String Matching Algorithms

Antonio Carzaniga

Faculty of Informatics
University of Lugano

December 5, 2008

Outline

- Problem definition
- Naïve algorithm
- Knuth-Morris-Pratt algorithm
- Boyer-Moore algorithm
Problem

Given the text

\begin{quote}
Nel mezzo del cammin di nostra vita
mi ritrovai per una selva oscura
che la dritta via era smarrita…
\end{quote}

Find the string “trova”

A more challenging example: How many times does the string “110011” appear in the following text

0011110101101001100110111101101011
0110111111010101111011101110000101
10110001011111011100011111000100
100101001011101101010111101001100101
00101100100011111101001101101101011010
0100011011101001010101010000101010011110

String Matching: Definitions

Given a text \(T \)

- \(T \in \Sigma^* \): finite alphabet \(\Sigma \)
- \(|T| = n \): the length of \(T \) is \(n \)

Given a pattern \(P \)

- \(P \in \Sigma^* \): same finite alphabet \(\Sigma \)
- \(|P| = m \): the length of \(P \) is \(m \)

Both \(T \) and \(P \) can be modeled as arrays

- \(T[1 \ldots n] \) and \(P[1 \ldots m] \)

Pattern \(P \) occurs with shift \(s \) in \(T \) iff

- \(0 \leq s \leq n - m \)
- \(T[s + i] = P[i] \) for all positions \(1 \leq i \leq m \)
Example

Problem: find all \(s \) such that

- \(0 \leq s \leq n - m \)
- \(T[s + i] = P[i] \) for \(1 \leq i \leq m \)

\[
\begin{array}{c}
T & a & b & c & a & a & b & a & a & b & a & a & c & a \\
\end{array}
\]

\(m = 3 \) \(\uparrow \)

\[
\begin{array}{c}
P & a & b & a & a & b & a & a & b & a & a & b & a \\
0 & 4 & 7 & 9 & 3 & 6 & 0 & 3 & 6 & 0 & 3 & 6 & 0 \\
\end{array}
\]

Result

\(s = 4 \)
\(s = 7 \)
\(s = 9 \)

Naïve Algorithm

For each position \(s \) in \(0 \ldots n - m \), see if \(T[s + i] = P[i] \) for all \(1 \leq i \leq m \)

```plaintext
Naive-String-Matching(T, P)
1 \( n \leftarrow length(T) \)
2 \( m \leftarrow length(P) \)
3 for \( s \leftarrow 0 \) to \( n - m \)
4 do if Substring-At(T, P, s)
5 then output(s)

Substring-At(T, P, s)
1 for \( i \leftarrow 1 \) to \( length(P) \)
2 do if \( T[s + i] \neq P[i] \)
3 then return false
4 return true
```
Complexity of the Naïve Algorithm

- Complexity of Naive-String-Match is $O((n - m + 1)m)$

- Worst case example

 \[T = a^n, \quad P = a^m \]

 i.e.,

 \[T = \overline{aa \cdots a}, \quad P = \overline{aa \cdots a} \]

 So, $(n - m + 1)m$ is a tight bound, so the (worst-case) complexity of Naive-String-Match is

 $\Theta((n - m + 1)m)$

Improvement Strategy

- Observation

 \[T \quad a \mid b \mid c \mid a \mid a \mid b \mid a \mid a \mid b \mid a \mid b \mid a \mid c \mid a \]

 \[= = \neq \]

 \[P \quad a \mid b \mid a \]

- What now?

 - the naïve algorithm tells us to go back to the second position in T and to start from the beginning of P

 - can’t we simply move along through T?

 - why?
Improvement Strategy (2)

Here's a wrong but insightful strategy

Wrong-String-Matching(T, P)

1. $n \leftarrow \text{length}(T)$
2. $m \leftarrow \text{length}(P)$
3. $q \leftarrow 0$ \text{▷ number of characters matched in P}
4. $s \leftarrow 1$
5. \text{while} $s \leq n$
6. \hspace{1em} do $s \leftarrow s + 1$
7. \hspace{2em} if $T[s] = P[q + 1]$
8. \hspace{3em} then $q \leftarrow q + 1$
9. \hspace{3em} if $q = m$
10. \hspace{4em} then output($s - m$)
11. \hspace{3em} $q \leftarrow 0$
12. \hspace{2em} else $q \leftarrow 0$

© 2007 Antonio Carzaniga

Example run of Wrong-String-Matching

<table>
<thead>
<tr>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>p</td>
<td>a</td>
<td>g</td>
<td>i</td>
<td>i</td>
<td>a</td>
<td>i</td>
<td>o</td>
<td>b</td>
<td>a</td>
<td>g</td>
</tr>
</tbody>
</table>

P

\[P \quad \text{Output: 10} \]

$q + q + q + 1$

Done. Perfect!

Complexity: $\Theta(n)$
Improvement Strategy (4)

- What is wrong with Wrong-String-Matching?

```
  T: a a b a a a b a b a b a c a
  P: a a b

  output(0)  missed!
```

- So Wrong-String-Matching doesn’t work, but it tells us something useful

© 2007 Antonio Carzaniga

Improvement Strategy (5)

- Where did Wrong-String-Matching go wrong?

```
  T: a a b a a a b a b a b a c a
  P: a a b

  q+q+q-1
```

- Wrong: by going all the way back to \(q = 0 \) we throw away a good prefix of \(P \) that we already matched

© 2007 Antonio Carzaniga
Improvement Strategy (6)

- Another example

\[T \begin{array}{cccccccc}
 a & b & a & b & a & b & a & c \\
\end{array} \]

output (2)

\[P \begin{array}{cccc}
 a & b & a & b & a & c \\
\end{array} \]

- We have matched “ababa”
 - suffix “aba” can be reused as a prefix

New Strategy

- \(P[1 \ldots q] \) is the prefix of \(P \) matched so far

- Find the longest prefix of \(P \) that is also a suffix of \(P[2 \ldots q] \)
 - i.e., find \(0 \leq \pi < q \) such that \(P[q - \pi + 1 \ldots q] = P[1 \ldots \pi] \)
 - \(\pi = 0 \) means that such a prefix does not exist

- Restart from \(q \leftarrow \pi \)

- Iterate as usual

- In essence, this is the Knuth-Morris-Pratt algorithm
The Prefix Function

- Given a pattern prefix $P[1 \ldots q]$, the longest prefix of P that is also a suffix of $P[2 \ldots q]$ depends only on P and q
- This prefix is identified by its length $\pi(q)$
- Because $\pi(q)$ depends only on P (and q), π can be computed at the beginning by Prefix-Function
 - we represent π as an array of length m
- Example

 P: a b a b a c
 \[\pi: 0 \ 0 \ 1 \ 2 \ 3 \ 0 \]

The Knuth-Morris-Pratt Algorithm

```
KMP-String-Matching(T, P)
1   n ← length(T)
2   m ← length(P)
3   \(\pi\) ← Prefix-Function(P)
4   q ← 0               ▷ number of character matched
5   for i ← 1 to n     ▷ scan the text left-to-right
6     do while q > 0 and P[q + 1] ≠ T[i]
7       do q ← \(\pi[q]\)   ▷ no match: go back using $\pi$
8       if P[q + 1] = T[i]
9         then q ← q + 1    
10        if q = m
11          then output(i - m)
12         q ← \(\pi[q]\)   ▷ go back for the next match
```
Prefix Function Algorithm

- Computing the prefix function amounts to finding all the occurrences of a pattern \(P \) in itself.
- In fact, Prefix-Function is remarkably similar to KMP-String-Matching.

Prefix-Function Algorithm

1. \(m \leftarrow \text{length}(P) \)
2. \(\pi[1] \leftarrow 0 \)
3. \(k \leftarrow 0 \)
4. \(\text{for } q \leftarrow 2 \text{ to } m \)
 5. \(\text{do while } k > 0 \text{ and } P[k+1] \neq P[q] \)
 6. \(\text{do } k \leftarrow \pi[k] \)
 7. \(\text{if } P[k+1] = P[q] \)
 8. \(\text{then } k \leftarrow k + 1 \)
 9. \(\pi[q] = k \)

Prefix-Function at Work

Prefix-Function Algorithm

1. \(m \leftarrow \text{length}(P) \)
2. \(\pi[1] \leftarrow 0 \)
3. \(k \leftarrow 0 \)
4. \(\text{for } q \leftarrow 2 \text{ to } m \)
 5. \(\text{do while } k > 0 \text{ and } P[k+1] \neq P[q] \)
 6. \(\text{do } k \leftarrow \pi[k] \)
 7. \(\text{if } P[k+1] = P[q] \)
 8. \(\text{then } k \leftarrow k + 1 \)
 9. \(\pi[q] = k \)

© 2007 Antonio Carzaniga
Complexity of KMP

- $O(n)$ for the search phase
- $O(m)$ for the pre-processing of the pattern
- The complexity analysis is non-trivial
- Can we do better?

Comments on KMP

- Knuth-Morris-Pratt is $\Omega(n)$
 - KMP will always go through at least n character comparisons
 - it fixes our “wrong” algorithm in the case of periodic patterns and texts
- Perhaps there’s another algorithm that works better on the average case
 - e.g., in the absence of periodic patterns
A New Strategy

We match the pattern right-to-left

- If we find a bad character α in the text, we can shift
 - so that the pattern skips α, if α is not in the pattern
 - so that the pattern lines up with the rightmost occurrence of α
 - so that a pattern prefix lines up with a suffix of the current partial (or complete) match

In essence, this is the Boyer-Moore algorithm

Comments on Boyer-Moore

- Like KMP, Boyer-Moore includes a pre-processing phase
- The pre-processing is $O(m)$
- The search phase is $O(nm)$
- The search phase can be as low as $O(n/m)$ in common cases
- In practice, Boyer-Moore is the fastest string-matching algorithm for most applications