Dynamic Programming

Antonio Carzaniga

Faculty of Informatics Università della Svizzera italiana

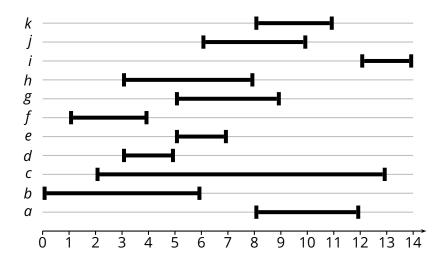
May 17, 2018

Outline

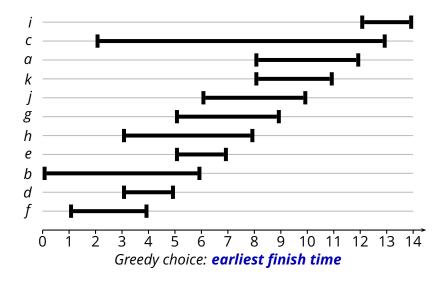
Examples

- Dynamic programming strategy
- More examples

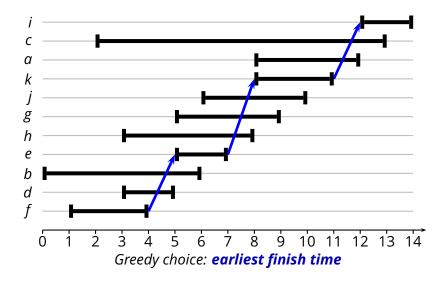
Activity-Selection Problem



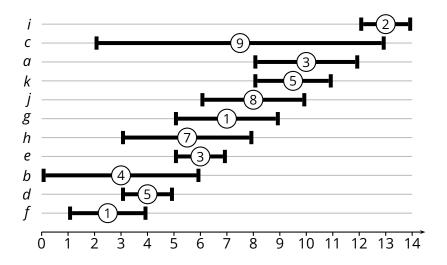
Activity-Selection Problem



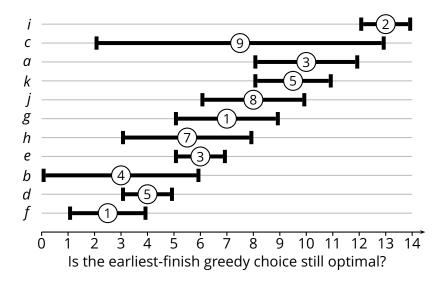
Activity-Selection Problem



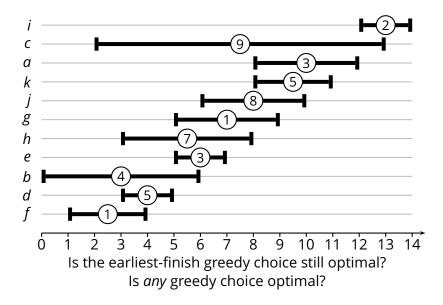
Weighted Activity-Selection Problem

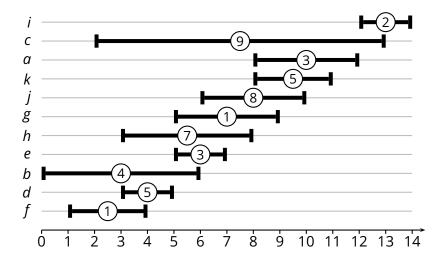


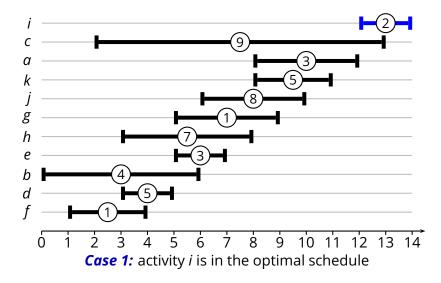
Weighted Activity-Selection Problem

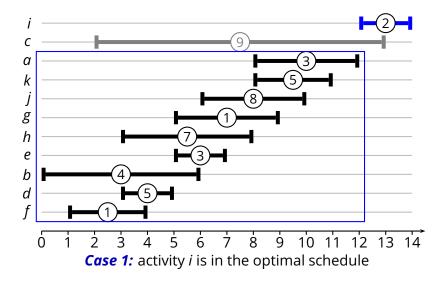


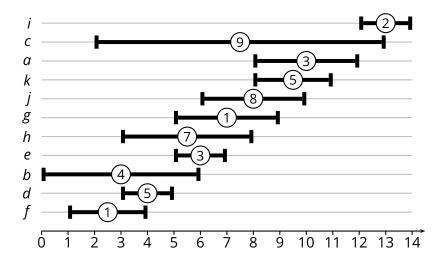
Weighted Activity-Selection Problem

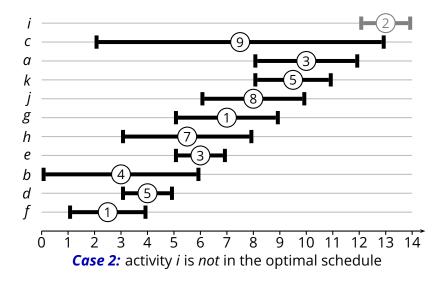


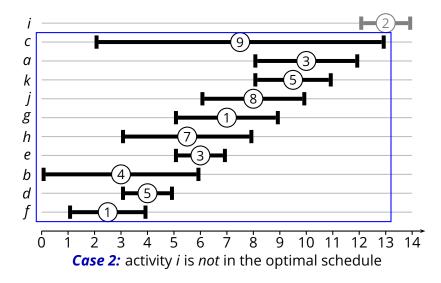












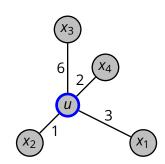
Given a graph G = (V, E) and a weight function w, we compute the shortest distance $D_u(v)$, from $u \in V$ to $v \in V$, using the *Bellman-Ford equation*

Given a graph G = (V, E) and a weight function w, we compute the shortest distance $D_u(v)$, from $u \in V$ to $v \in V$, using the *Bellman-Ford equation*

$$D_u(v) = \min_{x \in Adj(u)} [w(u, x) + D_x(v)]$$

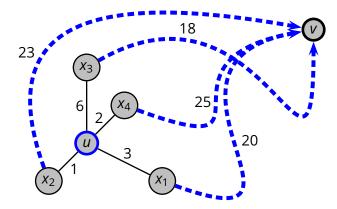
Given a graph G = (V, E) and a weight function w, we compute the shortest distance $D_u(v)$, from $u \in V$ to $v \in V$, using the *Bellman-Ford equation*

$$D_u(v) = \min_{x \in Adj(u)} [w(u, x) + D_x(v)]$$

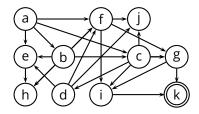


Given a graph G = (V, E) and a weight function w, we compute the shortest distance $D_u(v)$, from $u \in V$ to $v \in V$, using the *Bellman-Ford equation*

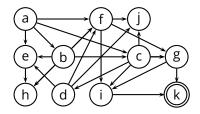
 $D_u(v) = \min_{x \in Adj(u)} [w(u, x) + D_x(v)]$

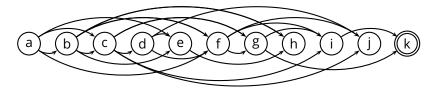


Given a *directed acyclic graph* G = (V, E), this one with unit weights, find the shortest distances to a given node

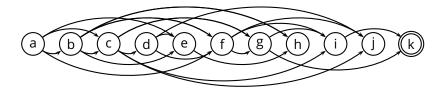


Given a *directed acyclic graph* G = (V, E), this one with unit weights, find the shortest distances to a given node



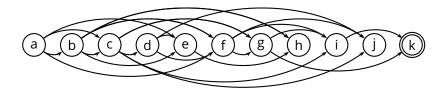


$$D_x(k) = \min_{y \in Adj(x)} [w(x, y) + D_y(k)]$$

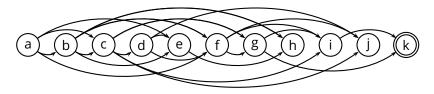


0

$$D_x(k) = \min_{y \in Adj(x)} [w(x, y) + D_y(k)]$$

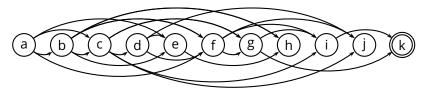


$$D_x(k) = \min_{y \in Adj(x)} [w(x, y) + D_y(k)]$$



0 ∞

$$D_x(k) = \min_{y \in Adj(x)} [w(x, y) + D_y(k)]$$



1 0 ∞

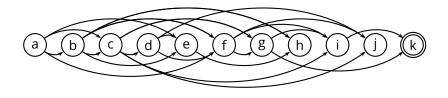
0

 ∞

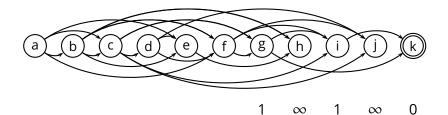
1

 ∞

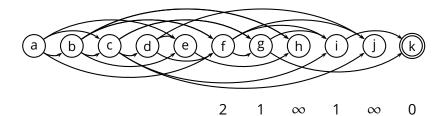
$$D_x(k) = \min_{y \in Adj(x)} [w(x, y) + D_y(k)]$$



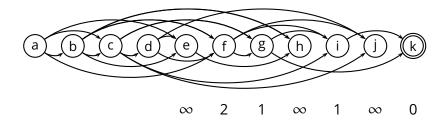
$$D_x(k) = \min_{y \in Adj(x)} [w(x, y) + D_y(k)]$$



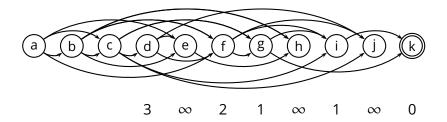
$$D_x(k) = \min_{y \in Adj(x)} [w(x, y) + D_y(k)]$$



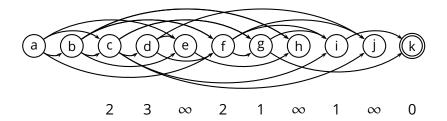
$$D_x(k) = \min_{y \in Adj(x)} [w(x, y) + D_y(k)]$$



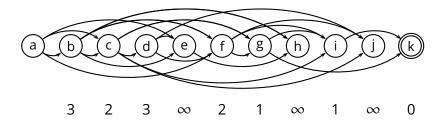
$$D_x(k) = \min_{y \in Adj(x)} [w(x, y) + D_y(k)]$$



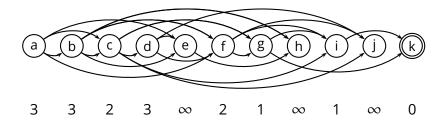
$$D_x(k) = \min_{y \in Adj(x)} [w(x, y) + D_y(k)]$$



$$D_x(k) = \min_{y \in Adj(x)} [w(x, y) + D_y(k)]$$

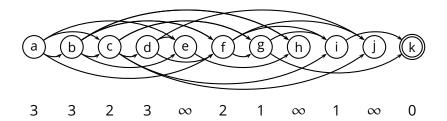


$$D_x(k) = \min_{y \in Adj(x)} [w(x, y) + D_y(k)]$$



Considering *V* in *topological order*

$$D_x(k) = \min_{y \in Adj(x)} [w(x, y) + D_y(k)]$$



Since G is a DAG, computing D_y with $y \in Adj(x)$ can be considered a *subproblem* of computing D_x

• we build the solution bottom-up, storing the subproblem solutions

Longest Increasing Subsequence

Longest Increasing Subsequence

Given a sequence of numbers $a_1, a_2, ..., a_n$, an *increasing subsequence* is any subset $a_{i_1}, a_{i_2}, ..., a_{i_k}$ such that $1 \le i_1 < i_2 < \cdots < i_k \le n$, and such that

$$a_{i_1} < a_{i_2} < \cdots < a_{i_k}$$

■ You must find the *longest increasing subsequence*

Given a sequence of numbers $a_1, a_2, ..., a_n$, an *increasing subsequence* is any subset $a_{i_1}, a_{i_2}, ..., a_{i_k}$ such that $1 \le i_1 < i_2 < \cdots < i_k \le n$, and such that

 $a_{i_1} < a_{i_2} < \cdots < a_{i_k}$

- You must find the *longest increasing subsequence*
- **Example:** find (one of) the longest increasing subsequence in

5 2 8 6 3 6 9 7

Given a sequence of numbers $a_1, a_2, ..., a_n$, an *increasing subsequence* is any subset $a_{i_1}, a_{i_2}, ..., a_{i_k}$ such that $1 \le i_1 < i_2 < \cdots < i_k \le n$, and such that

 $a_{i_1} < a_{i_2} < \cdots < a_{i_k}$

- You must find the *longest increasing subsequence*
- **Example:** find (one of) the longest increasing subsequence in

5 2 8 6 3 6 9 7

A maximal-length subsequence is

2 3 6 9

Intuition: let L(j) be the length of the longest subsequence ending at a_j

Intuition: let L(j) be the length of the longest subsequence ending at a_i

► e.g., in
 5 2 8 6 3 6 9 7
 we have
 L(4) = 2

Intuition: let L(j) be the length of the longest subsequence ending at a_i

e.g., in
 5 2 8 6 3 6 9 7
 we have
 L(4) = 2

this is our subproblem structure

Intuition: let L(j) be the length of the longest subsequence ending at a_i

e.g., in
 5 2 8 6 3 6 9 7
 we have
 L(4) = 2

this is our subproblem structure

Combining the subproblems

$$L(j) = 1 + \max\{L(i) \mid i < j \land a_i < a_j\}$$

- First, the name "dynamic programming"
 - does not mean writing a computer program
 - term used in the 1950s, when "programming" meant "planning"

- First, the name "dynamic programming"
 - does not mean writing a computer program
 - term used in the 1950s, when "programming" meant "planning"
- Problem domain
 - typically optimization problems
 - Iongest sequence, shortest path, etc.

- First, the name "dynamic programming"
 - does not mean writing a computer program
 - term used in the 1950s, when "programming" meant "planning"
- Problem domain
 - typically optimization problems
 - Iongest sequence, shortest path, etc.
- General strategy

- First, the name "dynamic programming"
 - does not mean writing a computer program
 - term used in the 1950s, when "programming" meant "planning"
- Problem domain
 - typically optimization problems
 - Iongest sequence, shortest path, etc.
- General strategy
 - decompose a problem in (smaller) subproblems

- First, the name "dynamic programming"
 - does not mean writing a computer program
 - term used in the 1950s, when "programming" meant "planning"
- Problem domain
 - typically optimization problems
 - Iongest sequence, shortest path, etc.
- General strategy
 - decompose a problem in (smaller) subproblems
 - must satisfy the optimal substructure property

- First, the name "dynamic programming"
 - does not mean writing a computer program
 - term used in the 1950s, when "programming" meant "planning"
- Problem domain
 - typically optimization problems
 - Iongest sequence, shortest path, etc.
- General strategy
 - decompose a problem in (smaller) subproblems
 - must satisfy the *optimal substructure* property
 - subproblems may overlap (indeed they should overlap!)

- First, the name "dynamic programming"
 - does not mean writing a computer program
 - term used in the 1950s, when "programming" meant "planning"
- Problem domain
 - typically optimization problems
 - Iongest sequence, shortest path, etc.
- General strategy
 - decompose a problem in (smaller) subproblems
 - must satisfy the *optimal substructure* property
 - subproblems may overlap (indeed they should overlap!)
 - solve the subproblems

- First, the name "dynamic programming"
 - does not mean writing a computer program
 - term used in the 1950s, when "programming" meant "planning"
- Problem domain
 - typically optimization problems
 - Iongest sequence, shortest path, etc.
- General strategy
 - decompose a problem in (smaller) subproblems
 - must satisfy the optimal substructure property
 - subproblems may overlap (indeed they should overlap!)
 - solve the subproblems
 - derive the solution from (one of) the solutions to the subproblems

• **Unweighted shortest path:** given G = (V, E), find the length of the shortest path from *u* to *v*

- **Unweighted shortest path:** given G = (V, E), find the length of the shortest path from *u* to *v*
 - decompose $u \rightarrow v$ into $u \rightarrow w \rightarrow v$

- **Unweighted shortest path:** given G = (V, E), find the length of the shortest path from *u* to *v*
 - decompose $u \rightarrow v$ into $u \rightarrow w \rightarrow v$
 - easy to prove that, if $u \rightarrow w \rightarrow v$ is minimal, then $w \rightarrow v$ is also minimal
 - this is the optimal substructure property

- **Unweighted shortest path:** given G = (V, E), find the length of the shortest path from *u* to *v*
 - decompose $u \rightarrow v$ into $u \rightarrow w \rightarrow v$
 - easy to prove that, if $u \rightsquigarrow w \rightsquigarrow v$ is minimal, then $w \rightsquigarrow v$ is also minimal
 - this is the optimal substructure property
- **Unweighted longest simple path:** given G = (V, E), find the length of the longest simple (i.e., no cycles) path from u to v
 - we can also decompose $u \rightarrow v$ into $u \rightarrow w \rightarrow v$
 - ► however, we can not prove that, if u → w → v is maximal, then w → v is also maximal

- **Unweighted shortest path:** given G = (V, E), find the length of the shortest path from *u* to *v*
 - decompose $u \rightarrow v$ into $u \rightarrow w \rightarrow v$
 - easy to prove that, if $u \rightsquigarrow w \rightsquigarrow v$ is minimal, then $w \rightsquigarrow v$ is also minimal
 - this is the optimal substructure property
- **Unweighted longest simple path:** given G = (V, E), find the length of the longest simple (i.e., no cycles) path from u to v
 - we can also decompose $u \rightarrow v$ into $u \rightarrow w \rightarrow v$
 - ► however, we can not prove that, if u → w → v is maximal, then w → v is also maximal
 - **exercise:** find a counter-example

Dynamic Programming vs. Divide-and-Conquer

Divide-and-conquer is also about decomposing a problem into subproblems

Dynamic Programming vs. Divide-and-Conquer

- Divide-and-conquer is also about decomposing a problem into subproblems
- Divide-and-conquer works by breaking the problem into significantly smaller subproblems
 - in dynamic programming, it is typical to reduce L(j) into L(j-1)
 - this is one reason why recursion does not work so well for dynamic programming

Dynamic Programming vs. Divide-and-Conquer

- Divide-and-conquer is also about decomposing a problem into subproblems
- Divide-and-conquer works by breaking the problem into significantly smaller subproblems
 - in dynamic programming, it is typical to reduce L(j) into L(j-1)
 - this is one reason why recursion does not work so well for dynamic programming
- Divide-and-conquer splits the problem into *independent subproblems*
 - in dynamic programming, subproblems typically overlap
 - pretty much the same argument as above

Dynamic Programming vs. Greedy

- Greedy: requires the *greedy-choice property*
 - greedy: greedy choice plus one subproblem
 - greedy choice typically before proceeding to the subproblem
 - no need to store the result of each subproblem

Dynamic Programming vs. Greedy

- Greedy: requires the *greedy-choice property*
 - greedy: greedy choice plus one subproblem
 - greedy choice typically before proceeding to the subproblem
 - no need to store the result of each subproblem
- Dynamic programming: *more general*
 - does not need the greedy-choice property
 - typically looks at several subproblems
 - "dynamically" choose one of them to obtain a global solution
 - typically works bottom-up
 - typically reuses solutions of the subproblems

Typical Subproblem Structures

Prefix/suffix subproblems

- Input: $x_1, x_2, ..., x_n$
- Subproblem: x_1, x_2, \ldots, x_i , with i < n
- ► O(n) subproblems

Typical Subproblem Structures

Prefix/suffix subproblems

- Input: $x_1, x_2, ..., x_n$
- Subproblem: x_1, x_2, \ldots, x_i , with i < n
- O(n) subproblems
- Subsequence subproblems
 - Input: $x_1, x_2, ..., x_n$
 - *Subproblem:* $x_i, x_{i+1}, ..., x_j$, with $1 \le i < j \le n$

Typical Subproblem Structures

Prefix/suffix subproblems

- Input: $x_1, x_2, ..., x_n$
- Subproblem: x_1, x_2, \ldots, x_i , with i < n
- O(n) subproblems

Subsequence subproblems

- Input: $x_1, x_2, ..., x_n$
- Subproblem: $x_i, x_{i+1}, \ldots, x_j$, with $1 \le i < j \le n$
- ► O(n²) subproblems

■ Given two strings *x* and *y*, find the *smallest set of edit operations* that transform *x* into *y*

- Given two strings *x* and *y*, find the *smallest set of edit operations* that transform *x* into *y*
 - edit operations: *delete*, *insert*, and *modify* a single character
 - very important applications
 - spell checker
 - DNA sequencing

- Given two strings *x* and *y*, find the *smallest set of edit operations* that transform *x* into *y*
 - edit operations: *delete*, *insert*, and *modify* a single character
 - very important applications
 - spell checker
 - DNA sequencing
- **Example:** transform "Carzaniga" into "Jazayeri"

- Given two strings *x* and *y*, find the *smallest set of edit operations* that transform *x* into *y*
 - edit operations: *delete*, *insert*, and *modify* a single character
 - very important applications
 - spell checker
 - DNA sequencing
- **Example:** transform "Carzaniga" into "Jazayeri"

- Given two strings *x* and *y*, find the *smallest set of edit operations* that transform *x* into *y*
 - edit operations: *delete*, *insert*, and *modify* a single character
 - very important applications
 - spell checker
 - DNA sequencing
- **Example:** transform "Carzaniga" into "Jazayeri"

Edit Distance (2)

■ Align the two strings *x* and *y*, possibly inserting "gaps" between letters

- a gap in the source means *insertion*
- a gap in the destination means *deletion*
- two different character in the same position means *modification*

Edit Distance (2)

■ Align the two strings *x* and *y*, possibly inserting "gaps" between letters

- a gap in the source means *insertion*
- a gap in the destination means *deletion*
- two different character in the same position means *modification*
- Many alignments are possible; the alignment with the smallest number of insertions, deletions, and modifications defines the *edit distance*

Edit Distance (2)

■ Align the two strings *x* and *y*, possibly inserting "gaps" between letters

- a gap in the source means *insertion*
- a gap in the destination means *deletion*
- two different character in the same position means *modification*
- Many alignments are possible; the alignment with the smallest number of insertions, deletions, and modifications defines the *edit distance*

So, how do we solve this problem?

■ Align the two strings *x* and *y*, possibly inserting "gaps" between letters

- a gap in the source means *insertion*
- a gap in the destination means *deletion*
- two different character in the same position means *modification*
- Many alignments are possible; the alignment with the smallest number of insertions, deletions, and modifications defines the *edit distance*
- So, how do we solve this problem?
- What are the subproblems?

■ *Idea*: consider a prefix of *x* and a prefix of *y*

- *Idea:* consider a prefix of *x* and a prefix of *y*
- Let *E*(*i*, *j*) be the smallest set of changes that turn the first *i* characters of *x* into the first *j* characters of *y*

- *Idea*: consider a prefix of *x* and a prefix of *y*
- Let *E*(*i*, *j*) be the smallest set of changes that turn the first *i* characters of *x* into the first *j* characters of *y*
- Now, the last column of the alignment of E(i, j) can have either
 - a gap for x (i.e., insertion)
 - a gap for y (i.e., deletion)
 - no gaps (i.e., modification iff $x[i] \neq y[j]$)

- *Idea*: consider a prefix of *x* and a prefix of *y*
- Let *E*(*i*, *j*) be the smallest set of changes that turn the first *i* characters of *x* into the first *j* characters of *y*
- Now, the last column of the alignment of E(i, j) can have either
 - a gap for x (i.e., insertion)
 - a gap for y (i.e., deletion)
 - no gaps (i.e., modification iff $x[i] \neq y[j]$)
- This suggests a way to combine the subproblems; let diff(i, j) = 1 iff $x[i] \neq y[j]$ or 0 otherwise

$$E(i,j) = \min\{1 + E(i - 1, j), \\1 + E(i, j - 1), \\diff(i, j) + E(i - 1, j - 1)\}$$

Knapsack

Problem definition

- *Input:* a set of *n* objects with their weights w_1, w_2, \ldots, w_n and their values v_1, v_2, \ldots, v_n , and a maximum weight *W*
- *Output:* a subset *K* of the objects such that $\sum_{i \in K} w_i \leq W$ and such that $\sum_{i \in K} v_i$ is maximal

Knapsack

Problem definition

- ► *Input:* a set of *n* objects with their weights $w_1, w_2, ..., w_n$ and their values $v_1, v_2, ..., v_n$, and a maximum weight *W*
- *Output:* a subset *K* of the objects such that $\sum_{i \in K} w_i \leq W$ and such that $\sum_{i \in K} v_i$ is maximal
- Dynamic-programming solution
 - let K(w, j) be the maximum value achievable at maximum capacity w using the first j items (i.e., items 1...j)
 - considering the *j*th element, we can either "use it or loose it," so

$$K(w, j) = \max\{K(w - w_j, j - 1) + v_j, K(w, j - 1)\}$$

The breakdown of a problem into subproblem suggests the use of a recursive function. Is that a good idea?

- The breakdown of a problem into subproblem suggests the use of a recursive function. Is that a good idea?
 - ► No! As we already said, recursion doesn't quite work here

- The breakdown of a problem into subproblem suggests the use of a recursive function. Is that a good idea?
 - No! As we already said, recursion doesn't quite work here
 - Why?
 - Remember Fibonacci?

- The breakdown of a problem into subproblem suggests the use of a recursive function. Is that a good idea?
 - No! As we already said, recursion doesn't quite work here
 - Why?
- Remember Fibonacci?

FIBONACCI(n) 1 if n == 02 return 0 3 elseif n == 14 return 1 5 else return FIBONACCI(n - 1) + FIBONACCI(n - 2)

- The breakdown of a problem into subproblem suggests the use of a recursive function. Is that a good idea?
 - No! As we already said, recursion doesn't quite work here
 - Why?
- Remember Fibonacci?

FIBONACCI(*n*) 1 if *n* == 0 2 return 0 3 elseif *n* == 1 4 return 1 5 else return FIBONACCI(*n* - 1) + FIBONACCI(*n* - 2)

Recursion solves the same problem over and over again

Memoization

- Problem: recursion solves the same problems repeatedly
- Idea: "cache" the results

Memoization

Problem: recursion solves the same problems repeatedly

■ Idea: "cache" the results

```
FIBONACCI(n)
  if n == 0
2
        return 0
3
  elseif n == 1
4
        return 1
5
   elseif (n, x) \in H \parallel a hash table H "caches" results
6
        return x
7
   else x = FIBONACCI(n-1) + FIBONACCI(n-2)
8
        INSERT(H, n, x)
9
        return x
```

Idea also known as *memoization*

Greedy

- 1. start with the greedy choice
- 2. add the solution to the remaining subproblem

A nice tail-recursive algorithm

Greedy

- 1. start with the greedy choice
- 2. add the solution to the remaining subproblem

A nice tail-recursive algorithm

• the complexity of the greedy strategy *per-se* is $\Theta(n)$

Greedy

- 1. start with the greedy choice
- 2. add the solution to the remaining subproblem

A nice tail-recursive algorithm

• the complexity of the greedy strategy *per-se* is $\Theta(n)$

Dynamic programming

1. break down the problem in subproblems

Greedy

- 1. start with the greedy choice
- 2. add the solution to the remaining subproblem

A nice tail-recursive algorithm

• the complexity of the greedy strategy *per-se* is $\Theta(n)$

Dynamic programming

1. break down the problem in subproblems—O(1), O(n), $O(n^2)$, ... subproblems

Greedy

- 1. start with the greedy choice
- 2. add the solution to the remaining subproblem

A nice tail-recursive algorithm

• the complexity of the greedy strategy *per-se* is $\Theta(n)$

Dynamic programming

- 1. break down the problem in subproblems—O(1), O(n), $O(n^2)$, ... subproblems
- 2. you solve the main problem by choosing one of the subproblems

Greedy

- 1. start with the greedy choice
- 2. add the solution to the remaining subproblem

A nice tail-recursive algorithm

• the complexity of the greedy strategy *per-se* is $\Theta(n)$

Dynamic programming

- 1. break down the problem in subproblems—O(1), O(n), $O(n^2)$, ... subproblems
- 2. you solve the main problem by choosing one of the subproblems
- 3. in practice, solve the subproblems bottom-up

Exercise

Exercise

■ **Puzzle 0:** is it possible to insert some '+' signs in the string "213478" so that the resulting expression would equal 214?

Exercise

- **Puzzle 0:** is it possible to insert some '+' signs in the string "213478" so that the resulting expression would equal 214?
 - Yes, because 2 + 134 + 78 = 214
- Puzzle 1: is it possible to insert some '+' signs in the strings of digits to obtain the corresponding target number?

digits	target
646805736141599100791159198	472004
6152732017763987430884029264512187586207273294807	560351
48796142803774467559157928	326306
195961521219109124054410617072018922584281838218	7779515