B-Trees

Antonio Carzaniga

Faculty of Informatics Università della Svizzera italiana

Apr 24, 2018

Outline

- Search in secondary storage
- B-Trees
 - properties
 - search
 - ► insertion

Complexity Model

- Basic assumption so far: *data structures fit completely in main memory (RAM)*
 - all basic operations have the same cost
 - even this is a rough approximation, since the main-memory system is not at all "flat"

Complexity Model

- Basic assumption so far: *data structures fit completely in main memory (RAM)*
 - all basic operations have the same cost
 - even this is a rough approximation, since the main-memory system is not at all "flat"
- However, some applications require more storage than what fits in main memory
 - we must use data structures that reside in secondary storage (i.e., disk)

Complexity Model

- Basic assumption so far: *data structures fit completely in main memory (RAM)*
 - all basic operations have the same cost
 - even this is a rough approximation, since the main-memory system is not at all "flat"
- However, some applications require more storage than what fits in main memory
 - we must use data structures that reside in secondary storage (i.e., disk)

Disk is 10,000–100,000 times slower than RAM

Memory access/transfer	CPU cycles (≈ 1 ns)
Register	1

Memory access/transfer	CPU cycles (\approx 1ns)	
Register	1	
L1 cache	4	
L2 cache	10	
Local L3 cache	40-75	
Remote L3 cache	100-300	
Local DRAM	60	
Remote DRAM (main memory)	100	

memory access/transfer	CPO cycles (≈ Ths)
Register	1
L1 cache	4
L2 cache	10
Local L3 cache	40-75
Remote L3 cache	100–300
Local DRAM	60
Remote DRAM (main memory)	100
SSD seek	20,000

CDIL evelos (~ 1nc)

Mamary accorditransfor

Memory access/transfer	CPU cycles (≈ 1ns)
Register	1
L1 cache	4
L2 cache	10
Local L3 cache	40-75
Remote L3 cache	100–300
Local DRAM	60
Remote DRAM (main memory)	100
SSD seek	20,000
Send 2K bytes over 1 Gbps network	20,000
Read 1 MB sequentially from memory	250,000
Round trip within a datacenter	500,000

CDII avalog (s. 1pg)

Memory access/transfer	CPU cycles (≈ 1 ns)
Register	1
L1 cache	4
L2 cache	10
Local L3 cache	40-75
Remote L3 cache	100–300
Local DRAM	60
Remote DRAM (main memory)	100
SSD seek	20,000
Send 2K bytes over 1 Gbps network	20,000
Read 1 MB sequentially from memory	250,000
Round trip within a datacenter	500,000
HDD seek	10,000,000
Read 1 MB sequentially from network	10,000,000
Read 1 MB sequentially from disk	30,000,000
Round-trip time USA–Europe	150,000,000

■ Let *x* be a pointer to some (possibly complex) object

- Let x be a pointer to some (possibly complex) object
- When the object is in memory, *x* can be used directly as a reference to the object
 - e.g., $\ell = x$. size or x. root = y

- Let *x* be a pointer to some (possibly complex) object
- When the object is in memory, *x* can be used directly as a reference to the object
 - e.g., $\ell = x$. size or x. root = y
- When the object is on disk, we must first perform a disk-read operation

 DISK-READ(x) reads the object into memory, allowing us to refer to it (and modify it) through x

- Let *x* be a pointer to some (possibly complex) object
- When the object is in memory, *x* can be used directly as a reference to the object
 - e.g., $\ell = x$. size or x. root = y
- When the object is on disk, we must first perform a disk-read operation

 DISK-READ(x) reads the object into memory, allowing us to refer to it (and modify it) through x
- Any changes to the object in memory must be eventually saved onto the disk **DISK-WRITE**(*x*) writes the object onto the disk (if the object was modified)

Binary Trees on Disk

Binary Trees on Disk

```
ITERATIVE-TREE-SEARCH (T, k)
   x = T.root
2 while x \neq NIL
        DISK-READ(X)
        if k == x.key
             return x
6
        elseif k < x. key
             x = x.left
        else x = x. right
   return x
```

cost

```
ITERATIVE-TREE-SEARCH (T, k)
   x = T.root
  while x \neq NIL
        DISK-READ(X)
        if k == x.key
             return x
6
        elseif k < x. key
             x = x.left
        else x = x. right
   return x
```

Binary Trees on Disk

Iterative-Tree-Search(T,k)		cost
1	x = T.root	С
2	while $x \neq NIL$	С
3	DISK-READ(X)	100000 <i>c</i>
4	if <i>k</i> == <i>x</i> . <i>key</i>	С
5	return x	С
6	elseif $k < x$. key	С
7	x = x.left	С
8	else x = x.right	С
9	return x	С

Basic Intuition

- Assume we store the nodes of a search tree on disk
 - 1. node accesses should be reduced to a minimum
 - 2. spending more than a few basic operations for each node is not a problem

Basic Intuition

- Assume we store the nodes of a search tree on disk
 - 1. node accesses should be reduced to a minimum
 - 2. spending more than a few basic operations for each node is not a problem
- Rationale
 - basic in-memory operations are much cheaper
 - the bottleneck is with node accesses, which involve DISK-READ and DISK-WRITE operations

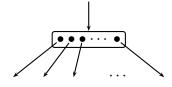
Idea

- In a balanced binary tree, n keys require a tree of height $h = \lfloor \log_2 n \rfloor$
 - ightharpoonup all the important operations require access to O(h) nodes
 - each one accounting for *one or very few* basic operations

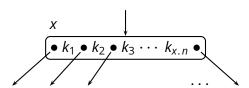
- In a balanced binary tree, n keys require a tree of height $h = \lfloor \log_2 n \rfloor$
 - ightharpoonup all the important operations require access to O(h) nodes
 - each one accounting for one or very few basic operations
- Idea: store several keys and pointers to children nodes in a single node

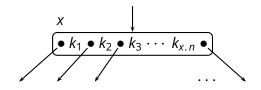
- In a balanced binary tree, n keys require a tree of height $h = \lfloor \log_2 n \rfloor$
 - ightharpoonup all the important operations require access to O(h) nodes
 - each one accounting for one or very few basic operations
- Idea: store several keys and pointers to children nodes in a single node
 - ▶ in practice we **increase the degree** (or branching factor) of each node up to d > 2, so $h = \lfloor \log_d n \rfloor$
 - ▶ in practice *d* can be as high as a few thousands

- In a balanced binary tree, n keys require a tree of height $h = \lfloor \log_2 n \rfloor$
 - ightharpoonup all the important operations require access to O(h) nodes
 - each one accounting for one or very few basic operations
- **Idea:** store several keys and pointers to children nodes in a single node
 - ▶ in practice we **increase the degree** (or branching factor) of each node up to d > 2, so $h = \lfloor \log_d n \rfloor$
 - ▶ in practice *d* can be as high as a few thousands

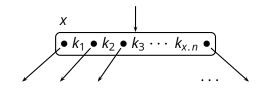


E.g., if d = 1000, then **only three accesses** (h = 2) cover **up to one billion keys**

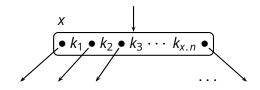




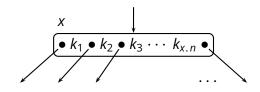
- Every node *x* has the following fields
 - ► *x.n* is the number of keys stored at each node



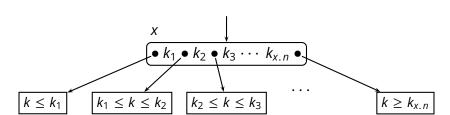
- Every node *x* has the following fields
 - ► *x.n* is the number of keys stored at each node
 - \blacktriangleright x.key[1] \le x.key[2] \le ...x.key[x.n] are the x.n keys stored in nondecreasing order

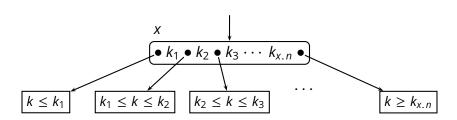


- Every node *x* has the following fields
 - x.n is the number of keys stored at each node
 - ▶ $x.key[1] \le x.key[2] \le ...x.key[x.n]$ are the x.n keys stored in nondecreasing order
 - \blacktriangleright x.leaf is a Boolean flag that is TRUE if x is a leaf node or FALSE if x is an internal node



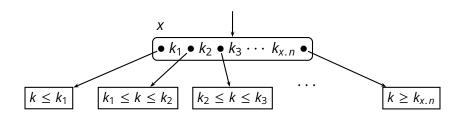
- Every node *x* has the following fields
 - ► *x.n* is the number of keys stored at each node
 - \blacktriangleright x.key[1] \le x.key[2] \le ...x.key[x.n] are the x.n keys stored in nondecreasing order
 - \blacktriangleright x.leaf is a Boolean flag that is TRUE if x is a leaf node or FALSE if x is an internal node
 - x.c[1], x.c[2], ..., x.c[x.n+1] are the x.n+1 pointers to its children, if x is an internal node





■ The keys x. key[i] delimit the ranges of keys stored in each subtree

Definition of a B-Tree (2)



- The keys x. key[i] delimit the ranges of keys stored in each subtree
 - $x.c[1] \longrightarrow \text{subtree containing keys } k \le x.key[1]$
 - $x.c[2] \longrightarrow \text{subtree containing keys } k, x. key[1] \le k \le x. key[2]$
 - $x.c[3] \longrightarrow \text{subtree containing keys } k, x.key[2] \le k \le x.key[3]$
 - $x.c[x.n+1] \longrightarrow \text{subtree containing keys } k, k \ge x.key[x.n]$

Definition of a B-Tree (3)

■ All leaves have the same depth

Definition of a B-Tree (3)

- All leaves have the same depth
- Let $t \ge 2$ be the **minimum degree** of the B-tree
 - every node other than the root must have *at least* t-1 *keys*
 - ▶ every node must contain at most 2t 1 keys
 - ▶ a node is *full* when it contains exactly 2t 1 keys
 - ▶ a full node has 2t children

Example



Search in B-Trees

```
B-Tree-Search(x, k)
1 i = 1
2 while i \le x . n and k > x . key[i]
        i = i + 1
4 if i \le x \cdot n and k == x \cdot key[i]
         return (x, i)
  if x.leaf
         return NIL
   else Disk-Read(x.c[i])
         return B-Tree-Search(x.c[i], k)
```


■ **Theorem:** the height of a B-tree containing $n \ge 1$ keys and with a minimum degree $t \ge 2$ is

$$h \le \log_t \frac{n+1}{2}$$

■ **Theorem:** the height of a B-tree containing $n \ge 1$ keys and with a minimum degree $t \ge 2$ is

$$h \le \log_t \frac{n+1}{2}$$

Proof:

ho $n \ge 1$, so the root has at least one key (and therefore two children)

■ **Theorem:** the height of a B-tree containing $n \ge 1$ keys and with a minimum degree $t \ge 2$ is

$$h \le \log_t \frac{n+1}{2}$$

- ho 1, so the root has at least one key (and therefore two children)
- every other node has at least t children

■ **Theorem:** the height of a B-tree containing $n \ge 1$ keys and with a minimum degree $t \ge 2$ is

$$h \le \log_t \frac{n+1}{2}$$

- ▶ $n \ge 1$, so the root has at least one key (and therefore two children)
- every other node has at least t children
- ▶ in the worst case, there are two subtrees (of the root) each one containing a total of (n-1)/2 keys, and each one consisting of t-degree nodes, with each node containing t-1 keys

■ **Theorem:** the height of a B-tree containing $n \ge 1$ keys and with a minimum degree $t \ge 2$ is

$$h \le \log_t \frac{n+1}{2}$$

- $n \ge 1$, so the root has at least one key (and therefore two children)
- every other node has at least t children
- ▶ in the worst case, there are two subtrees (of the root) each one containing a total of (n-1)/2 keys, and each one consisting of t-degree nodes, with each node containing t-1 keys
- each subtree contains $1 + t + t^2 + \cdots + t^{h-1}$ nodes, each one containing t 1 keys

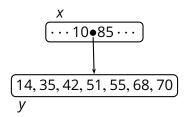
■ **Theorem:** the height of a B-tree containing $n \ge 1$ keys and with a minimum degree $t \ge 2$ is

$$h \le \log_t \frac{n+1}{2}$$

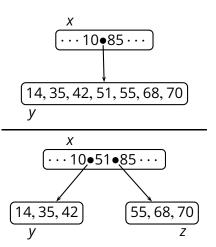
- $n \ge 1$, so the root has at least one key (and therefore two children)
- every other node has at least t children
- ▶ in the worst case, there are two subtrees (of the root) each one containing a total of (n-1)/2 keys, and each one consisting of t-degree nodes, with each node containing t-1 keys
- each subtree contains $1 + t + t^2 + \cdots + t^{h-1}$ nodes, each one containing t 1 keys, so

$$n \ge 1 + 2(t^h - 1)$$

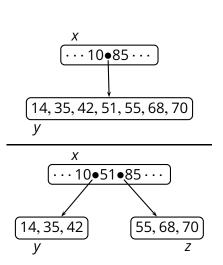
Splitting



Splitting



Splitting



```
B-Tree-Split-Child(x, i, y)
     z = Allocate-Node()
 2 	ext{ z.leaf} = 	ext{y.leaf}
 3 z.n = t - 1
 4 for i = 1 to t - 1
         z.key[j] = y.key[j+t]
     if not y. leaf
          for j = 1 to t
              z.c[i] = y.c[i+t]
    y.n = t - 1
    for j = x \cdot n + 1 downto i + 1
11
         x.c[j+1] = x.c[j]
12 for j = x.n downto i
13
          x. key[i + 1] = x. key[i]
    x.key[i] = y.key[t]
15 x.n = x.n + 1
16
     DISK-WRITE(y)
     DISK-WRITE(Z)
17
     DISK-WRITE(X)
18
```

Complexity of **B-Tree-Split-Child**

■ What is the complexity of **B-Tree-Split-Child**?

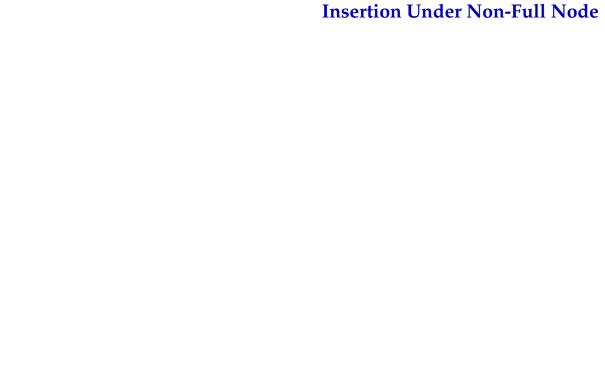
Complexity of **B-T**REE-**S**PLIT-**C**HILD

- What is the complexity of **B-Tree-Split-Child**?
- lacksquare $\Theta(t)$ basic CPU operations

Complexity of **B-T**REE-**S**PLIT-**C**HILD

- What is the complexity of B-Tree-Split-Child?
- lacksquare $\Theta(t)$ basic CPU operations
- 3 **DISK-WRITE** operations

```
B-Tree-Split-Child(x, i, y)
    z = Allocate-Node()
    z.leaf = y.leaf
 3 z.n = t-1
 4 for i = 1 to t - 1
        x.key[j] = x.key[j+t]
 6 if not x.leaf
        for i = 1 to t
             z.c[j] = y.c[j+t]
 9 y.n = t - 1
10 for j = x.n + 1 downto i + 1
11
        x.c[j+1] = x.c[j]
12 for j = x.n downto i
13
         x. key[j+1] = x. key[j]
14 x.key[i] = y.key[t]
15 x.n = x.n + 1
16 DISK-WRITE(y)
    Disk-Write(z)
    DISK-WRITE(x)
```



Insertion Under Non-Full Node

```
B-Tree-Insert-Nonfull(x, k)
    i = x.n
                                        // assume x is not full
     if x.leaf
 3
          while i \ge 1 and k < x. key[i]
              x.key[i+1] = x.key[i]
              i = i - 1
 6
         x.key[i+1] = k
         x.n = x.n + 1
 8
          DISK-WRITE(X)
     else while i \ge 1 and k < x. key[i]
10
              i = i - 1
11
         i = i + 1
12
          Disk-Read(x.c[i])
13
          if x.c[i].n == 2t - 1 // child x.c[i] is full
14
               B-Tree-Split-Child(x, i, x, c[i])
15
               if k > x. key[i]
16
                    i = i + 1
17
          B-Tree-Insert-Nonfull(x, c[i], k)
```


Insertion Procedure

```
B-TREE-INSERT(T, k)

1  r = T.root

2  if r.n == 2t - 1

3   s = ALLOCATE-NODE()

4   T.root = s

5   s.leaf = FALSE

6   s.n = 0

7   s.c[1] = r

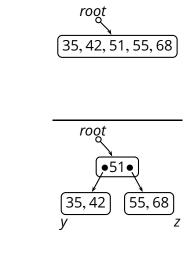
8   B-TREE-SPLIT-CHILD(s, 1, r)

9  B-TREE-INSERT-NONFULL(s, k)

10  else B-TREE-INSERT-NONFULL(r, k)
```

Insertion Procedure

```
B-Tree-Insert(T, k)
    r = T.root
   if r, n == 2t - 1
         s = Allocate-Node()
        T.root = s
        s.leaf = FALSE
 6
        s.n = 0
         s.c[1] = r
 8
         B-Tree-Split-Child(s, 1, r)
         B-Tree-Insert-Nonfull(s, k)
    else B-Tree-Insert-Nonfull(r, k)
10
```



■ What is the complexity of **B-Tree-Insert**?

- What is the complexity of **B-Tree-Insert**?
- $O(th) = O(t \log_t n)$ basic CPU steps operations

- What is the complexity of **B-Tree-Insert**?
- $O(th) = O(t \log_t n)$ basic CPU steps operations
- $O(h) = O(\log_t n)$ disk-access operations

- What is the complexity of **B-Tree-Insert**?
- $O(th) = O(t \log_t n)$ basic CPU steps operations
- $O(h) = O(\log_t n)$ disk-access operations
- The best value for *t* can be determined according to
 - the ratio between CPU (RAM) speed and disk-access time
 - the block-size of the disk, which determines the maximum size of an object that can be accessed (read/write) in one shot