B-Trees

Antonio Carzaniga

Faculty of Informatics
Universita della Svizzera italiana

Apr 24,2018

Outline

m Search in secondary storage

m B-Trees

» properties
» search

» insertion

Complexity Model

Complexity Model

m Basic assumption so far: data structures fit completely in main memory (RAM)

» all basic operations have the same cost

» even this is a rough approximation, since the main-memory system is not at all “flat”

Complexity Model

m Basic assumption so far: data structures fit completely in main memory (RAM)

» all basic operations have the same cost

» even this is a rough approximation, since the main-memory system is not at all “flat”

m However, some applications require more storage than what fits in main
memory

» we must use data structures that reside in secondary storage (i.e., disk)

Complexity Model

m Basic assumption so far: data structures fit completely in main memory (RAM)

» all basic operations have the same cost

» even this is a rough approximation, since the main-memory system is not at all “flat”

m However, some applications require more storage than what fits in main
memory

» we must use data structures that reside in secondary storage (i.e., disk)

Disk is 10,000-100,000 times slower than RAM

Memory access/transfer CPU cycles (= 1ns)
Register 1

Memory access/transfer

CPU cycles (= 1ns)

Register 1
L1 cache 4
L2 cache 10
Local L3 cache 40-75
Remote L3 cache 100-300
Local DRAM 60
Remote DRAM (main memory) 100

Memory access/transfer

CPU cycles (= 1ns)

Register 1
L1 cache 4
L2 cache 10
Local L3 cache 40-75
Remote L3 cache 100-300
Local DRAM 60
Remote DRAM (main memory) 100

SSD seek

20,000

Memory access/transfer CPU cycles (= 1ns)

Register 1
L1 cache 4
L2 cache 10
Local L3 cache 40-75
Remote L3 cache 100-300
Local DRAM 60
Remote DRAM (main memory) 100
SSD seek 20,000
Send 2K bytes over 1 Gbps network 20,000
Read 1 MB sequentially from memory 250,000

Round trip within a datacenter 500,000

Memory access/transfer

CPU cycles (= 1ns)

Register 1
L1 cache 4
L2 cache 10
Local L3 cache 40-75
Remote L3 cache 100-300
Local DRAM 60
Remote DRAM (main memory) 100
SSD seek 20,000
Send 2K bytes over 1 Gbps network 20,000
Read 1 MB sequentially from memory 250,000
Round trip within a datacenter 500,000
HDD seek 10,000,000
Read 1 MB sequentially from network 10,000,000
Read 1 MB sequentially from disk 30,000,000
Round-trip time USA-Europe 150,000,000

Modeling Disk Access

Modeling Disk Access

m Let x be a pointer to some (possibly complex) object

Modeling Disk Access

m Let x be a pointer to some (possibly complex) object

m When the object is in memory, x can be used directly as a reference to the
object

» e.g., £ = x.sizeor x.root =y

Modeling Disk Access

m Let x be a pointer to some (possibly complex) object
m When the object is in memory, x can be used directly as a reference to the
object

» e.g., £ = x.sizeor x.root =y

m When the object is on disk, we must first perform a disk-read operation

Disk-READ(x) reads the object into memory, allowing us to refer to it (and
modify it) through x

Modeling Disk Access

m Let x be a pointer to some (possibly complex) object
m When the object is in memory, x can be used directly as a reference to the
object

» e.g., £ = x.sizeor x.root =y

m When the object is on disk, we must first perform a disk-read operation
Disk-READ(x) reads the object into memory, allowing us to refer to it (and
modify it) through x

m Any changes to the object in memory must be eventually saved onto the disk

Disk-WRITE(x) writes the object onto the disk (if the object was modified)

Binary Trees on Disk

m Assume each node x is stored on disk

Binary Trees on Disk
m Assume each node x is stored on disk

ITERATIVE-TREE-SEARCH (T, k)

1 x = T.root

2 while x # NIL

3 Disk-READ(X)

4 if k == x.key

5 return x

6 elseif k < x.key
7 x = X.left
8 else x = x.right
9 returnx

Binary Trees on Disk

m Assume each node x is stored on disk

ITERATIVE-TREE-SEARCH (T, k) cost
1 x = T.root

2 while x # NIL

3 Disk-READ(X)

4 if k == x.key

5 return x

6 elseif k < x.key

7 x = X.left

8 else x = x.right

9 returnx

Binary Trees on Disk
m Assume each node x is stored on disk

ITERATIVE-TREE-SEARCH (T, k) cost

1 x = T.root c

2 while x # NIL C

3 DiSK-READ(X) 100000c
4 if k == x.key C

5 return x

6 elseif k < x.key
7 x = X.left
8 else x = x.right
9 returnx

O 0 0 00

Basic Intuition

Basic Intuition

m Assume we store the nodes of a search tree on disk

1. node accesses should be reduced to a minimum
2. spending more than a few basic operations for each node is not a problem

Basic Intuition

m Assume we store the nodes of a search tree on disk

1. node accesses should be reduced to a minimum
2. spending more than a few basic operations for each node is not a problem

m Rationale

» basic in-memory operations are much cheaper

» the bottleneck is with node accesses, which involve Disk-READ and DISK-WRITE
operations

Idea

Idea

m In a balanced binary tree, n keys require a tree of height h = |log, n]

» all the important operations require access to O(h) nodes
» each one accounting for one or very few basic operations

Idea

m In a balanced binary tree, n keys require a tree of height h = |log, n]

» all the important operations require access to O(h) nodes
» each one accounting for one or very few basic operations

m ldea: store several keys and pointers to children nodes in a single node

Idea

m In a balanced binary tree, n keys require a tree of height h = |log, n]

» all the important operations require access to O(h) nodes
» each one accounting for one or very few basic operations

m ldea: store several keys and pointers to children nodes in a single node

» in practice we increase the degree (or branching factor) of each nodeup to d > 2,
soh = [log,n|

> in practice d can be as high as a few thousands

Idea

m In a balanced binary tree, n keys require a tree of height h = |log, n]

» all the important operations require access to O(h) nodes
» each one accounting for one or very few basic operations

m ldea: store several keys and pointers to children nodes in a single node

» in practice we increase the degree (or branching factor) of each nodeup to d > 2,
soh = [log,n|

> in practice d can be as high as a few thousands

l E.g., if d = 1000, then

[eoe - o] only three accesses (h = 2)
m cover up to one billion keys

Definition of a B-Tree

|

okipkppks - Ken \
S/

Definition of a B-Tree

|

skipkaoks - ki \
S/

m Every node x has the following fields

» x.n is the number of keys stored at each node

Definition of a B-Tree

|

skiokapks - kn \
S/

m Every node x has the following fields

» x.n is the number of keys stored at each node

» X.key[1] < x.key[2] < ...x.key[x.n] are the x.n keys stored in nondecreasing order

Definition of a B-Tree

|

skipkaoks - ki \
S/

m Every node x has the following fields

» x.n is the number of keys stored at each node
» X.key[1] < x.key[2] < ...x.key[x.n] are the x.n keys stored in nondecreasing order

» x.leaf is a Boolean flag that is TRUE if x is a leaf node or FALSE if x is an internal node

Definition of a B-Tree

|

skiokapks - kn \
S/

m Every node x has the following fields

» x.n is the number of keys stored at each node
» X.key[1] < x.key[2] < ...x.key[x.n] are the x.n keys stored in nondecreasing order
» x.leaf is a Boolean flag that is TRUE if x is a leaf node or FALSE if x is an internal node

» x.c[1],x.c[2],...,x.c[x.n+ 1] are the x.n + 1 pointers to its children, if x is an
internal node

Definition of a B-Tree (2)

.

s

|k§k1| |k1§k§k2| |k2§k§k3| k> kyn

Definition of a B-Tree (2)

|

s

|k§k1| |k1§k§k2| |k2§k§k3| k> kyn

m The keys x.key[i] delimit the ranges of keys stored in each subtree

Definition of a B-Tree (2)

|

s

|k§k1| |k1§k§k2| |k2§k§k3| k> kyn

m The keys x.key[i] delimit the ranges of keys stored in each subtree

x.c[1] — subtree containing keys k < x.key[1]
x.c[2] — subtree containing keys k, x.key[1]
x.c[3] — subtree containing keys k, x.key[2]

x.key[2]

<k<
< k < x.key[3]

x.c[x.n + 1] — subtree containing keys k, k > x.key[x.n]

Definition of a B-Tree (3)

Definition of a B-Tree (3)

m All leaves have the same depth

Definition of a B-Tree (3)

m All leaves have the same depth

m Lett > 2 be the minimum degree of the B-tree

» every node other than the root must have at least t — 1 keys
» every node must contain at most 2t — 1 keys

» anode is full when it contains exactly 2t — 1 keys
» afull node has 2t children

Example

-30.54-65-

[6,9] [13,14][19, 24 27 29 40 44 61 62 70 71 [83,91][96,99]

Search in B-Trees

B-TREE-SEARCH (X, k)
=1
while i < x.n and k > x.key|i]
i=i+1
if i < x.nand k == x.key|i]
return (x, /)
if x.leaf
return NIL
else DiIsk-READ (x.c[i])
return B-TREE-SEARCH (x. c[i], k)

LooNoOOULh WN =

Search in B-Trees

Height of a B-Tree

Height of a B-Tree

m Theorem: the height of a B-tree containing n > 1 keys and with a minimum
degreet > 2is

n+1
2

h < log,

Height of a B-Tree

m Theorem: the height of a B-tree containing n > 1 keys and with a minimum
degreet > 2is

n+1
2

h < log,
Proof:

» n > 1,sotheroot has at least one key (and therefore two children)

Height of a B-Tree

m Theorem: the height of a B-tree containing n > 1 keys and with a minimum
degreet > 2is

n+1
2

h < log,
Proof:

» n > 1,sotheroot has at least one key (and therefore two children)

» every other node has at least t children

Height of a B-Tree

m Theorem: the height of a B-tree containing n > 1 keys and with a minimum
degreet > 2is

n+1

h < log, 5

Proof:

» n > 1,sotheroot has at least one key (and therefore two children)
» every other node has at least t children

» in the worst case, there are two subtrees (of the root) each one containing a total
of (n — 1)/2 keys, and each one consisting of t-degree nodes, with each node
containing t — 1 keys

Height of a B-Tree
m Theorem: the height of a B-tree containing n > 1 keys and with a minimum
degreet > 2is

n+1
2

h < log,
Proof:

» n > 1,sotheroot has at least one key (and therefore two children)
» every other node has at least t children

» in the worst case, there are two subtrees (of the root) each one containing a total
of (n — 1)/2 keys, and each one consisting of t-degree nodes, with each node
containing t — 1 keys

» each subtree contains 1+t + t - - - + t"~" nodes, each one containing t — 1 keys

Height of a B-Tree
m Theorem: the height of a B-tree containing n > 1 keys and with a minimum
degreet > 2is

n+1
2

h < log,
Proof:
» n > 1,sotheroot has at least one key (and therefore two children)

» every other node has at least t children

» in the worst case, there are two subtrees (of the root) each one containing a total
of (n — 1)/2 keys, and each one consisting of t-degree nodes, with each node
containing t — 1 keys

» each subtree contains 1 + t + t?- - - + t"~" nodes, each one containing t — 1 keys, so

n>1+2t"-1)

Splitting

Splitting

X

(14,35,42,51,55,68,70)
y

X

(14,35,42,51,55,68,70)
y

N B

[,051085--']

N\

H
V4

—_—
<|P
w
wu
N
N

Splitting

X

(14,35,42,51,55,68,70)
y

N B

[,051085--']

N\

H
V4

—_—
<|P
w
wu
N
N

Splitting

B-TREE-SPLIT-CHILD(X, I,)

Lo~NoouUuhs, WN =

10
11
12
13
14
15
16
17
18

Z = ALLOCATE-NODE()
z.leaf = y.leaf
zn=t-1
forj=1tot—1

z.key[j] = y.key[j +t]
if not y.leaf

forj=1tot

z.clj] = y.clj +1]

y.n=t-1
forj = x.n+ 1 downto + 1

x.clj+ 1] = x.c[f]
forj = x.n downto /

x.key[j + 1] = x.key][j]
x.key[i] = y.key[t]
Xx.n =x.n+1
DiISK-WRITE(y)
DiISK-WRITE(2)
Disk-WRITE(X)

Complexity of B-TREE-SPLIT-CHILD

m What is the complexity of
B-TREE-SPLIT-CHILD?

Complexity of B-TREE-SPLIT-CHILD

m What is the complexity of
B-TREE-SPLIT-CHILD?

m O(t) basic CPU operations

m What is the complexity of
B-TREE-SPLIT-CHILD?

m O(t) basic CPU operations

m 3 DiIsk-WRITE operations

Complexity of B-TREE-SPLIT-CHILD

B-TREE-SPLIT-CHILD(X, I,)

—_—
Cwoo~NOUTLE WN =

11
12
13
14
15
16
17
18

Z = ALLOCATE-NODE()
z.leaf = y.leaf
zn=t-1
forj=1tot—1

x.key[j] = x.key|[j + t]
if not x. leaf

forj=1tot

z.clj] = y.clj +t]

y.n=t—-1
forj = x.n+ 1 downto/ + 1

x.c[j+ 1] = x.c[j]
forj = x.n downto /

x.key[j + 1] = x.keyl[j]
x.key[i] = y.key[t]
x.n =x.n+1
Disk-WRITE(Y)
Disk-WRITE(2)
DiISK-WRITE(x)

Insertion Under Non-Full Node

Insertion Under Non-Full Node

B-TREE-INSERT-NONFULL(X, k)

1 i=x.n / assume x is not full
2 ifx.leaf
3 while /i > 1 and k < x.key/[i]
4 x.key[i + 1] = x.keyl[i]
5 i=i—1
6 x.key[i+1] = k
7 x.n =x.n+1
8 Disk-WRITE(X)
9 else while/ > 1 and k < x.key/[i]
10 i=i—1
11 i=i+1
12 Disk-READ(x.c[/])
13 if x.c[i].n==2t — 1 /# child x.c[i] is full
14 B-TREE-SPLIT-CHILD(X, i, X.c[i])
15 if kK > x.key[i]
16 i=i+1

17 B-TREE-INSERT-NONFULL(X.c[/], k)

Insertion Procedure

Insertion Procedure

B-TREE-INSERT(T, k)

1 r =T.root
2 ifr.n==2t-1

B-TREE-SPLIT-CHILD(S, 1,)
B-TREE-INSERT-NONFULL(S, k)
(r. k)

3 S = ALLOCATE-NODE()
4 T.root = s

5 s.leaf = FALSE

6 ssn=20

7 s.c[1] = r

8

9

0

1 else B-TREE-INSERT-NONFULL

Insertion Procedure

root

B-TREE-INSERT(T, k)

1 r =T.root
2 ifr.n==2t-1

(35,42, 51, 55,68)

3 S = ALLOCATE-NODE()
4 T.root = s
5 s.leaf = FALSE
6 s.n =0 rogt
7 s.c[1] =r (\
8 B-TREE-SPLIT-CHILD(S, 1,)
9 B-TREE-INSERT-NONFULL(S, k)
10 else B-TREE-INSERT-NONFULL(r, k) [35’ 42] [55’ 68]

y z

Complexity of Insertion

m What is the complexity of B-TREE-INSERT?

Complexity of Insertion

m What is the complexity of B-TREE-INSERT?

m O(th) = O(tlog, n) basic CPU steps operations

Complexity of Insertion

m What is the complexity of B-TREE-INSERT?
m O(th) = O(tlog, n) basic CPU steps operations

m O(h) = O(log, n) disk-access operations

Complexity of Insertion

m What is the complexity of B-TREE-INSERT?
m O(th) = O(tlog, n) basic CPU steps operations
m O(h) = O(log, n) disk-access operations

m The best value for t can be determined according to

» the ratio between CPU (RAM) speed and disk-access time

» the block-size of the disk, which determines the maximum size of an object that
can be accessed (read/write) in one shot

