Binary Search Trees

Antonio Carzaniga

Faculty of Informatics
Universita della Svizzera italiana

April 12,2018

Outline

m Binary search trees

m Randomized binary search trees

Binary Search Tree

m A binary search tree implements of a dynamic set

» over a totally ordered domain

Binary Search Tree

m A binary search tree implements of a dynamic set

» over a totally ordered domain

m Interface

» TREE-INSERT(T, k) adds a key k to the dictionary D
» TREE-DELETE(T, k) removes key k from D

» TREE-SEARCH(T, x) tells whether D contains a key k

Binary Search Tree

m A binary search tree implements of a dynamic set

» over a totally ordered domain

m Interface

v

TREE-INSERT(T, k) adds a key k to the dictionary D

v

TREE-DELETE(T, k) removes key k from D

\ 4

TREE-SEARCH(T, x) tells whether D contains a key k

\ 4

tree-walk: INORDER-TREE-WALK(T), etc.

Binary Search Tree

m A binary search tree implements of a dynamic set

>

over a totally ordered domain

m Interface

>

TREE-INSERT(T, k) adds a key k to the dictionary D
TREE-DELETE(T, k) removes key k from D

TREE-SEARCH(T, x) tells whether D contains a key k
tree-walk: INORDER-TREE-WALK(T), etc.
TREE-MINIMUM(T) finds the smallest element in the tree

TReEE-MAXIMUM(T) finds the largest element in the tree

Binary Search Tree

m A binary search tree implements of a dynamic set

>

over a totally ordered domain

m Interface

>

TREE-INSERT(T, k) adds a key k to the dictionary D
TREE-DELETE(T, k) removes key k from D

TREE-SEARCH(T, x) tells whether D contains a key k
tree-walk: INORDER-TREE-WALK(T), etc.
TREE-MINIMUM(T) finds the smallest element in the tree
TReEE-MAXIMUM(T) finds the largest element in the tree

iteration: TREE-SUCCESSOR(x) and TREE-PREDECESSOR(x) find the successor and
predecessor, respectively, of an element x

Binary Search Tree (2)

m /mplementation

» T represents the tree, which consists of a set of nodes

Binary Search Tree (2)

m /mplementation

» T represents the tree, which consists of a set of nodes

» T.rootis the root node of tree T

Binary Search Tree (2)

m /mplementation

» T represents the tree, which consists of a set of nodes

» T.rootis the root node of tree T

Node x
X.parent
» x.parent is the parent of node x
» X.key is the key stored in node x node x
» x.left is the left child of node x k = x.key

» x.rightis the right child of node x

x.left x.right

Binary Search Tree (3)

Binary Search Tree (3)

N

Binary Search Tree (3)

Binary Search Tree (3)

Binary Search Tree (3)

m Binary-search-tree property

» for all nodes x, y, and z
> y € left-subtree(x) = y.key < x.key

» Z € right-subtree(x) = z.key > x.key

In-Order Tree Walk

m We want to go through the set of keys in order

In-Order Tree Walk

m We want to go through the set of keys in order

2 45 9 12 13 15 17 18 19

In-Order Tree Walk (2)

m A recursive algorithm

In-Order Tree Walk (2)

m A recursive algorithm

INORDER-TREE-WALK(X)

1 ifx #NiL

2 INORDER-TREE-WALK(X. /eft)
3 print x. key

4 INORDER-TREE-WALK(X. right)

In-Order Tree Walk (2)

m A recursive algorithm

INORDER-TREE-WALK(X)

1 ifx #NiL

2 INORDER-TREE-WALK(X. /eft)
3 print x. key

4

INORDER-TREE-WALK(X. right)
And then we need a “starter” procedure

INORDER-TREE-WALK-START(T)
1 INORDER-TREE-WALK(T.root)

Pre-Order Tree Walk

Pre-Order Tree Walk

PREORDER-TREE-WALK(X)

1 ifx #NIL

2 print x. key

3 PREORDER-TREE-WALK(X. /eft)
4

PREORDER-TREE-WALK(X. right)

Pre-Order Tree Walk

PREORDER-TREE-WALK(X)

1 ifx #NIL

2 print x. key

3 PREORDER-TREE-WALK(X. /eft)
4

PREORDER-TREE-WALK(X. right)

Pre-Order Tree Walk

PREORDER-TREE-WALK(X)

1 ifx #NIL

2 print x. key

3 PREORDER-TREE-WALK(X. /eft)
4

PREORDER-TREE-WALK(X. right)

(18)
o

12 5 2 4 9 18 15 13 17 19

Post-Order Tree Walk

Post-Order Tree Walk

POSTORDER-TREE-WALK(X)

1 ifx # NIL

2 POSTORDER-TREE-WALK (X. left)
3 POSTORDER-TREE-WALK(X. right)
4 print x. key

Post-Order Tree Walk

POSTORDER-TREE-WALK(X)

1 ifx # NIL

2 POSTORDER-TREE-WALK (X. left)
3 POSTORDER-TREE-WALK(X. right)
4 print x. key

Post-Order Tree Walk

POSTORDER-TREE-WALK(X)

1 ifx # NIL

2 POSTORDER-TREE-WALK (X. left)
3 POSTORDER-TREE-WALK(X. right)
4 print x. key

(18)
o

4 2 9 5 13 17 15 19 18 12

Reverse-Order Tree Walk

Reverse-Order Tree Walk

REVERSE-ORDER-TREE-WALK(X)

1 ifx #NIL

2 REVERSE-ORDER-TREE-WALK (X.right)
3 print x. key

4

REVERSE-ORDER-TREE-WALK (x./eft)

Reverse-Order Tree Walk

REVERSE-ORDER-TREE-WALK(X)

1 ifx #NIL

2 REVERSE-ORDER-TREE-WALK (X.right)
3 print x. key

4

REVERSE-ORDER-TREE-WALK (x./eft)

Reverse-Order Tree Walk

REVERSE-ORDER-TREE-WALK(X)

1 ifx #NIL

2 REVERSE-ORDER-TREE-WALK (X.right)
3 print x. key

4

REVERSE-ORDER-TREE-WALK (x./eft)

(18)
o

19 18 17 15 13 12 9 5 4 2

Complexity of Tree Walks

Complexity of Tree Walks

m The general recurrence is

T(n)=T(n)+T(n—n,—1)+0O(1)

Complexity of Tree Walks

m The general recurrence is

T(n)=T(n)+T(n—n,—1)+0O(1)

INORDER-TREE-WALK
PREORDER-TREE-WALK
POSTORDER-TREE-WALK
REVERSE-ORDER-TREE-WALK

3>

9990

3>

~— | — | — [—

Complexity of Tree Walks

m The general recurrence is

T(n)=T(n)+T(n—n,—1)+0O(1)

INORDER-TREE-WALK ©(n)
PREORDER-TREE-WALK ©(n)
POSTORDER-TREE-WALK ©(n)
REVERSE-ORDER-TREE-WALK | O(n)

We could prove this using the substitution method

Complexity of Tree Walks

m The general recurrence is

T(n)=T(n)+T(n—n,—1)+0O(1)

INORDER-TREE-WALK ©(n)
PREORDER-TREE-WALK ©(n)
POSTORDER-TREE-WALK ©(n)
REVERSE-ORDER-TREE-WALK | O(n)

We could prove this using the substitution method

m Can we do better?

Complexity of Tree Walks

m The general recurrence is

T(n)=T(n)+T(n—n,—1)+0O(1)

INORDER-TREE-WALK ©(n)
PREORDER-TREE-WALK ©(n)
POSTORDER-TREE-WALK ©(n)
REVERSE-ORDER-TREE-WALK | O(n)

We could prove this using the substitution method

m Can we do better? No!
» the length of the output is ©(n)

Minimum and Maximum Keys

Minimum and Maximum Keys

m Recall the binary-search-tree property

» for all nodes x, y, and z
> y € left-subtree(x) = y.key < x.key
> Z € right-subtree(x) = z.key > x.key

Minimum and Maximum Keys

m Recall the binary-search-tree property

» for all nodes x, y, and z
> y € left-subtree(x) = y.key < x.key
> Z € right-subtree(x) = z.key > x.key

m So, the minimum key is in all the way to the left

» similarly, the maximum key is all the way to the right

TREE-MINIMUM (X) TREE-MAXIMUM(X)
1 while x./eft # NIL 1 while x.right # NIL
2 x = X.left 2 X = X.right

3 return x 3 returnx

Successor and Predecessor

m Given a node x, find the node containing the next key value

Successor and Predecessor

m Given a node x, find the node containing the next key value

Successor and Predecessor

m Given a node x, find the node containing the next key value

(12
(5 (18)
© (9 ©
Q@ 1 @

Successor and Predecessor

m Given a node x, find the node containing the next key value

(18)
Q 9 OEEN®

Successor and Predecessor

m Given a node x, find the node containing the next key value

Successor and Predecessor

m Given a node x, find the node containing the next key value

Successor and Predecessor

m Given a node x, find the node containing the next key value

/@\

(5) (18)
© (9 ©
Q@ 1 @

m The successor of x is the minimum of the right subtree of x, if that exists

Successor and Predecessor

m Given a node x, find the node containing the next key value

/@\

(5) (18)
© (9 ©
Q@) @

m The successor of x is the minimum of the right subtree of x, if that exists

Successor and Predecessor

m Given a node x, find the node containing the next key value

/@\

(5) (18)
B eb

m The successor of x is the minimum of the right subtree of x, if that exists

Successor and Predecessor

m Given a node x, find the node containing the next key value

/@\

(5) (18)
D B ©
Q@ 1 @

m The successor of x is the minimum of the right subtree of x, if that exists

Successor and Predecessor

m Given a node x, find the node containing the next key value

12

ol @

Q@ o @@@ (19

m The successor of x is the minimum of the right subtree of x, if that exists

Successor and Predecessor

m Given a node x, find the node containing the next key value

/@\

(5) (18)
© (9 ©
Q@ 1 @

m The successor of x is the minimum of the right subtree of x, if that exists

m Otherwise it is the first ancestor a of x such that x falls in the left subtree of a

TREE-SUCCESSOR(X)

1 if x.right # NIL

2 return TREE-MINIMUM (x. right)
3 y = x.parent

4 whiley # NiL and x = y.right

5 X=y

6 y = y.parent

7 returny

Successor and Predecessor(2)

Successor and Predecessor(2)

TREE-SUCCESSOR(X)

1 if x.right # NIL

2 return TREE-MINIMUM (x. right)
3 y = x.parent

4 whiley # NiL and x = y.right

5 X=y

6 y = y.parent

7 returny

e@a
LN
D ® ©

TREE-SUCCESSOR(X)

1 if x.right # NIL

2 return TREE-MINIMUM (x. right)
3 y = x.parent

4 whiley # NiL and x = y.right

5 X=y

6 y = y.parent

7 returny

Successor and Predecessor(2)

TREE-SUCCESSOR(X)

1 if x.right # NIL

2 return TREE-MINIMUM (x. right)
3 y = x.parent

4 whiley # NiL and x = y.right

5 X=y

6 y = y.parent

7 returny

Successor and Predecessor(2)

Successor and Predecessor(2)

TREE-SUCCESSOR(X)

1 if x.right # NIL

2 return TREE-MINIMUM (x. right)
3 y = x.parent

4 whiley # NiL and x = y.right

5 X=y

6 y = y.parent

7 returny

e«a
LN
D ® ©

Successor and Predecessor(2)

TREE-SUCCESSOR(X)

1 if x.right # NIL

2 return TREE-MINIMUM (x. right)
3 y = x.parent

4 whiley # NiL and x = y.right

5 X=y

6 y = y.parent

7 returny

e«a
oo @

Successor and Predecessor(2)

TREE-SUCCESSOR(X)

1 if x.right # NIL

2 return TREE-MINIMUM (x. right)
3 y = x.parent

4 whiley # NiL and x = y.right

5 X=y

6 y = y.parent

7 returny

e@a
LN
D ® ©

TREE-SUCCESSOR(X)

1 if x.right # NIL

2 return TREE-MINIMUM (x. right)
3 y = x.parent

4 whiley # NiL and x = y.right

5 X=y

6 y = y.parent

7 returny

Successor and Predecessor(2)

Successor and Predecessor(2)

TREE-SUCCESSOR(X)

1 if x.right # NIL

2 return TREE-MINIMUM (x. right)
3 y = x.parent

4 whiley # NiL and x = y.right

5 X=y

6 y = y.parent

7 returny

/@\

(5) (18)
OO @

D O®

TREE-SUCCESSOR(X)

1 if x.right # NIL

2 return TREE-MINIMUM (x. right)
3 y = x.parent

4 whiley # NiL and x = y.right

5 X=y

6 y = y.parent

7 returny

Successor and Predecessor(2)

TREE-SUCCESSOR(X)

1 if x.right # NIL

2 return TREE-MINIMUM (x. right)
3 y = x.parent

4 whiley # NiL and x = y.right

5 X=y

6 y = y.parent

7 returny

Successor and Predecessor(2)

Search

Search

m Binary search (thus the name of the tree)

Search

m Binary search (thus the name of the tree)

TREE-SEARCH (X, k)

1 ifx = NIL or k = x.key

2 return x

3 ifk < x.key

4 return TREE-SEARCH (X./eft, k)
5 else return TREE-SEARCH (x.right, k)

m Binary search (thus the name of the tree)

m Is this correct?

TREE-SEARCH (X, k)

1 ifx = NIL or k = x.key

2 return x

3 ifk < x.key

4 return TREE-SEARCH (X./eft, k)
5 else return TREE-SEARCH (x.right, k)

Search

Search

m Binary search (thus the name of the tree)

TREE-SEARCH (X, k)

1 ifx = NIL or k = x.key

2 return x

3 ifk < x.key

4 return TREE-SEARCH (X./eft, k)
5 else return TREE-SEARCH (x.right, k)

m Is this correct? Yes, thanks to the binary-search-tree property

m Binary search (thus the name of the tree)

TREE-SEARCH (X, k)

1 ifx = NIL or k = x.key

2 return x

3 ifk < x.key

4 return TREE-SEARCH (X./eft, k)
5 else return TREE-SEARCH (x.right, k)

m Is this correct? Yes, thanks to the binary-search-tree property

m Complexity?

Search

m Binary search (thus the name of the tree)

TREE-SEARCH (X, k)

1 ifx = NIL or k = x.key

2 return x

3 ifk < x.key

4 return TREE-SEARCH (X./eft, k)
5 else return TREE-SEARCH (x.right, k)

m Is this correct? Yes, thanks to the binary-search-tree property

m Complexity?

T(n) = ©(depth of the tree)

Search

m Binary search (thus the name of the tree)

TREE-SEARCH (X, k)

1 ifx = NIL or k = x.key

2 return x

3 ifk < x.key

4 return TREE-SEARCH (X./eft, k)
5 else return TREE-SEARCH (x.right, k)

m Is this correct? Yes, thanks to the binary-search-tree property

m Complexity?

T(n) = ©(depth of the tree)
T(n) = O(n)

Search

Search (2)

Search (2)

m Iterative binary search

m Iterative binary search

ITERATIVE-TREE-SEARCH (T, k)

1 x = T.root

2 while x # NIL A k # x.key
3 if k < x.key

4 x = X.left

5 else x = x.right

6 returnx

Search (2)

Insertion

Insertion

(18)
o

Insertion

(18)
o

» in order to insert x, we search for x (more precisely x. key)

B /dea

» if we don't find it, we add it where the search stopped

TREE-INSERT(T, 2)

—_—
Suwoo~NOoOOCULLh WN =

11
12
13

Y = NIL
x = T.root
while x # NIL

y =X

if z.key < x.key

x = X.left
else x = x.right
Z.parent =y
ify = NIL
T.root = z
elseif z.key < y.key
y.left = z
elsey.right = z

Insertion (2)

TREE-INSERT(T, 2)

—_—
Suwoo~NOoOOCULLh WN =

11
12
13

Y = NIL
x = T.root
while x # NIL

y =X

if z.key < x.key

x = X.left
else x = x.right
Z.parent =y
ify = NIL
T.root = z
elseif z.key < y.key
y.left = z
elsey.right = z

Insertion (2)

TREE-INSERT(T, 2)

—_—
Suwoo~NOoOOCULLh WN =

11
12
13

Y = NIL
x = T.root
while x # NIL

y =X

if z.key < x.key

x = X.left
else x = x.right
Z.parent =y
ify = NIL
T.root = z
elseif z.key < y.key
y.left = z
elsey.right = z

Insertion (2)

TREE-INSERT(T, 2)

—_—
Suwoo~NOoOOCULLh WN =

11
12
13

Y = NIL
x = T.root
while x # NIL

y =X

if z.key < x.key

x = X.left
else x = x.right
Z.parent =y
ify = NIL
T.root = z
elseif z.key < y.key
y.left = z
elsey.right = z

Insertion (2)

TREE-INSERT(T, 2)

—_—
Suwoo~NOoOOCULLh WN =

11
12
13

Y = NIL
x = T.root
while x # NIL

y =X

if z.key < x.key

x = X.left
else x = x.right
Z.parent =y
ify = NIL
T.root = z
elseif z.key < y.key
y.left = z
elsey.right = z

Insertion (2)

TREE-INSERT(T, 2)

—_—
Suwoo~NOoOOCULLh WN =

11
12
13

Y = NIL
x = T.root
while x # NIL

y =X

if z.key < x.key

x = X.left
else x = x.right
Z.parent =y
ify = NIL
T.root = z
elseif z.key < y.key
y.left = z
elsey.right = z

Insertion (2)

(12
999 @
DO OO

TREE-INSERT(T, 2)

—_—
Suwoo~NOoOOCULLh WN =

11
12
13

Y = NIL
x = T.root
while x # NIL

y =X

if z.key < x.key

x = X.left
else x = x.right
Z.parent =y
ify = NIL
T.root = z
elseif z.key < y.key
y.left = z
elsey.right = z

Insertion (2)

(12
999 @
© e OGO

TREE-INSERT(T, 2)

—_—
Suwoo~NOoOOCULLh WN =

11
12
13

Y = NIL
x = T.root
while x # NIL

y =X

if z.key < x.key

x = X.left
else x = x.right
Z.parent =y
ify = NIL
T.root = z
elseif z.key < y.key
y.left = z
elsey.right = z

Insertion (2)

(12
969 @
© e OGO

Observation

m Both insertion and search operations have complexity h, where h is the height
of the tree

Observation

m Both insertion and search operations have complexity h, where h is the height
of the tree

m h = O(logn) in the average case

» j.e., with a random insertion order

Observation

m Both insertion and search operations have complexity h, where h is the height
of the tree

m h = O(logn) in the average case

» j.e., with a random insertion order

m h = O(n) in some particular cases

Observation

m Both insertion and search operations have complexity h, where h is the height
of the tree

m h = O(logn) in the average case

i.e., with a random insertion order

v

m h = O(n) in some particular cases

i.e., with ordered sequences

v

Observation

m Both insertion and search operations have complexity h, where h is the height
of the tree

m h = O(logn) in the average case

» j.e., with a random insertion order

m h = O(n) in some particular cases

» i.e., with ordered sequences
» the problem is that the “worst” case is not that uncommon

Observation

m Both insertion and search operations have complexity h, where h is the height
of the tree

m h = O(logn) in the average case

» j.e., with a random insertion order

m h = O(n) in some particular cases

» i.e., with ordered sequences

» the problem is that the “worst” case is not that uncommon

m /dea: use randomization to turn all cases in the average case

Randomized Insertion

m /dea 1: insert every sequence as a random sequence

Randomized Insertion

m /dea 1: insert every sequence as a random sequence

» i.e,givenA =(1,2,3,...,n), insert a random permutation of A

Randomized Insertion

m /dea 1: insert every sequence as a random sequence

» i.e,givenA =(1,2,3,...,n), insert a random permutation of A

» problem: A is not necessarily known in advance

Randomized Insertion

m /dea 1: insert every sequence as a random sequence

» i.e,givenA =(1,2,3,...,n), insert a random permutation of A

» problem: A is not necessarily known in advance

m /dea 2: we can obtain a random permutation of the input sequence by
randomly alternating two insertion procedures

» tail insertion: this is what TREE-INSERT does

Randomized Insertion

m /dea 1: insert every sequence as a random sequence

» i.e,givenA =(1,2,3,...,n), insert a random permutation of A

» problem: A is not necessarily known in advance

m /dea 2: we can obtain a random permutation of the input sequence by
randomly alternating two insertion procedures
» tail insertion: this is what TREE-INSERT does

» head insertion: for this we need a new procedure TREE-ROOT-INSERT

> inserts nin T as if n was inserted as the first element

Randomized Insertion (2)

TREE-RANDOMIZED-INSERT1(T, 2)

1 r = uniformly random value from {1, ...,t.size + 1}
2 ifr=1

3 TREE-ROOT-INSERT(T, 2)

4

else TREE-INSERT(T, 2)

Randomized Insertion (2)

TREE-RANDOMIZED-INSERT1(T, 2)

1 r = uniformly random value from {1, ...,t.size + 1}
2 ifr=1
3 TREE-ROOT-INSERT(T, 2)

4 else TREE-INSERT(T, 2)

m Does this really simulate a random permutation?
» i.e., with all permutations being equally likely?

Randomized Insertion (2)

TREE-RANDOMIZED-INSERT1(T, 2)

1 r = uniformly random value from {1, ...,t.size + 1}
2 ifr=1
3 TREE-ROOT-INSERT(T, 2)

4 else TREE-INSERT(T, 2)

m Does this really simulate a random permutation?
» i.e., with all permutations being equally likely?
» no, clearly the last element can only go to the top or to the bottom

Randomized Insertion (2)

TREE-RANDOMIZED-INSERT1(T, 2)

1 r = uniformly random value from {1, ...,t.size + 1}
2 ifr=1
3 TREE-ROOT-INSERT(T, 2)

4 else TREE-INSERT(T, 2)

m Does this really simulate a random permutation?
» i.e., with all permutations being equally likely?
» no, clearly the last element can only go to the top or to the bottom

m It is true that any node has the same probability of being inserted at the top

Randomized Insertion (2)

TREE-RANDOMIZED-INSERT1(T, 2)

1 r = uniformly random value from {1, ...,t.size + 1}
2 ifr=1
3 TREE-ROOT-INSERT(T, 2)

4 else TREE-INSERT(T, 2)

m Does this really simulate a random permutation?
» i.e., with all permutations being equally likely?
» no, clearly the last element can only go to the top or to the bottom

m It is true that any node has the same probability of being inserted at the top

» this suggests a recursive application of this same procedure

Randomized Insertion (3)

Randomized Insertion (3)

TREE-RANDOMIZED-INSERT(t, Z)

1
2
3
4
5
6
7
8
9
0
1

1
1

ift = NIL

return z
r = uniformly random value from {1, ..., t.size + 1}
ifr=1 # Prlr=1]=1/(t.size+1)

z.size = t.size + 1

return TREE-ROOT-INSERT(t, 2)
if z.key < t.key

t.left = TREE-RANDOMIZED-INSERT(t./eft, z)
else t.right = TREE-RANDOMIZED-INSERT (t.right, z)
t.size = t.size + 1
return ¢

Randomized Insertion (3)

TREE-RANDOMIZED-INSERT(t, Z)

1 ift=NIL
2 return z
3 r = uniformly random value from {1, ..., t.size + 1}
4 ifr=1 # Prlr=1]=1/(t.size+1)
5 z.size = t.size + 1
6 return TREE-ROOT-INSERT(t, 2)
7 ifz.key < t.key
8 t.left = TREE-RANDOMIZED-INSERT(t./eft, z)
9 elset.right = TREE-RANDOMIZED-INSERT (t.right, z)
10 t.size = t.size + 1
11 returnt

m Looks like this one really simulates a random permutation. ..

Rotation

Rotation

Rotation

m X = RIGHT-ROTATE(X)

RIGHT-ROTATE(x)

LEFT-ROTATE(X)

Rotation

k<a a<k<bh

RIGHT-ROTATE(x)
1 [=x.left

2 x.left = l.right
3 l.right = x

4 return/

Rotation

X
RIGHT-ROTATE o

LEFT-ROTATE
a<k<b k=b

LEFT-ROTATE(X)

1 r = x.right

2 x.right = r.left
3 r.left =x

4 returnr

Root Insertion

® @

Root Insertion

Root Insertion

root-insert

(12
(5) (18)

1. Recursively insert z at the root of the appropriate subtree (right)

Root Insertion

1. Recursively insert z at the root of the appropriate subtree (right)

Root Insertion

left-rotate

1. Recursively insert z at the root of the appropriate subtree (right)

2. Rotate x with z (left-rotate)

Root Insertion

1. Recursively insert z at the root of the appropriate subtree (right)

2. Rotate x with z (left-rotate)

Root Insertion (2)

TREE-ROOT-INSERT(X, 2)

1 ifx =NiL

2 return z

3 ifz.key < x.key

4 x.left = TREE-ROOT-INSERT(x./eft,)

5 return RIGHT-ROTATE(x)

6 else x.right = TREE-ROOT-INSERT(X.right, z)
7

return LEFT-ROTATE(X)

Observation

m General strategies to deal with complexity in the worst case

Observation

m General strategies to deal with complexity in the worst case

» randomization: turns any case into the average case

> the worst case is still possible, but it is extremely improbable

Observation

m General strategies to deal with complexity in the worst case

» randomization: turns any case into the average case

> the worst case is still possible, but it is extremely improbable

» amortized maintenance: e.g., balancing a BST or resizing a hash table

> relatively expensive but “amortized” operations

Observation

m General strategies to deal with complexity in the worst case

» randomization: turns any case into the average case

> the worst case is still possible, but it is extremely improbable

» amortized maintenance: e.g., balancing a BST or resizing a hash table

> relatively expensive but “amortized” operations

» optimized data structures: a self-balanced data structure

» guaranteed O(log n) complexity bounds

Deletion

Deletion

Deletion

1. z has no children

Deletion

1. z has no children
» simply remove z

Deletion

1. z has no children

» simply remove z

Deletion

1. z has no children

» simply remove z

2. z has one child

Deletion

1. z has no children

» simply remove z

2. z has one child

> remove z

Deletion

1. z has no children

» simply remove z

2. z has one child

> remove 7
» connect z.parent to z.right

Deletion

1. z has no children

» simply remove z

2. z has one child

> remove 7
» connect z.parent to z.right

Deletion

1. z has no children

» simply remove z

2. z has one child

> remove 7
» connect z.parent to z.right

3. zhas two children

Deletion

1. z has no children

» simply remove z

E 2. z has one child

. > remove z

. @ » connect z.parent to z.right
o @ 3. z has two children

» replace z with
¥ = TREE-SUCCESSOR(Z)

» remove y (1 child!)

Deletion

1. z has no children

» simply remove z

2. z has one child

> remove 7
» connect z.parent to z.right

3. zhastwo children
» replace z with
¥ = TREE-SUCCESSOR(Z)
» remove y (1 child!)
» connecty.parent to y.right

Deletion (2)

TREE-DELETE(T, 2)

OLoNOOTUTPA, WN =

10

12
13
14
15
16

if z.left = NIL or z.right = NIL

y=z
else y = TREE-SUCCESSOR(2)
if y.left # NIL
x = y.left
else x = y.right
if x # NIL

X.parent = y.parent
if y.parent = NIL
T.root = x
else if y = y.parent.left
y.parent.left = x
else y.parentright = x
ify #2z
Z.key = y.key
copy any other data from y into z

