Divide-and-Conquer Algorithms

Antonio Carzaniga

Faculty of Informatics Università della Svizzera italiana

March 6, 2018

Outline

- Merging (or set union)
- Searching
- Sorting
- Multiplying
- Computing the *median*

■ *Input:* sequences $A = \langle a_1, a_2, \dots, a_n \rangle$ and $B = \langle b_1, b_2, \dots, b_m \rangle$ *Output:* a sequence (a set) $X = \langle x_1, x_2, \dots, x_\ell \rangle$ such that

- *Input*: sequences $A = \langle a_1, a_2, \dots, a_n \rangle$ and $B = \langle b_1, b_2, \dots, b_m \rangle$
 - *Output:* a sequence (a set) $X = \langle x_1, x_2, \dots, x_{\ell} \rangle$ such that
 - every element of A appears once in X
 - every element of B appears once in X
 - every element of X appears in A or in B or in both

■ Input: sequences $A = \langle a_1, a_2, \dots, a_n \rangle$ and $B = \langle b_1, b_2, \dots, b_m \rangle$

Output: a sequence (a set) $X = \langle x_1, x_2, \dots, x_\ell \rangle$ such that

- every element of A appears once in X
- every element of B appears once in X
- every element of X appears in A or in B or in both

Example:

$$A = \langle 34, 7, 11, 31, 14, 51, 8, 21, 10 \rangle$$

$$B = \langle 51, 21, 14, 15, 27, 31, 2 \rangle$$

$$X =$$

■ Input: sequences $A = \langle a_1, a_2, \ldots, a_n \rangle$ and $B = \langle b_1, b_2, \ldots, b_m \rangle$

Output: a sequence (a set) $X = \langle x_1, x_2, \dots, x_\ell \rangle$ such that

- every element of A appears once in X
- every element of B appears once in X
- every element of X appears in A or in B or in both
- Example:

$$A = \langle 34, 7, 11, 31, 14, 51, 8, 21, 10 \rangle$$

$$B = \langle 51, 21, 14, 15, 27, 31, 2 \rangle$$

$$X = \langle 34, 7, 11, 31, 14, 51, 8, 21, 10, 15, 27, 2 \rangle$$

A Simple Merge Algorithm

Algorithm strategy

A Simple Merge Algorithm

- Algorithm strategy
 - iterate through every position i, first through A, and then B
 - output a_i if a_i is not in $\langle a_1, a_2, \ldots, a_{i-1} \rangle$
 - ▶ output b_i if b_i is not in $\langle a_1, a_2, \ldots, a_n, b_1, b_2, \ldots b_{i-1} \rangle$

A Simple Merge Algorithm

- Algorithm strategy
 - ▶ iterate through every position *i*, first through *A*, and then *B*
 - output a_i if a_i is not in $\langle a_1, a_2, \ldots, a_{i-1} \rangle$
 - output b_i if b_i is not in $\langle a_1, a_2, \ldots, a_n, b_1, b_2, \ldots b_{i-1} \rangle$

```
MERGESIMPLE(A, B)

1 for i = 1 to length(A)

2 if not FIND(A[1 ... i - 1], A[i])

3 output A[i]

4 for i = 1 to length(B)

5 if not FIND(A, B[i]) and not FIND(B[1 ... i - 1], B[i])

6 output B[i]
```

Complexity

```
MERGESIMPLE(A, B)

1 for i = 1 to length(A)

2 if not FIND(A[1 ... i - 1], A[i])

3 output A[i]

4 for i = 1 to length(B)

5 if not FIND(A, B[i]) and not FIND(B[1 ... i - 1], B[i])

6 output B[i]
```

Complexity

```
MERGESIMPLE (A, B)

1 for i = 1 to length(A)

2 if not FIND (A[1 ... i - 1], A[i])

3 output A[i]

4 for i = 1 to length(B)

5 if not FIND (A, B[i]) and not FIND (B[1 ... i - 1], B[i])

6 output B[i]
```

$$let n = length(A) + length(B)$$

$$T(n) = \sum_{i=1}^{length(A)} T_{FIND}(i) + \sum_{i=1}^{length(B)} \left(T_{FIND}(i) + T_{FIND}(length(A)) \right)$$

Complexity

MERGESIMPLE(
$$A, B$$
)

1 for $i = 1$ to $length(A)$

2 if not FIND($A[1 ... i - 1], A[i]$)

3 output $A[i]$

4 for $i = 1$ to $length(B)$

5 if not FIND($A, B[i]$) and not FIND($B[1 ... i - 1], B[i]$)

6 output $B[i]$

$$let n = length(A) + length(B)$$

$$T(n) = \sum_{i=1}^{length(A)} T_{FIND}(i) + \sum_{i=1}^{length(B)} \left(T_{FIND}(i) + T_{FIND}(length(A)) \right)$$
$$T(n) = \sum_{i=1}^{n} T_{FIND}(i)$$

■ *Input*: a sequence *A* and a value *key*Output: TRUE if *A* contains *key*, or FALSE otherwise

■ *Input*: a sequence *A* and a value *key*Output: TRUE if *A* contains *key*, or FALSE otherwise

■ *Input*: a sequence *A* and a value *key*Output: TRUE if *A* contains *key*, or FALSE otherwise

■ The complexity of **FIND** is

■ *Input*: a sequence *A* and a value *key*Output: TRUE if *A* contains *key*, or FALSE otherwise

■ The complexity of **FIND** is

$$T(n) = O(n)$$

■ *Input*: a sequence *A* and a value *key*Output: TRUE if *A* contains *key*, or FALSE otherwise

■ *Input*: a sequence *A* and a value *key*Output: TRUE if *A* contains *key*, or FALSE otherwise

```
FINDINLIST(A, key)

1  item = first(A)

2  while item ≠ last(A)

3  if value(item) == key

4  return TRUE

5  item = next(item)

6  return FALSE
```

■ *Input:* a sequence *A* and a value *key*Output: TRUE if *A* contains *key*, or FALSE otherwise

```
FINDINLIST(A, key)

1  item = first(A)

2  while item \neq last(A)

3  if value(item) == key

4  return TRUE

5  item = next(item)

6  return FALSE
```

■ The complexity of **FINDINLIST** is

■ *Input:* a sequence *A* and a value *key*Output: TRUE if *A* contains *key*, or FALSE otherwise

```
FINDINLIST(A, key)

1  item = first(A)

2  while item \neq last(A)

3  if value(item) == key

4  return TRUE

5  item = next(item)

6  return FALSE
```

■ The complexity of **FINDINLIST** is

$$T(n) = O(n)$$

```
MERGESIMPLE(A, B)

1 for i = 1 to length(A)

2 if not FIND(A[1 ... i - 1], A[i])

3 output A[i]

4 for i = 1 to length(B)

5 if not FIND(A, B[i]) and not FIND(B[1 ... i - 1], B[i])

6 output B[i]
```

```
MERGESIMPLE(A, B)

1 for i = 1 to length(A)

2 if not FIND(A[1 ... i - 1], A[i])

3 output A[i]

4 for i = 1 to length(B)

5 if not FIND(A, B[i]) and not FIND(B[1 ... i - 1], B[i])

6 output B[i]
```

$$T(n) = \sum_{i=1}^{n} T_{\mathsf{FIND}}(i)$$

MERGESIMPLE(
$$A, B$$
)

1 for $i = 1$ to $length(A)$

2 if not FIND($A[1 ... i - 1], A[i]$)

3 output $A[i]$

4 for $i = 1$ to $length(B)$

5 if not FIND($A, B[i]$) and not FIND($B[1 ... i - 1], B[i]$)

6 output $B[i]$

$$T(n) = \sum_{i=1}^{n} T_{FIND}(i)$$

$$T(n) = \sum_{i=1}^{n} O(i) =$$

MERGESIMPLE(
$$A, B$$
)

1 for $i = 1$ to $length(A)$

2 if not FIND($A[1 ... i - 1], A[i]$)

3 output $A[i]$

4 for $i = 1$ to $length(B)$

5 if not FIND($A, B[i]$) and not FIND($B[1 ... i - 1], B[i]$)

6 output $B[i]$

$$T(n) = \sum_{i=1}^{n} T_{\text{FIND}}(i)$$

$$T(n) = \sum_{i=1}^{n} O(i) = O\left(\frac{n(n+1)}{2}\right) =$$

MERGESIMPLE(
$$A, B$$
)

1 for $i = 1$ to $length(A)$

2 if not FIND($A[1 ... i - 1], A[i]$)

3 output $A[i]$

4 for $i = 1$ to $length(B)$

5 if not FIND($A, B[i]$) and not FIND($B[1 ... i - 1], B[i]$)

6 output $B[i]$

$$T(n) = \sum_{i=1}^{n} T_{\text{FIND}}(i)$$

$$T(n) = \sum_{i=1}^{n} O(i) = O\left(\frac{n(n+1)}{2}\right) = O(n^2)$$

Searching (2)

■ *Input*: a *sorted* sequence *A* and a value *key Output*: TRUE if *A* contains *key*, or FALSE otherwise

Searching (2)

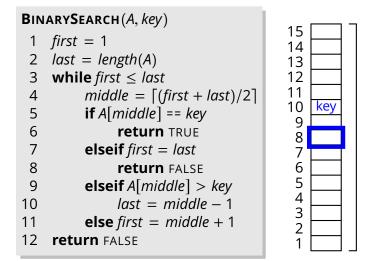
■ *Input:* a *sorted* sequence *A* and a value *key Output:* TRUE if *A* contains *key*, or FALSE otherwise

```
BinarySearch(A, key)
    first = 1
    last = length(A)
     while first \leq last
          middle = \lceil (first + last)/2 \rceil
          if A[middle] == key
 6
               return TRUE
          elseif first = last
               return FALSE
          elseif A[middle] > key
10
               last = middle - 1
          else first = middle + 1
11
     return FALSE
```

```
BinarySearch(A, key)
    first = 1
   last = length(A)
    while first \leq last
          middle = \lceil (first + last)/2 \rceil
          if A[middle] == key
 5
 6
               return TRUE
          elseif first = last
 8
               return FALSE
 9
          elseif A[middle] > key
10
               last = middle - 1
          else first = middle + 1
12
     return FALSE
```

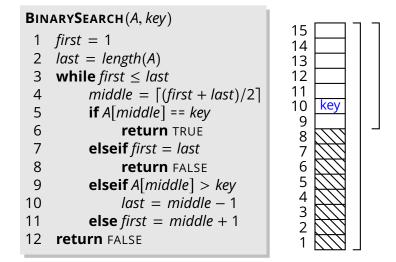
BIN	4.5		
1	first = 1	15 14	
2	last = length(A)	13	
3	while $first \leq last$	12	
4	$middle = \lceil (first + last)/2 \rceil$	11	
5	if A[middle] == key	10	key
6	return TRUE	9	
7	elseif first = last	7	
8	return FALSE	6	
9	elseif A[middle] > key	5	
10	last = middle − 1	4	
11	else $first = middle + 1$	3 2	
12	return FALSE	1	

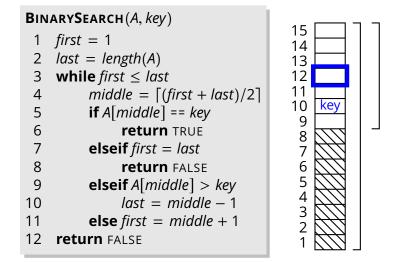
BinarySearch(A, key)	15 -
1 <i>first</i> = 1	15 14
2 last = length(A)	13
3 while $first \leq last$	12
4 $middle = \lceil (first + las) \rceil$	(st)/2 11
5 if A[middle] == key	77 10 <u>key</u> 9
6 return TRUE	8 -
7 elseif first = last	7
8 return FALSE	6
9 elseif $A[middle] > ke$	ey 5
10 $last = middle -$	$\begin{bmatrix} 1 \\ 3 \end{bmatrix} \longrightarrow \begin{bmatrix} 4 \\ 3 \end{bmatrix}$
11 else $first = middle +$	- 1 $\frac{3}{2}$
12 return FALSE	1 🔲]

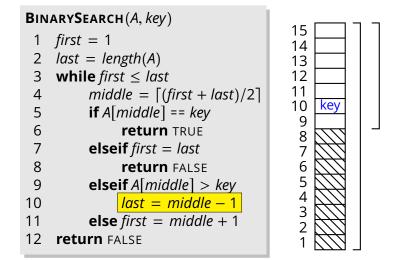


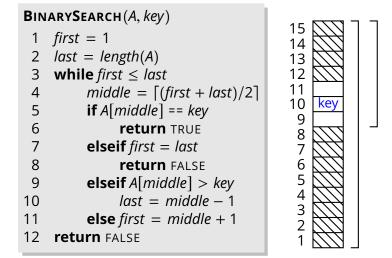
BINAR	RYSEARCH(A, key)	15 [] 7
1 <i>fi</i>	rst = 1	15
2 10	ast = length(A)	13
3 v	vhile first ≤ last	12
4	$middle = \lceil (first + last)/2 \rceil$	11
5	if A[middle] == key	10 <u>key</u>
6	return TRUE	8 -
7	elseif first = last	7
8	return FALSE	6
9	<pre>elseif A[middle] > key</pre>	5
10	last = middle - 1	4
11	else <mark>first = middle + 1</mark>	$\begin{vmatrix} 3 \\ 2 \end{vmatrix} $
12 r	eturn false	1 🔣]

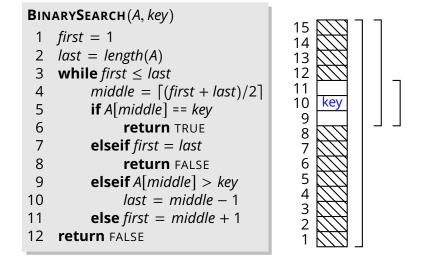
BIN	ARYSEARCH(A, key)	15 🗀 🗆
1	first = 1	14
2	last = length(A)	13
3	while $first \leq last$	12
4	$middle = \lceil (first + last)/2 \rceil$	11
5	if A[middle] == key	10 <u>key</u> 9
6	return TRUE	8 1
7	elseif first = last	7
8	return FALSE	6
9	elseif A[middle] > key	5
10	last = middle − 1	3
11	else $first = middle + 1$	3 1
12	return FALSE	1

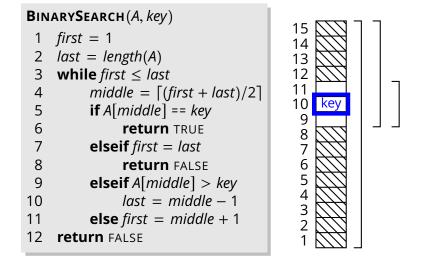


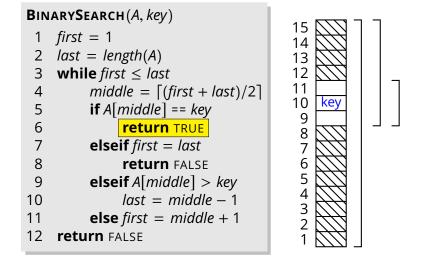


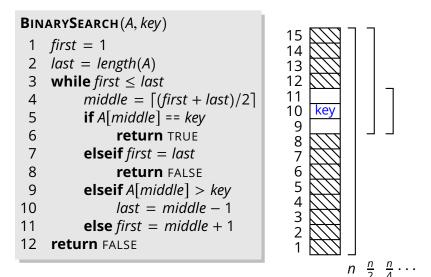


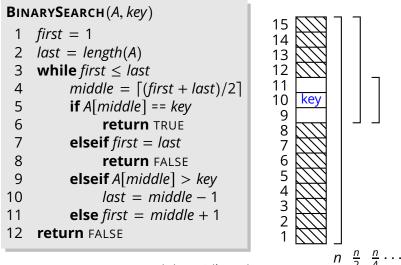












$$T(n) = O(\log n)$$

Merging Sorted Sequences

■ A slightly different problem:

Input: two sorted sequences
$$A = \langle a_1, a_2, \dots, a_n \rangle$$
 and $B = \langle b_1, b_2, \dots, b_m \rangle$, where $a_1 \leq a_2 \leq \dots \leq a_n$ and $b_1 \leq b_2 \leq \dots \leq b_m$

Output: a sequence $X = \langle x_1, x_2, \dots, x_{\ell} \rangle$ such that

- every element of A appears once in X
- every element of B appears once in X
- ▶ every element of *X* appears in *A* or in *B* or in both

```
MERGESIMPLE2(A, B)

1 for i = 1 to length(A)

2 if not BinarySearch(A[1..i-1], A[i])

3 output A[i]

4 for i = 1 to length(B)

5 if not BinarySearch(A, B[i])

6 and not BinarySearch(B[1..i-1], B[i])

7 output B[i]
```

```
MERGESIMPLE2(A, B)

1 for i = 1 to length(A)

2 if not BinarySearch(A[1..i-1], A[i])

3 output A[i]

4 for i = 1 to length(B)

5 if not BinarySearch(A, B[i])

6 and not BinarySearch(B[1..i-1], B[i])

7 output B[i]
```

$$T(n) = \sum_{i=1}^{n} O(\log i) =$$

MERGESIMPLE2(
$$A, B$$
)

1 for $i = 1$ to $length(A)$

2 if not BinarySearch($A[1..i-1], A[i]$)

3 output $A[i]$

4 for $i = 1$ to $length(B)$

5 if not BinarySearch($A, B[i]$)

6 and not BinarySearch($B[1..i-1], B[i]$)

7 output $B[i]$

$$T(n) = \sum_{i=1}^{n} O(\log i) = O(n \log n)$$

MERGESIMPLE2(
$$A, B$$
)

1 for $i = 1$ to $length(A)$

2 if not BinarySearch($A[1 ... i - 1], A[i]$)

3 output $A[i]$

4 for $i = 1$ to $length(B)$

5 if not BinarySearch($A, B[i]$)

6 and not BinarySearch($B[1 ... i - 1], B[i]$)

7 output $B[i]$

$$T(n) = \sum_{i=1}^{n} O(\log i) = O(n \log n)$$

Better than $O(n^2)$, but can we do even better than $O(n \log n)$?

An Even Better Merge Algorithm

■ *Intuition: A* and *B* are sorted e.g.

$$A = \langle 3, 7, 12, 13, 34, 37, 70, 75, 80 \rangle$$

$$B = \langle 1, 5, 6, 7, 34, 35, 40, 41, 43 \rangle$$

An Even Better Merge Algorithm

■ *Intuition: A* and *B* are *sorted* e.g.

$$A = \langle 3, 7, 12, 13, 34, 37, 70, 75, 80 \rangle$$

$$B = \langle 1, 5, 6, 7, 34, 35, 40, 41, 43 \rangle$$

so just like in **BINARYSEARCH** I can avoid looking for an element x if the *first* element I see is y>x

An Even Better Merge Algorithm

Intuition: A and B are sorted e.g.

$$A = \langle 3, 7, 12, 13, 34, 37, 70, 75, 80 \rangle$$

$$B = \langle 1, 5, 6, 7, 34, 35, 40, 41, 43 \rangle$$

so just like in **BINARYSEARCH** I can avoid looking for an element x if the *first* element I see is y > x

- High-level algorithm strategy
 - ► step through every position *i* of *A* and every position *j* of *B*
 - output a_i and advance i if $a_i \le b_j$ or if j is beyond the end of B
 - output b_i and advance j if $a_i \ge b_i$ or if i is beyond the end of A

Α	3	7	12	13	34	37	70	75	80

В	1	5	6	7	34	35	40	41	43
---	---	---	---	---	----	----	----	----	----

$$i = 1$$
A 3 7 12 13 34 37 70 75 80

B 1 5 6 7 34 35 40 41 43

 $i = 1$

$$i = 1$$
A 3 7 12 13 34 37 70 75 80

B 1	5	6	7	34	35	40	41	43
i = 1								

$$i = 1$$
A 3 7 12 13 34 37 70 75 80

B 1 5 6 7 34 35 40 41 43

 $j = 2$

$$i = 1$$
A 3 7 12 13 34 37 70 75 80

B 1 5 6 7 34 35 40 41 43

 $j = 2$

$$i = 2$$
A 3 7 12 13 34 37 70 75 80

B 1 5 6 7 34 35 40 41 43

 $j = 2$

$$i = 2$$
A 3 7 12 13 34 37 70 75 80

B 1 5 6 7 34 35 40 41 43

 $j = 2$

$$i = 2$$
A 3 7 12 13 34 37 70 75 80

B 1 5 6 7 34 35 40 41 43

 $j = 3$

Output: 1 3 5

$$i = 2$$
A 3 7 12 13 34 37 70 75 80

B 1 5 6 7 34 35 40 41 43

 $j = 3$

$$i = 2$$
A 3 7 12 13 34 37 70 75 80

B 1 5 6 7 34 35 40 41 43

 $j = 4$

Output: 1 3 5 6

$$i = 2$$
A 3 7 12 13 34 37 70 75 80

B 1 5 6 7 34 35 40 41 43

 $j = 4$

Output: 1 3 5 6

$$i = 3$$
A 3 7 12 13 34 37 70 75 80

B 1 5 6 7 34 35 40 41 43

 $j = 5$

Output: 1 3 5 6 7

$$i = 3$$
A 3 7 12 13 34 37 70 75 80

B 1 5 6 7 34 35 40 41 43

 $j = 5$

Output: 1 3 5 6 7

$$i = 4$$
A 3 7 12 13 34 37 70 75 80

B 1 5 6 7 34 35 40 41 43

 $j = 5$

Output: 1 3 5 6 7 12

$$i = 4$$
A 3 7 12 13 34 37 70 75 80

B 1 5 6 7 34 35 40 41 43

 $j = 5$

Output: 1 3 5 6 7 12

$$i = 5$$
A 3 7 12 13 34 37 70 75 80

B 1 5 6 7 34 35 40 41 43

 $j = 5$

Output: 1 3 5 6 7 12 13

$$i = 5$$
A 3 7 12 13 34 37 70 75 80

B 1 5 6 7 34 35 40 41 43

 $j = 5$

Output: 1 3 5 6 7 12 13...

MERGE Algorithm (2)

```
i, j = 1
 2 X = \emptyset
   while i \leq length(A) or j \leq length(B)
          if i > length(A)
 5
6
7
              X = X \circ B[j] // appends B[j] to X
              j = j + 1
         elseif i > length(B)
 8
9
              X = X \circ A[i]
               i = i + 1
   elseif A[i] < B[j]
10
11
               X = X \circ A[i]
12
               i = i + 1
13
   else X = X \circ B[j]
14
            j = j + 1
    return X
```

Merge(A, B)

MERGE Algorithm (2)

```
Merge(A, B)
   i, j = 1
 2 X = \emptyset
   while i \leq length(A) or j \leq length(B)
         if i > length(A)
 5
              X = X \circ B[j] // appends B[j] to X
 6
7
              j = j + 1
         elseif i > length(B)
 8
              X = X \circ A[i]
 9
              i = i + 1
10
   elseif A[i] < B[j]
11
              X = X \circ A[i]
12
              i = i + 1
13
   else X = X \circ B[j]
14
           j = j + 1
    return X
```

■ This algorithm is incorrect! (Exercise: fix it)

Complexity of MERGE

```
MERGE(A, B)

1 i, j = 1

2 X = \emptyset

3 while i \le length(A) or j \le length(B)

4 if i \le length(A) and (j > length(B) or A[i] < B[j])

5 X = X \circ A[i]

6 i = i + 1

7 else X = X \circ B[j]

8 j = j + 1

9 return X
```

Complexity of MERGE

```
Merge(A, B)
  i, j = 1
2 X = \emptyset
   while i \leq length(A) or j \leq length(B)
4
         if i \le length(A) and (i > length(B) or A[i] < B[i])
5
              X = X \circ A[i]
6
              i = i + 1
         else X = X \circ B[i]
8
              j = j + 1
9
    return X
```

$$T(n) = \Theta(n)$$

Complexity of MERGE

```
Merge(A, B)
  i, j = 1
2 X = \emptyset
   while i \leq length(A) or j \leq length(B)
         if i \le length(A) and (i > length(B) or A[i] < B[i])
5
              X = X \circ A[i]
6
              i = i + 1
         else X = X \circ B[i]
8
              j = j + 1
9
    return X
```

$$T(n) = \Theta(n)$$

Can we do better?

Complexity of MERGE

```
Merge(A, B)
  i, j = 1
2 X = \emptyset
   while i \leq length(A) or j \leq length(B)
         if i \le length(A) and (i > length(B) or A[i] < B[i])
5
               X = X \circ A[i]
6
               i = i + 1
         else X = X \circ B[i]
8
              j = j + 1
9
    return X
```

$$T(n) = \Theta(n)$$

Can we do better? No!

Complexity of MERGE

```
Merge(A, B)
  i, j = 1
2 X = \emptyset
   while i \leq length(A) or j \leq length(B)
         if i \leq length(A) and (i > length(B) or A[i] < B[i])
5
               X = X \circ A[i]
6
         else X = X \circ B[i]
8
               j = j + 1
9
    return X
```

$$T(n) = \Theta(n)$$

- Can we do better? No!
 - we have to output n = length(A) + length(B) elements

- So now we have a *linear-complexity* merge procedure
 - merges two sorted sequences
 - produces a sorted sequence

- So now we have a *linear-complexity* merge procedure
 - merges two sorted sequences
 - produces a sorted sequence
- Perhaps we could use it to implement a sort algorithm

- So now we have a *linear-complexity* merge procedure
 - merges two sorted sequences
 - produces a sorted sequence
- Perhaps we could use it to implement a sort algorithm
- Idea
 - ▶ use a variant of **Merge** that outputs *all* elements of its input sequences
 - i.e., without removing duplicates
 - ▶ assume that two parts, $A_L \circ A_R = A$, and that A_L and A_R are sorted

- So now we have a *linear-complexity* merge procedure
 - merges two sorted sequences
 - produces a sorted sequence
- Perhaps we could use it to implement a sort algorithm
- Idea
 - ▶ use a variant of **Merge** that outputs *all* elements of its input sequences
 - i.e., without removing duplicates
 - ▶ assume that two parts, $A_L \circ A_R = A$, and that A_L and A_R are sorted
 - use **Merge** to combine A_L and A_R into a sorted sequence

- So now we have a *linear-complexity* merge procedure
 - merges two sorted sequences
 - produces a sorted sequence
- Perhaps we could use it to implement a sort algorithm
- Idea
 - ▶ use a variant of **Merge** that outputs *all* elements of its input sequences
 - i.e., without removing duplicates
 - ▶ assume that two parts, $A_L \circ A_R = A$, and that A_L and A_R are sorted
 - use **Merge** to combine A_L and A_R into a sorted sequence
 - this suggests a recursive algorithm


```
MERGESORT(A)

1 if length(A) == 1

2 return A

3 m = \lfloor length(A)/2 \rfloor

4 A_L = MERGESORT(A[1..m])

5 A_R = MERGESORT(A[m+1..length(A)])

6 return MERGE(A_L, A_R)
```

```
MERGESORT(A)

1 if length(A) == 1

2 return A

3 m = \lfloor length(A)/2 \rfloor

4 A_L = MERGESORT(A[1..m])

5 A_R = MERGESORT(A[m+1..length(A)])

6 return MERGE(A_L, A_R)
```

■ The complexity of **MergeSort** is

```
MERGESORT(A)

1 if length(A) == 1

2 return A

3 m = \lfloor length(A)/2 \rfloor

4 A_L = MergeSort(A[1..m])

5 A_R = MergeSort(A[m + 1..length(A)])

6 return Merge(A_L, A_R)
```

■ The complexity of **MergeSort** is

$$T(n) = 2T(n/2) + O(n)$$

```
MERGESORT(A)

1 if length(A) == 1

2 return A

3 m = \lfloor length(A)/2 \rfloor

4 A_L = MERGESORT(A[1..m])

5 A_R = MERGESORT(A[m+1..length(A)])

6 return MERGE(A_L, A_R)
```

■ The complexity of **MergeSort** is

$$T(n) = 2T(n/2) + O(n)$$

$$T(n) = O(n \log n)$$

Divide and Conquer

■ MergeSort exemplifies the *divide and conquer* strategy

Divide and Conquer

- MergeSort exemplifies the *divide and conquer* strategy
- General strategy: given a problem P on input data A
 - ▶ **divide** the input A into parts $A_1, A_2, ..., A_k$ with $|A_i| < |A| = n$
 - ▶ *solve* problem *P* for the individual *k* parts
 - combine the partial solutions to obtain the solution for A

Divide and Conquer

- MERGESORT exemplifies the *divide and conquer* strategy
- General strategy: given a problem P on input data A
 - **divide** the input A into parts A_1, A_2, \ldots, A_k with $|A_i| < |A| = n$
 - ▶ **solve** problem *P* for the individual *k* parts
 - combine the partial solutions to obtain the solution for A
- Complexity analysis

$$T(n) = T_{\text{divide}} + \sum_{i=1}^{\kappa} T(|A_i|) + T_{\text{combine}}$$

we will analyze this formula another time...

```
MERGER(A, B)
1    if length(A) == 0
2        return B
3    if length(B) == 0
4        return A
5    if A[1] < B[1]
6        return A[1] \circ MERGER(A[2..length(A)], B)
7    else return B[1] \circ MERGER(A, B[2..length(B)])</pre>
```

Again, this algorithm is a bit incorrect (Exercise: Fix it.)

```
MERGER(A, B)

1  if length(A) == 0
2  return B
3  if length(B) == 0
4  return A
5  if A[1] < B[1]
6  return A[1] ○ MERGER(A[2..length(A)], B)
7  else return B[1] ○ MERGER(A, B[2..length(B)])
```

- Again, this algorithm is a bit incorrect (Exercise: Fix it.)
- The complexity of **MergeR** is

```
MERGER(A, B)

1  if length(A) == 0
2  return B
3  if length(B) == 0
4  return A
5  if A[1] < B[1]
6  return A[1] ○ MERGER(A[2..length(A)], B)
7  else return B[1] ○ MERGER(A, B[2..length(B)])
```

- Again, this algorithm is a bit incorrect (Exercise: Fix it.)
- The complexity of **MergeR** is

$$T(n) = C_1 + T(n-1)$$

```
MERGER(A, B)

1  if length(A) == 0
2  return B
3  if length(B) == 0
4  return A
5  if A[1] < B[1]
6  return A[1] ○ MERGER(A[2..length(A)], B)
7  else return B[1] ○ MERGER(A, B[2..length(B)])
```

- Again, this algorithm is a bit incorrect (Exercise: Fix it.)
- The complexity of **MergeR** is

$$T(n) = C_1 + T(n-1) = C_1 n$$

- Again, this algorithm is a bit incorrect (Exercise: Fix it.)
- The complexity of **MergeR** is

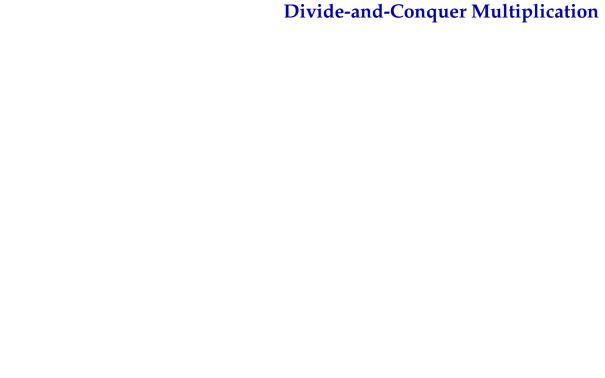
$$T(n) = C_1 + T(n-1) = C_1 n = O(n)$$

Can we do better?

- Again, this algorithm is a bit incorrect (Exercise: Fix it.)
- The complexity of **MergeR** is

$$T(n) = C_1 + T(n-1) = C_1 n = O(n)$$

Can we do better? No! (We knew that already)



■ Going back to multiplication...

■ Going back to multiplication...

$$=$$
 X_L X_R and Y $=$ Y_L Y_R

■ Going back to multiplication...

$$x = X_L$$
 X_R and $y = Y_L$ Y_R

which means $x = 2^{\ell/2}x_L + x_R$ and $y = 2^{\ell/2}y_L + y_R$, so...

$$xy = (2^{\ell/2}x_L + x_R)(2^{\ell/2}y_L + y_R)$$

= $2^{\ell}x_Ly_L + 2^{\ell/2}(x_Ly_R + x_Ry_L) + x_Ry_R$

we reduced the problem of multiplying two numbers of ℓ bits into the problem of multiplying *four* numbers of $\ell/2$ bits...

■ Going back to multiplication...

$$x = X_L$$
 X_R and $y = Y_L$ Y_R

which means $x = 2^{\ell/2}x_L + x_R$ and $y = 2^{\ell/2}y_L + y_R$, so...

$$xy = (2^{\ell/2}x_L + x_R)(2^{\ell/2}y_L + y_R)$$

= $2^{\ell}x_Ly_L + 2^{\ell/2}(x_Ly_R + x_Ry_L) + x_Ry_R$

we reduced the problem of multiplying two numbers of ℓ bits into the problem of multiplying *four* numbers of $\ell/2$ bits...

$$T(\ell) = 4T(\ell/2) + O(\ell)$$

■ Going back to multiplication...

$$x = X_L X_R$$
 and $y = Y_L Y_R$

which means $x = 2^{\ell/2}x_L + x_R$ and $y = 2^{\ell/2}y_L + y_R$, so...

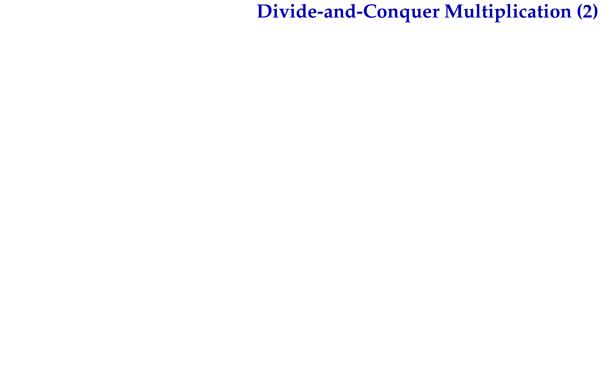
$$xy = (2^{\ell/2}x_L + x_R)(2^{\ell/2}y_L + y_R)$$

= $2^{\ell}x_Ly_L + 2^{\ell/2}(x_Ly_R + x_Ry_L) + x_Ry_R$

we reduced the problem of multiplying two numbers of ℓ bits into the problem of multiplying *four* numbers of $\ell/2$ bits...

$$T(\ell) = 4T(\ell/2) + O(\ell)$$

$$T(\boldsymbol{\ell}) = \Theta(\boldsymbol{\ell}^2)$$



Again, we have

$$xy = (2^{\ell/2}x_L + x_R)(2^{\ell/2}y_L + y_R)$$

= $2^{\ell}x_Iy_I + 2^{\ell/2}(x_Iy_R + x_Ry_I) + x_Ry_R$

Again, we have

$$xy = (2^{\ell/2}x_L + x_R)(2^{\ell/2}y_L + y_R)$$

= $2^{\ell}x_Ly_L + 2^{\ell/2}(x_Ly_R + x_Ry_L) + x_Ry_R$

but notice that $x_L y_R + x_R y_L = (x_L + x_R)(y_R + y_L) - x_L y_L - x_R y_R$, so

Again, we have

$$xy = (2^{\ell/2}x_L + x_R)(2^{\ell/2}y_L + y_R)$$

$$= 2^{\ell}x_Ly_L + 2^{\ell/2}(x_Ly_R + x_Ry_L) + x_Ry_R$$
but notice that $x_Ly_R + x_Ry_L = (x_L + x_R)(y_R + y_L) - x_Ly_L - x_Ry_R$, so
$$xy = 2^{\ell}x_Ly_L + 2^{\ell/2}((x_L + x_R)(y_R + y_L) - x_Ly_L - x_Ry_R) + x_Ry_R$$

Again, we have

$$xy = (2^{\ell/2}x_L + x_R)(2^{\ell/2}y_L + y_R)$$

= $2^{\ell}x_Ly_L + 2^{\ell/2}(x_Ly_R + x_Ry_L) + x_Ry_R$

but notice that $x_L y_R + x_R y_L = (x_L + x_R)(y_R + y_L) - x_L y_L - x_R y_R$, so

$$xy = 2^{\ell}x_{L}y_{L} + 2^{\ell/2}((x_{L} + x_{R})(y_{R} + y_{L}) - x_{L}y_{L} - x_{R}y_{R}) + x_{R}y_{R}$$

Only 3 multiplications: $x_L y_L$, $(x_L + x_R)(y_R + y_L)$, and $x_R y_R$

Again, we have

$$xy = (2^{\ell/2}x_L + x_R)(2^{\ell/2}y_L + y_R)$$
$$= 2^{\ell}x_Ly_L + 2^{\ell/2}(x_Ly_R + x_Ry_L) + x_Ry_R$$

but notice that $x_L y_R + x_R y_L = (x_L + x_R)(y_R + y_L) - x_L y_L - x_R y_R$, so

$$xy = 2^{\ell} x_L y_L + 2^{\ell/2} ((x_L + x_R)(y_R + y_L) - x_L y_L - x_R y_R) + x_R y_R$$

Only 3 multiplications: $x_L y_L$, $(x_L + x_R)(y_R + y_L)$, and $x_R y_R$

$$T(\ell) = \frac{3}{4}T(\ell/2) + O(\ell)$$

Again, we have

$$xy = (2^{\ell/2}x_L + x_R)(2^{\ell/2}y_L + y_R)$$

= $2^{\ell}x_Ly_L + 2^{\ell/2}(x_Ly_R + x_Ry_L) + x_Ry_R$

but notice that $x_L y_R + x_R y_L = (x_L + x_R)(y_R + y_L) - x_L y_L - x_R y_R$, so

$$xy = 2^{\ell}x_{L}y_{L} + 2^{\ell/2}((x_{L} + x_{R})(y_{R} + y_{L}) - x_{L}y_{L} - x_{R}y_{R}) + x_{R}y_{R}$$

Only 3 multiplications: $x_L y_L$, $(x_L + x_R)(y_R + y_L)$, and $x_R y_R$

$$T(\ell) = 3T(\ell/2) + O(\ell)$$

which, as we will see, leads to a much better complexity

$$T(\boldsymbol{\ell}) = O(\boldsymbol{\ell}^{\log_2 3}) = O(\boldsymbol{\ell}^{1.59})$$

■ The *median* of a sequence A is a value $m \in A$ such that half the values in A are smaller than m and half are bigger than m

- The *median* of a sequence A is a value $m \in A$ such that half the values in A are smaller than m and half are bigger than m
 - e.g., what is the median of A = (2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1)?

- The *median* of a sequence A is a value $m \in A$ such that half the values in A are smaller than m and half are bigger than m
 - e.g., what is the median of $A = \langle 2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1 \rangle$?
- Idea: first sort, then pick the element in the middle

SIMPLEMEDIAN(A)

- 1 X = MergeSort(A)
- 2 **return** $X[\lfloor length(A)/2 \rfloor]$

- The *median* of a sequence A is a value $m \in A$ such that half the values in A are smaller than m and half are bigger than m
 - e.g., what is the median of $A = \langle 2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1 \rangle$?
- Idea: first sort, then pick the element in the middle

SIMPLEMEDIAN(A)

- 1 X = MergeSort(A)
- 2 **return** $X[\lfloor length(A)/2 \rfloor]$

Is it correct?

- The *median* of a sequence A is a value $m \in A$ such that half the values in A are smaller than m and half are bigger than m
 - e.g., what is the median of $A = \langle 2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1 \rangle$?
- Idea: first sort, then pick the element in the middle

SIMPLEMEDIAN(A) 1 X = MergeSort(A)

2 return X[[length(A)/2]]

Is it correct? Yes

- The *median* of a sequence A is a value $m \in A$ such that half the values in A are smaller than m and half are bigger than m
 - e.g., what is the median of $A = \langle 2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1 \rangle$?
- Idea: first sort, then pick the element in the middle

SIMPLEMEDIAN(A)

- 1 X = MergeSort(A)
- 2 **return** $X[\lfloor length(A)/2 \rfloor]$

- Is it correct? Yes
- How long does it take?

- The *median* of a sequence A is a value $m \in A$ such that half the values in A are smaller than m and half are bigger than m
 - e.g., what is the median of $A = \langle 2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1 \rangle$?
- Idea: first sort, then pick the element in the middle

```
SIMPLEMEDIAN(A)

1 X = MergeSort(A)

2 return X[|length(A)/2|]
```

- Is it correct? Yes
- How long does it take? $T(n) = T_{MergeSort}(n) = O(n \log n)$

- The *median* of a sequence A is a value $m \in A$ such that half the values in A are smaller than m and half are bigger than m
 - e.g., what is the median of $A = \langle 2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1 \rangle$?
- Idea: first sort, then pick the element in the middle

```
SIMPLEMEDIAN(A)

1 X = MERGESORT(A)

2 return X[\lfloor length(A)/2 \rfloor]
```

- Is it correct? Yes
- How long does it take? $T(n) = T_{MergeSort}(n) = O(n \log n)$
- Can we do better?

- The *median* of a sequence A is a value $m \in A$ such that half the values in A are smaller than m and half are bigger than m
 - e.g., what is the median of $A = \langle 2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1 \rangle$?
- Idea: first sort, then pick the element in the middle

```
SIMPLEMEDIAN(A)

1 X = MERGESORT(A)

2 return X[\lfloor length(A)/2 \rfloor]
```

- Is it correct? Yes
- How long does it take? $T(n) = T_{MergeSort}(n) = O(n \log n)$
- Can we do better? Let's try divide-and-conquer...

■ The *median* of a sequence A is a value $m \in A$ such that half the values in A are less than or equal to m

- The *median* of a sequence A is a value $m \in A$ such that half the values in A are less than or equal to m
- Generalizating, the *k-smallest* element of a sequence A is a value $v \in A$ such that exactly k elements of A are less than or equal to v

- The *median* of a sequence A is a value $m \in A$ such that half the values in A are less than or equal to m
- Generalizating, the *k-smallest* element of a sequence *A* is a value $v \in A$ such that exactly *k* elements of *A* are less than or equal to v E.g.,
 - for k = 1, the minimum of A

- The *median* of a sequence A is a value $m \in A$ such that half the values in A are less than or equal to m
- Generalizating, the *k-smallest* element of a sequence A is a value $v \in A$ such that exactly k elements of A are less than or equal to v E.g.,
 - for k = 1, the minimum of A
 - for $k = \lfloor |A|/2 \rfloor$, the median of A

- The *median* of a sequence A is a value $m \in A$ such that half the values in A are less than or equal to m
- Generalizating, the *k-smallest* element of a sequence A is a value $v \in A$ such that exactly k elements of A are less than or equal to v E.g.,
 - for k = 1, the minimum of A
 - for $k = \lfloor |A|/2 \rfloor$, the median of A
 - what is the 6th smallest element of A = (2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1)?

- The *median* of a sequence A is a value $m \in A$ such that half the values in A are less than or equal to m
- Generalizating, the *k-smallest* element of a sequence A is a value $v \in A$ such that exactly k elements of A are less than or equal to v E.g.,
 - for k = 1, the minimum of A
 - for $k = \lfloor |A|/2 \rfloor$, the median of A
 - what is the *6th smallest* element of $A = \langle 2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1 \rangle$? the 6th smallest element of A—a.k.a. select(A, 6)—is 8

- Idea: we split the sequence A in three parts based on a chosen value $v \in A$
 - \triangleright A_L contains the set of elements that are *less than v*
 - $ightharpoonup A_{v}$ contains the set of elements that are *equal to v*
 - $ightharpoonup A_R$ contains the set of elements that are greater then v

- Idea: we split the sequence A in three parts based on a chosen value $v \in A$
 - ► A_L contains the set of elements that are *less than v*
 - $ightharpoonup A_v$ contains the set of elements that are equal to v
 - $ightharpoonup A_R$ contains the set of elements that are greater then v

E.g., $A = \langle 2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1 \rangle$ and we must compute the 7th smallest value in A

- Idea: we split the sequence A in three parts based on a chosen value $v \in A$
 - ► A_L contains the set of elements that are *less than v*
 - $ightharpoonup A_v$ contains the set of elements that are equal to v
 - $ightharpoonup A_R$ contains the set of elements that are greater then v

E.g., $A = \langle 2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1 \rangle$ and we must compute the 7th smallest value in A we pick a splitting value, say v = 5

- Idea: we split the sequence A in three parts based on a chosen value $v \in A$
 - ► A_L contains the set of elements that are *less than v*
 - $ightharpoonup A_v$ contains the set of elements that are equal to v
 - $ightharpoonup A_R$ contains the set of elements that are greater then v

E.g., $A = \langle 2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1 \rangle$ and we must compute the 7th smallest value in A we pick a splitting value, say v = 5

$$A_L = \langle 2, 4, 1 \rangle$$

- Idea: we split the sequence A in three parts based on a chosen value $v \in A$
 - ► A_L contains the set of elements that are *less than v*
 - A_v contains the set of elements that are equal to v
 - $ightharpoonup A_R$ contains the set of elements that are greater then v

E.g., $A = \langle 2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1 \rangle$ and we must compute the 7th smallest value in A we pick a splitting value, say v = 5

$$A_L = \langle 2, 4, 1 \rangle$$
 $A_V = \langle 5, 5 \rangle$

- Idea: we split the sequence A in three parts based on a chosen value $v \in A$
 - ► A_L contains the set of elements that are *less than v*
 - A_v contains the set of elements that are equal to v
 - $ightharpoonup A_R$ contains the set of elements that are greater then v

E.g.,
$$A = \langle 2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1 \rangle$$
 and we must compute the 7th smallest value in A we pick a splitting value, say $v = 5$

$$A_L = \langle 2, 4, 1 \rangle$$
 $A_V = \langle 5, 5 \rangle$ $A_R = \langle 36, 21, 8, 13, 11, 20 \rangle$

- Idea: we split the sequence A in three parts based on a chosen value $v \in A$
 - ► A_L contains the set of elements that are *less than v*
 - $ightharpoonup A_v$ contains the set of elements that are equal to v
 - $ightharpoonup A_R$ contains the set of elements that are greater then v

E.g., $A = \langle 2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1 \rangle$ and we must compute the 7th smallest value in A we pick a splitting value, say v = 5

$$A_L = \langle 2, 4, 1 \rangle$$
 $A_V = \langle 5, 5 \rangle$ $A_R = \langle 36, 21, 8, 13, 11, 20 \rangle$

Now, where is the 7th smallest value of *A*?

- Idea: we split the sequence A in three parts based on a chosen value $v \in A$
 - ► A_L contains the set of elements that are *less than v*
 - $ightharpoonup A_{v}$ contains the set of elements that are *equal to v*
 - $ightharpoonup A_R$ contains the set of elements that are greater then v

E.g., $A = \langle 2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1 \rangle$ and we must compute the 7th smallest value in A we pick a splitting value, say v = 5

$$A_L = \langle 2, 4, 1 \rangle$$
 $A_V = \langle 5, 5 \rangle$ $A_R = \langle 36, 21, 8, 13, 11, 20 \rangle$

Now, where is the 7th smallest value of A? It is the 2nd smallest value of A_R

$$select(A, k) = \begin{cases} select(A_{L}, k) & \text{if } k \leq |A_{L}| \\ v & \text{if } |A_{L}| < k \leq |A_{L}| + |A_{V}| \\ select(A_{R}, k - |A_{L}| - |A_{V}|) & \text{if } k > |A_{L}| + |A_{V}| \end{cases}$$

We use select(A, k) to denote the k-smallest element of A

$$select(A, k) = \begin{cases} select(A_{L}, k) & \text{if } k \leq |A_{L}| \\ v & \text{if } |A_{L}| < k \leq |A_{L}| + |A_{V}| \\ select(A_{R}, k - |A_{L}| - |A_{V}|) & \text{if } k > |A_{L}| + |A_{V}| \end{cases}$$

Computing A_L , A_V , and A_R takes O(n) steps

$$select(A, k) = \begin{cases} select(A_{L}, k) & \text{if } k \leq |A_{L}| \\ v & \text{if } |A_{L}| < k \leq |A_{L}| + |A_{V}| \\ select(A_{R}, k - |A_{L}| - |A_{V}|) & \text{if } k > |A_{L}| + |A_{V}| \end{cases}$$

- Computing A_L , A_V , and A_R takes O(n) steps
- How do we pick *v*?

$$select(A, k) = \begin{cases} select(A_{L}, k) & \text{if } k \leq |A_{L}| \\ v & \text{if } |A_{L}| < k \leq |A_{L}| + |A_{V}| \\ select(A_{R}, k - |A_{L}| - |A_{V}|) & \text{if } k > |A_{L}| + |A_{V}| \end{cases}$$

- Computing A_L , A_v , and A_R takes O(n) steps
- How do we pick v?
- Ideally, we should pick v so as to obtain $|A_L| \approx |A_R| \approx |A|/2$
 - ▶ so, ideally we should pick v = median(A), but...

$$select(A, k) = \begin{cases} select(A_{L}, k) & \text{if } k \leq |A_{L}| \\ v & \text{if } |A_{L}| < k \leq |A_{L}| + |A_{V}| \\ select(A_{R}, k - |A_{L}| - |A_{V}|) & \text{if } k > |A_{L}| + |A_{V}| \end{cases}$$

- Computing A_L , A_V , and A_R takes O(n) steps
- How do we pick *v*?
- Ideally, we should pick ν so as to obtain $|A_L| \approx |A_R| \approx |A|/2$
 - ▶ so, ideally we should pick v = median(A), but...
- We pick a random element of A

Selection Algorithm

```
SELECTION(A, k)
 1 v = A[random(1...|A|)]
 A_{I}, A_{V}, A_{R} = \emptyset
 3 for i = 1 to |A|
         if A[i] < v
   A_i = A_i \cup A[i]
   elseif A[i] == v
              A_{\nu} = A_{\nu} \cup A[i]
8 else A_R = A_R \cup A[i]
9 if k \leq |A_L|
10
          return Selection (A_L, k)
    elseif k > |A_L| + |A_V|
12
          return Selection (A_R, k - |A_I| - |A_V|)
    else return v
```