

A[1 . . . j − 1] contains only odd numbers and A[j . . . A. length] contains only even numbers. One

of the two parts might be empty. The complexity of Algo-X is Θ(n2).

⊲Solution 187.2

Better-Algo-X(A)

1 i = 1

2 j = A. length+ 1

3 while i < j
4 if A[i] ≡ 0 mod 2 // A[i] is even

5 j = j − 1

6 swap A[i]↔ A[j]
7 else i = i+ 1

8 return j

⊲Solution 188

BTree-Print-Range(T ,a, b)

1 if not T . leaf and T .key[1] > a
2 BTree-Print-Range(T .c[1], a, b)
3 for i = 1 to T .n
4 if T .key[i] ≥ b
5 return

6 if T .key[i] > a
7 print T .key[i]
8 if not T . leaf

9 if i == T .n or T .key[i+ 1] > a
10 BTree-Print-Range(T .c[i+ 1], a, b)

⊲Solution 189

The problem is in P, and therefore it is also in NP. This is a polynomial-time solution algorithm that

proves it:

Algo(G, k)

1 for v ∈ V(G)
2 Dv = Dijkstra(G,v)
3 // Dv is the distance vector resulting from Dijkstra

4 for u ∈ V(G)
5 if Dv[u] == k
6 return true

7 return false

⊲Solution 190

Most-Congested-Segment(A, ℓ)

1 sort A
2 i = 1

3 j = 1

4 x = null

5 m = 0

6 while j < A. length

7 if A[j] −A[i] ≤ ℓ
8 if m < j − i+ 1

9 x = A[i]
10 m = j − i+ 1

11 j = j + 1

12 else i = i+ 1

13 return x

⊲Solution 191

The problem is in NP because a true answer can be verified in polynomial time with a “certificate”

consisting of a set of nodes C = {v1, v2, . . . , vℓ}
Verify(G, k, C = {v1, v2, . . . , vℓ})
1 if |C| < k
2 return false

3 for all pairs u,v ∈ C
4 if G[u][v] 6= 1

5 return false

6 return true

⊲Solution 192

Max-Heap-Top-Three(H)

1 if H. length < 4

2 for i = 1 to H. length

3 else print(H[1])
4 if H[2] > H[3]
5 i = 2

6 j = 3

7 else i = 3

8 j = 2

9 if H. length ≥ 2i+ 1 and H[j] < H[2i+ 1]
10 j = 2i+ 1

11 if H. length ≥ 2i and H[j] < H[2i]
12 j = 2i
13 print(H[i])
14 print(H[j])

⊲Solution 193

Longest-Stretch(P,h)

1 ℓ = 0

2 i = 1

3 while i < P. length

4 a = P[i].y
5 b = P[i].y
6 j = i+ 1

7 while b − a < h
8 if P[j].y > b
9 b = P[j].y

10 elseif P[j].y < a
11 a = P[j].y
12 if b − a < h
13 if P[j].x − P[i].x > ℓ
14 ℓ = P[j].x − P[i].x
15 else j = j + 1

16 i = i+ 1

17 return ℓ

Longest-Stretch(P,h) runs inO(n2) in the worst case. For example, a completely flat road would

be a worst-case input.

⊲Solution 194

Is-Bipartite(G)

1 for v ∈ V(G)
2 C[v] = green// can be in either VA or VB
3 for v ∈ V(G)
4 if C[v] == green

5 C[v] = red

6 Q = {v}// queue containing v
7 while Q is not empty

8 u = Dequeue(Q)
9 for all w adjacent to u:

10 if C[w] == green

11 if C[v] == red

12 C[w] = blue

13 else C[w] = red

14 Enqueue(Q,w)
15 else if C[v] 6= C[w]
16 return false

17 return true

⊲Solution 195.1

Good-Are-Adjacent(A)

1 i = 1

2 while i < j and not Is-Good(A[i])
3 i = i+ 1

4 while i < j and not Is-Good(A[j])
5 j = j − 1

6 while i < j
7 if not Is-Good(A[i])
8 else i = i+ 1

9 return true

⊲Solution 195.2

Make-Good-Adjacent(A)

1 i = 1

2 while i < j and not Is-Good(A[i])
3 i = i+ 1

4 while i < j and not Is-Good(A[j])
5 j = j − 1

6 while i < j
7 if not Is-Good(A[i])
8 swap A[i]↔ A[j]
9 j = j − 1

10 i = i+ 1

11 return true

⊲Solution 196

The problem is in P, and therefore also in NP. This is an algorithm that solves the problem in

O(n logn) time.

Group-Of-Equals(A, k)

1 B = Sort(A)
2 i = 1

3 j = 1

4 while j < A. length

5 if A[i] == A[j]
6 j = j + 1

7 if j − i == k
8 return true

9 else i = j
10 return false

⊲Solution 197

A simple, brute-force solution is to check each combination of positions in the two strings

Maximal-Common-Substring(X, Y)

1 m = 0

2 for i = 1 to A. length

3 for j = 1 to B. length

4 ℓ = 0

5 while i+ ℓ ≤ A. length and j + ℓ ≤ B. length and A[i+ ℓ] == B[j + ℓ]
6 ℓ = ℓ+ 1

7 if ℓ > m
8 m = ℓ
9 return m

The complexity of Maximal-Common-Substring is O(n3).

⊲Solution 198

BST-Count-Unbalanced-Nodes(t)

1 if t == null

2 return 0,0
3 UL,TotL = BST-Count-Unbalanced-Nodes(t.lef t)
4 UR,TotR = BST-Count-Unbalanced-Nodes(t.r ight)
5 U = UL +UR
6 if TotL > 2TotR + 1 or TotR > 2TotL + 1

7 U = U + 1

8 return U, (TotL + TotR + 1)

The complexity is Θ(n).

⊲Solution 199.1

Algo-X returns the maximal difference between two values in an increasing sequence of elements

in A. The complexity is Θ(n3).

⊲Solution 199.2

Linear-Algo-X(A)

1 x = 0

2 i = 0

3 j = 1

4 while j ≤ A. length

5 if A[j] > A[j − 1]
6 if A[j] −A[i] > x
7 x = A[j]−A[i]
8 else i = j
9 j = j + 1

10 return x

⊲Solution 200.1

A naïve solution for Find-Square is to test all quadruples of points pi, pj , pk, pℓ, and determine

whether pi, pj , pk, pℓ form a square.

Find-Square(P)

1 for i = 1 to P. length

2 for j = 1 to P. length

3 for k = 1 to P. length

4 for ℓ = 1 to P. length

5 dx = P[j].x − P[i].x
6 dy = P[j].y − P[i].y
7 if P[k].x == P[j].x + dy and P[k].y == P[j].y − dx

and P[ℓ].x == P[i].x + dy and P[ℓ].y == P[i].y − dx
8 return true

9 return false

⊲Solution 200.2

Here the idea is to test all segments defined by two distinct points, and then to try to find the other

corners of a square, which we can do with a binary search.

Order-2D(p1, p2)

1 if p1.x < p2.x
2 return true

3 elseif p1.x > p2.x
4 return false

5 elseif p1.y < p2.y
6 return true

7 elseif p1.y < p2.y
8 else return false

Binary-Search-2D(P,x,y)

1 i = 1

2 j = P. length

3 while i ≤ j
4 m = ⌊(i+ j)/2⌋
5 if Order-2D(v, P[m])
6 j = m− 1

7 elseif P[m].x == x and P[m].y == y
8 return true

9 else i = m+ 1

10 return false

Find-Square(P)

1 sort P using Order-2D as a comparison between pairs of points

2 for i = 1 to P. length

3 for j = 1 to P. length

4 dx = P[j].x − P[i].x
5 dy = P[j].y − P[i].y
6 if Binary-Search-2D(P, P[i].x + dy , P[i].y − dx)

and Binary-Search-2D(P, P[j].x + dy , P[j].y − dx)
7 return true

8 return false

⊲Solution 201

Initialize(Q)

1 Q.A = new empty array

2 Q.P = new empty array

Enqueue(Q,obj, p)

1 append obj to array Q.A
2 append p to array Q.P
3 i = Q.P . length

4 j = ⌊i/2⌋
5 while i > 1 and Q.P[i] < Q.P[j]
6 swap Q.P[i]↔ Q.P[j]
7 swap Q.A[i]↔ Q.A[j]
8 i = j
9 j = ⌊i/2⌋

Dequeue(Q)

1 ℓ = A.P . length

2 if ℓ < 1

3 error “empty queue”

4 x = Q.A[1]
5 swap Q.P[1] = Q.P[ℓ]
6 swap Q.A[1] = Q.A[ℓ]
7 remove last element from Q.P
8 remove last element from Q.A
9 ℓ = ℓ− 1

10 i = 1

11 while 2i ≤ ℓ and Q.P[i] > Q.P[2i]
or 2i+ 1 ≤ ℓ and Q.P[i] > Q.P[2i+ 1]

12 if 2i+ 1 ≤ ℓ and Q.P[2i+ 1] > Q.P[2i]
13 j = 2i+ 1

14 else j = 2i
15 swap Q.P[i] = Q.P[j]
16 swap Q.A[i] = Q.A[j]
17 i = j
18 return x

⊲Solution 202

Maximal-Distance(A)

1 if A. length < 2

2 return 0

3 min = A[1]
4 max = A[1]
5 for i = 2 to A. length

6 if A[i] > max

7 max = A[i]
8 elseif A[i] <min

9 min = A[i]
10 return max −min

⊲Solution 203

BST-Height(t)

1 if t == null

2 return 0

3 return 1+max(BST-Height(t. left),BST-Height(t.right))

⊲Solution 204

The problem, which is the well-known matching problem in graph theory, is definitely in NP. This

is a possible verification algorithm:

Verify-Matching(G = (V, E,w), t, S)
1 X = ∅
2 for e = (u,v) ∈ S
3 if u ∈ X or v ∈ X
4 return false

5 X = X ∪ {u,v}
6 weight = weight +w(e)
7 if weight ≥ t
8 return true

9 else return false

⊲Solution 205

We can use a dynamic programming approach. Let Pi be the maximal value of the objects you

can collect by reaching object i. Now, since you can reach Pi only by increasing your x and y
coordinates, then that means that the maximal total value Pi is the value of object i plus the

maximal total value when you reach any one of the objects from which you can then reach object

i. This means all the objects with coordinates less than those of i. So:

Pi = V[i]+ max
j|X[j]≤X[i]∧Y[j]≤Y[i]

P[j]

The global maximal game value is then maxPi.
Now, the formula for Pi gives us a very simple recursive algorithm. This is inefficient, but it can be

made very efficient with memoization.

Maximal-Game-Value(X, Y , V)

1 P = array of n = |V | elements initialized to P[i] = null

2 m = −∞
3 for i = 1 to V. length

4 if m< Maximal-Value-P(P,X, Y , V, i)
5 m = Maximal-Value-P(P,X, Y , V, i)
6 return m

Maximal-Value-P(P,X, Y , V, i)

1 if P[i] == null

2 P[i] = V[i]
3 for j = 1 to V. length

4 if j 6= i and X[j] ≤ X[i] and Y[j] ≤ Y[i]
5 if P[i] < V[i]+Maximal-Value-P(P,X, Y , V, j)
6 P[i] = V[i]+Maximal-Value-P(P,X, Y , V, j)
7 return P[i]

⊲Solution 206

We are not required to be particularly efficient, so we can write a simple algorithm.

Maximal-Substring(S)

1 A = null

2 for i = 1 to |S|
3 X = ∅
4 for j = 1 to |S[i]| − 1

5 for k = j + 1 to |S[i]|
6 X = X ∪ {S[i][j . . . k]}
7 if A == null

8 A = X
9 else A = A∩X

10 if A == ∅
11 return “”

12 return longest string in A or “” if A == null

⊲Solution 207.1

Algo-X returns mode of A, meaning an element that occurs in A with maximal frequency (count).

The complexity is Θ(n2). Any input is the worst-case input.

⊲Solution 207.2

Better-Algo-X(A)

1 B =copy of A
2 sort B
3 if |S| == 0

4 return 0

5 x = B[1]
6 m = 1

7 c = 1

8 for i = 2 to |S|
9 if B[i] == B[i− 1]

10 c = c + 1

11 if c > m
12 m = c
13 x = B[i]
14 else c = 1

15 return x

⊲Solution 208

Graph-Degree(G)

1 n = |V(G)|
2 for i = 1 to n
3 d = 0

4 for j = 1 to n
5 if G[i, j] == 1

6 d = d+ 1

7 if d > m
8 m = d
9 return m

⊲Solution 209

We don’t have complexity constraints, so the algorithm can be simple:

Find-3-Cycle(G)

1 for u ∈ V(G)
2 for v ∈ Adj[u]
3 for w ∈ Adj[v]
4 for x ∈ Adj[w]
5 if x == u
6 return true

7 return false

The complexity is Θ(n∆3), where ∆ is the degree. Now, consider the full bipartite graph of n/2
plus n/2 nodes. In this case, the complexity is Θ(n4).

⊲Solution 210

Here’s an obvious O(mn2) solution:

Longest-Common-Prefix(S)

1 m = 0

2 for i = 2 to S. length

3 for j = 1 to i− 1

4 ℓ = Common-Prefix-Length(S[i], S[j])
5 if ℓ > m
6 ℓ = m
7 return m

Common-Prefix-Length(a, b)

1 for i = 1 to min (a. length, b. length)
2 if a[i] 6= b[i]
3 return i− 1

4 return min (a. length, b. length)

⊲Solution 211

Notice that if we sort the array S in lexicographical order, then any k strings with a common prefix

will be contiguous in the sorted array.

Longest-K-Common-Prefix(S, k)

1 sort S in lexicographical order

2 m = 0

3 for i = k to S. length

4 ℓ = Common-Prefix-Length(S[i], S[i− k])
5 if ℓ > m
6 ℓ = m
7 return m

Common-Prefix-Length(a, b)

1 for i = 1 to min (a. length, b. length)
2 if a[i] 6= b[i]
3 return i− 1

4 return min (a. length, b. length)

This complexity is O(m logn).

⊲Solution 212

The problem is in P and therefore it is also in NP . This is an algorithm that solves the problem in

polynomial time:

Negative-Three-Cycle(G = (V, E))
1 for u ∈ V
2 for v ∈ Adj[u]
3 for w ∈ Adj[v]
4 if w == u and weight(u,v)+weight(v,w)+weight(w,u) < 0

5 return true

6 return false

⊲Solution 213.1

Upper-Bound(A,x)

1 u = undefined

2 d = undefined

3 for a ∈ A
4 if x ≤ a
5 if u == undefined or d > a− x
6 d = a− x
7 u = a
8 return u

The complexity is Θ(n).

⊲Solution 213.2

Upper-Bound-Sorted(A,x)

1 i = 1

2 j = A. length

3 if A[j] < x
4 return undefined

5 elseif A[i] ≥ x
6 return A[i]
7 while i < j
8 m = ⌊i+ j/2⌋
9 if A[m] == x

10 return A[m]
11 elseif A[m] < x
12 i = m
13 else j = m
14 return A[j]

The complexity is Θ(logn).

⊲Solution 213.3

Upper-Bound-BST(T ,x)

1 while T 6= null

2 if T .key < x
3 T = T .right

4 else while T . left 6= null and T . left.key ≥ x
5 T = T . left

6 return T .key

7 return undefined

The complexity is Θ(h) where h is the height of the input tree.

