A Quick Review of Computer Networking
Architecture, Applications, Transport (TCP), Routing

Antonio Carzaniga

Faculty of Informatics
Universita della Svizzera italiana

February 21, 2022

What is the Internet?

What is the Internet?

wroPFPa »

¥ Chapo Trap House (@C/ X

C @ © & hips/twitter.com/CHAPOTRAPHOUSE (120% = <=+

v

v o @y » =

bips:/www.youtube.com/channel/UCos <+

W Noam Chomsky - Wikip X

¢ Chapo Trap Hot

Q

Searcl

v o @e u» =

3810 Tweets <«

Chapo Trap House &
@CHAPOTRAPHOUSE

&7 @willmenaker @cushbc
aywhatagain. Customer sel

®© Brooklyn, NY (§ chapotra

305 Following 164.2K Follo'

Tweets Twes

Pinned Tweet
[)

Don't miss what'’s happel
People on Twitter are the first to know.

Chapo Trap House &

WIKIPEDIA

The Free Encyclopedia

Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate

Contribute
Help

Learn to edit
Community portal
Recent changes
Upload file

Tools
What links here
Related changes
Special pages
Permanent link
Page information
Cite this page
Wwikidata item

Print/export
Download as PDF
Printable version
In other projects

Wikimedia Commons
Wikiquote
Wikisource

C ® O & htpsy/enwikipedia.org/v B 110%

-

o

2 Notlogged in Talk Contributions Create account Log in

Article Talk Read View source View history h Wikipedia Q

Noam Chomsky ®a

From Wikipedia, the free encyclopedia
(Redirected from Noam chomsky)

"Chomsky" redirects here. For other uses, see Chomsky (disambiguation).

Avram Noam Chomsky!?! (born
December 7, 1928) is an American
linguist, philosopher, cognitive
scientist, historian,[P)l<] social critic,
and political activist. Sometimes
called "the father of modern
linguistics",[4 Chomsky is also a
major figure in analytic philosophy
and one of the founders of the field
of cognitive science. He is Laureate
Professor of Linguistics at the
University of Arizona and Institute
Professor Emeritus at the

Noam Chomsky

Massachusetts Institute of

Technology (MIT), and is the author

of more than 150 books on topics

such as linguistics, war, politics, and Decembery, 1926 (age 92)
i Philadelphia, Pennsylvania,

mass media. Ideologically, he aligns e

with anarcho-syndicalism and

libertarian socialism.

Chomsky in 2017

Born Avram Noam Chomsky

Carol Doris Schatz
(m. 1949; died 2008)
Valeria Wasserman (m, 2014)

Spouse(s)

Born to Jewish immigrants in
Philadelphia, Chomsky developed an
early interest in anarchism from
alternative bookstores in New York
City. He studied at the University of
Pennsylvania. During his
postgraduate work in the Harvard

Children 3, including Aviva

Awards [show]

Academic background
Education University of Pennsylvania
(BA, 1949; MA, 1951; PhD,
1955)

Numberphile

M
Numberphile @ SRS
3.7M subscribers
HOME VIDEOS PLAYLISTS COMMUNITY CHANNI >
PLAY ALL SORT BY
5812 18 24 30 36 O 7 7.
Lo El° 3474263338,26471
42 52 60 68 78 84
?,_ PRI 327561395 762.20450
- R Rl 11503731 774330
R 4 210 216 222 240 g 555409083&53‘7__‘1
g 258 268 276 1 18869926607500450
zing a Pig - Eureka Sequences - The Levine Sequence -
Numberphile Numberphile
week ago 146K views - 3 weeks ago 155K views - 1 month ago
c cc

b
e
(

£
8
H

‘ . = e

agrams - Cuneiform Numbers - All the World's Coronavirus
Numberphile fits in a Coke Can -
month ago 149K views + 1 month'ago 189K views + 1 month ago

cc cc

won R Vs

What is the Internet?

What is the Internet?

What is the Internet?

What’s Inside?

mobile network
o

content
provider

enterprise
network

What’s Inside?

What’s Inside?

mobile network —

e

1) B | national or global ISP v

m Billions of connected devices

> “host” or “end system”
> run network applications at the “edge”

content
provider

datacenter
network

enterprise

g =
network 5/

|

mobile network

enterprise
network

content
provider

datacenter
network

What’s Inside?

m Billions of connected devices

> “host” or “end system”
> run network applications at the “edge”

m Links

> wireless: radio, satellite
» wired: copper, optic fiber

What’s Inside?

mobile network

m Billions of connected devices

> “host” or “end system”
> run network applications at the “edge”

m Links

> wireless: radio, satellite
» wired: copper, optic fiber

content
provider

datacenter m Router, switch

network
» forward “packets”
> routing

enterprise
network 5/

00

000

A Schematic View

A Schematic View

host or

e”d'sysw% 000
O

A Schematic View

host or
end-system

host or
end-system

packet switch

local-area
network

A Schematic View

A Schematic View

host or
end-system

packet switch

local-area
network

communication link

Basic Concepts

m The Internet uses packet switching

Basic Concepts

m The Internet uses packet switching

m Packet switch: a link-layer switch or a router

Basic Concepts
m The Internet uses packet switching
m Packet switch: a link-layer switch or a router

m Communication link: a connection between packet switches and/or end systems

Basic Concepts

m The Internet uses packet switching
m Packet switch: a link-layer switch or a router
m Communication link: a connection between packet switches and/or end systems

m Route: sequence of switches that a packet goes through (a.k.a. path)

Basic Concepts
m The Internet uses packet switching
m Packet switch: a link-layer switch or a router
m Communication link: a connection between packet switches and/or end systems
m Route: sequence of switches that a packet goes through (a.k.a. path)

m Protocol: control the sending and receiving of information to and from end systems and
packet switches

Communication Links

m Various types and forms of medium

Communication Links

m Various types and forms of medium
> Fiber-optic cable

> Twisted-pair copper wire

v

Coaxial cable

v

Wireless local-area links (e.g., 802.11, Bluetooth)

v

Satellite channel

Part |

Network Architecture

Packet Switching

Packet Switching

Packet Switching

Packet Switching

m The Internetis a packet-switched network

Packet Switching

m The Internetis a packet-switched network

m Information is transmitted in packets

Packet Switching
m The Internetis a packet-switched network
m Information is transmitted in packets

m Switches operate on individual packets

Packet Switching

m The Internetis a packet-switched network
m Information is transmitted in packets
m Switches operate on individual packets

m Aswitch (router) receives packets and forwards them along to other switches or to end
systems

Packet Switching

m The Internetis a packet-switched network
m Information is transmitted in packets
m Switches operate on individual packets

m Aswitch (router) receives packets and forwards them along to other switches or to end
systems

m Every forwarding decision is taken on the basis of the information contained in the packet

Circuit Switching

Circuit Switching

Circuit Switching

m The telephone network is a typical circuit-switched network
> notany more, really, but still...

Circuit Switching

m The telephone network is a typical circuit-switched network
> notany more, really, but still...

m Communication requires a connection setup phase in which the network reserves all the
necessary resources for that connection (links, buffers, switches, etc.)

Circuit Switching

m The telephone network is a typical circuit-switched network
> notany more, really, but still...

m Communication requires a connection setup phase in which the network reserves all the
necessary resources for that connection (links, buffers, switches, etc.)

B After a successful setup, the communicating systems are connected by a set of links
dedicated to the connection for the entire duration of their conversation

Circuit Switching

m The telephone network is a typical circuit-switched network
> notany more, really, but still...

m Communication requires a connection setup phase in which the network reserves all the
necessary resources for that connection (links, buffers, switches, etc.)

B After a successful setup, the communicating systems are connected by a set of links
dedicated to the connection for the entire duration of their conversation

B When the conversation ends, the network tears down the connection, freeing the
corresponding resources (links, buffers, etc.) for other connections

Circuit vs. Packet Switching

Circuit vs. Packet Switching

m Circuit switching requires an expensive setup phase

> however, once the connection is established, little or no processing is required

Circuit vs. Packet Switching

m Circuit switching requires an expensive setup phase

> however, once the connection is established, little or no processing is required

m Packet switching does not incur any setup cost

> however, it always incurs a significant processing and space overhead, on a per-packet basis

> processing cost for forwarding
> space overhead because every packet must be self-contained

Circuit vs. Packet Switching (2)

Circuit vs. Packet Switching (2)

m Circuit switching admits a straightforward implementation of quality-of-service
guarantees

> network resources are reserved at connection setup time

Circuit vs. Packet Switching (2)

m Circuit switching admits a straightforward implementation of quality-of-service
guarantees

> network resources are reserved at connection setup time

m Guaranteeing any quality of service with packet switching is very difficult

> no concept of a “connection”

> and again, processing, space overhead, etc.

Circuit vs. Packet Switching (3)

m Circuit switching allows only a limited sharing of communication resources

> once a connection is established, the resources are blocked even though there might be long
silence periods

> i.e.,circuit switching is an inefficient way to use the network

Circuit vs. Packet Switching (3)

m Circuit switching allows only a limited sharing of communication resources

> once a connection is established, the resources are blocked even though there might be long
silence periods

> i.e.,circuit switching is an inefficient way to use the network

m Packet switching achieves a much better utilization of network resources

> itis designed specifically to share links

> the advantage is fundamental, as we will see in studying queuing theory

Virtual Circuits

m Idea: combine the advantages of circuit switching and packet switching

Virtual Circuits

m Idea: combine the advantages of circuit switching and packet switching

m Thereis a connection setup phase

Virtual Circuits
m Idea: combine the advantages of circuit switching and packet switching
m Thereis a connection setup phase

m The connection does not create a physical circuit, but rather a “virtual circuit”

Virtual Circuits

m Idea: combine the advantages of circuit switching and packet switching
m Thereis a connection setup phase
m The connection does not create a physical circuit, but rather a “virtual circuit”

m Information is sent in packets, so links can be shared more effectively

Virtual Circuits

Idea: combine the advantages of circuit switching and packet switching
There is a connection setup phase

The connection does not create a physical circuit, but rather a “virtual circuit”
Information is sent in packets, so links can be shared more effectively

Packets carry a virtual circuit identifier instead of the destination address

Virtual Circuits

Idea: combine the advantages of circuit switching and packet switching
There is a connection setup phase

The connection does not create a physical circuit, but rather a “virtual circuit”
Information is sent in packets, so links can be shared more effectively

Packets carry a virtual circuit identifier instead of the destination address

> Important observation: at any given time there are much fewer connections than destinations

> much faster per-packet processing (forwarding)
> lower per-packet space overhead

Virtual Circuit

Virtual Circuit

Virtual Circuit

Taxonomy of Networks

communication
network

Taxonomy of Networks

communication
network

circuit packet
switching switching

communication
network

circuit
switching

/N

time frequency
division division
multiplexing multiplexing

Taxonomy of Networks

packet
switching

Taxonomy of Networks

communication

network
circuit packet
switching switching
.t|.m.e fre.qge'ncy virtual datagram
division division .
circuit network

multiplexing multiplexing

Taxonomy of Networks

communication

network
circuit packet
switching switching
.t|.m.e fre.qge'ncy virtual datagram
division division L
circuit network

multiplexing multiplexing

Service Perspective

host or
end-system

packet switch

local-area
network

Service Perspective

host or
end-system

packet switch

local-area
network

m What kind of service does the Internet offer to end systems?

Type of Service

m Two end systems can communicate through the Internet, but exactly what kind of
communication service is that of the Internet?

Type of Service

m Two end systems can communicate through the Internet, but exactly what kind of
communication service is that of the Internet?

m Connectionless, “best effort”
> the network accepts “datagrams” for delivery—this is conceptually similar to the postal
service
> “best effort” really means unreliable though not malicious

Type of Service

m Two end systems can communicate through the Internet, but exactly what kind of
communication service is that of the Internet?

m Connectionless, “best effort”

> the network accepts “datagrams” for delivery—this is conceptually similar to the postal
service

> “best effort” really means unreliable though not malicious

m Connection-oriented, reliable

» virtual duplex communication channel (A < B)—conceptually similar to a telephone service
» information is transmitted “reliably” and in order

Type of Service (2)

m How reliable is a “reliable” service?

Type of Service (2)

m How reliable is a “reliable” service?

m The term “reliable” means that information will eventually reach its destination if a route
is viable within a certain amount of time

Type of Service (2)

m How reliable is a “reliable” service?

m The term “reliable” means that information will eventually reach its destination if a route
is viable within a certain amount of time

m The network makes absolutely no guarantees on latency (i.e., the time it takes to transmit
some information from a source to a destination)

Internet Protocol Stack

application

Internet Protocol Stack

application

transport

Internet Protocol Stack

application

transport

network

Internet Protocol Stack

application

transport

network

link

Internet Protocol Stack

application

transport

network

link

physical

Internet Protocol Stack

Internet Protocol Stack (2)

m Application (e.g., HTTP, SMTP, and DNS)

» application functionalities
> application messages

Internet Protocol Stack (2)

m Application (e.g., HTTP, SMTP, and DNS)

» application functionalities
> application messages

m Transport (e.g., TCP and UDP)

> application multiplexing, reliable transfer (TCP), congestion control (TCP)
» datagrams (UDP) or segments (TCP)

Internet Protocol Stack (2)

m Application (e.g., HTTP, SMTP, and DNS)

» application functionalities
> application messages

m Transport (e.g., TCP and UDP)

> application multiplexing, reliable transfer (TCP), congestion control (TCP)
» datagrams (UDP) or segments (TCP)

m Network (IP)

> end to end datagram, best-effort service, routing, fragmentation
> packets (IP)

Internet Protocol Stack (2)

m Application (e.g., HTTP, SMTP, and DNS)

» application functionalities
> application messages

m Transport (e.g., TCP and UDP)

> application multiplexing, reliable transfer (TCP), congestion control (TCP)
» datagrams (UDP) or segments (TCP)

m Network (IP)

> end to end datagram, best-effort service, routing, fragmentation
> packets (IP)

m Link (e.g., Ethernet and PPP)

> point-to-point or local broadcast communication
> frames (or packets)

Internet Protocol Stack (2)

Application (e.g., HTTP, SMTP, and DNS)

» application functionalities
> application messages

Transport (e.g., TCP and UDP)

> application multiplexing, reliable transfer (TCP), congestion control (TCP)
» datagrams (UDP) or segments (TCP)

Network (IP)

> end to end datagram, best-effort service, routing, fragmentation
> packets (IP)

Link (e.g., Ethernet and PPP)

> point-to-point or local broadcast communication
> frames (or packets)

Physical

Part Il

Delay and Throughput

Delay (Latency) and Rate (Throughput)

connection

Delay (Latency) and Rate (Throughput)

connection
message e =

100---110

Delay (Latency) and Rate (Throughput)

connection

first bit
enters

Delay (Latency) and Rate (Throughput)

connection

first bit first bit
enters exists

Delay (Latency) and Rate (Throughput)

connection
100---110
|
to t t
first bit first bit last bit

enters exists exits

Delay (Latency) and Rate (Throughput)

connection ¢ bits
100---110
to t t
first bit first bit last bit

enters exists exits

Delay (Latency) and Rate (Throughput)

connection 2 bits
100---110
to t t
first bit first bit last bit
enters exists exits

Propagation Delay dprop = t1 — to sec

Delay (Latency) and Rate (Throughput)

to
first bit
enters

Propagation Delay

Transmission Rate

connection 2 bits
100---110
t ty
first bit last bit
exists exits
bits/sec

R =
thh—-t

Delay (Latency) and Rate (Throughput)

connection

to
first bit
enters

Propagation Delay

Transmission Rate

Total transfer time

dprop =t -t

dend-end =d+—

¢ bits
100---110
t
first bit last bit
exists exits
sec
bits/sec
sec

Examples

Hosts A and B are connected through a link with propagation delay d, = 10ms and
transmission rate R = 1Gb/s. The maximum packet size is MTU = 1500B.

Examples

Hosts A and B are connected through a link with propagation delay d, = 10ms and
transmission rate R = 1Gb/s. The maximum packet size is MTU = 1500B.

m Question 1: How long does it take for host A to transmit S = 1MB of data?

Examples

Hosts A and B are connected through a link with propagation delay d, = 10ms and
transmission rate R = 1Gb/s. The maximum packet size is MTU = 1500B.

m Question 1: How long does it take for host A to transmit S = 1MB of data?

B Question 2: How long does it take for host A to transmit S = 1MB of data if the usable
payload is MSS = 1400B?

Examples

Hosts A and B are connected through a link with propagation delay d, = 10ms and
transmission rate R = 1Gb/s. The maximum packet size is MTU = 1500B.

m Question 1: How long does it take for host A to transmit S = 1MB of data?

B Question 2: How long does it take for host A to transmit S = 1MB of data if the usable
payload is MSS = 1400B?

m Question 3: What is the total transfer time for host B to receive S = 1MB of data if the
usable payload is MSS = 1400B?

Examples

Hosts A and B are connected through a link with propagation delay d, = 10ms and
transmission rate R = 1Gb/s. The maximum packet size is MTU = 1500B.

m Question 1: How long does it take for host A to transmit S = 1MB of data?

B Question 2: How long does it take for host A to transmit S = 1MB of data if the usable
payload is MSS = 1400B?

m Question 3: What is the total transfer time for host B to receive S = 1MB of data if the
usable payload is MSS = 1400B?

m Question 4: What is the total transfer time for host B to receive S = 2KB of data if the
usable payload is MSS = 1400B?

Store-And-Forward Delay

Store-And-Forward Delay

di, R

Store-And-Forward Delay

d2, Ry

0

‘k)(/i

)

di, R

dx

Store-And-Forward Delay

d2, Ry

0

‘k)(/i

)

Store-And-Forward Delay

d2, Ry

0

)

Store-And-Forward Delay

dx
di, R d2, Ry
()
—— Fa)

4
dend-end = d1 + R +dy
1

Store-And-Forward Delay

dx
di, R d2, Ry
()
—— Fa)

4 4
dend-end = d1 + R_l +dy + R_z

Store-And-Forward Delay

dx
di, R d2, Ry
()
—— Fa)

4 4
dend-end = d1 + R_l +dy + R_z +d;

di, R

Store-And-Forward Delay

dx

d2, Ry

0

—()— o)

4 4
Uend-end = h + — +dy+ — + d>

R1 Ry
dp, R dp, R dp’ R
0@ @

di, R

Store-And-Forward Delay

dx

d2, Ry

—()— o)

4 4
Uend-end = h + — +dy+ — + d>

(i

R1 Ry
dx dx dx dx
dp, R dp, R dp’ R
OO ® @

4
dend-end = N (dp + R + dx)

Store-And-Forward Delay

Store-And-Forward Delay

d d d d
dp,1, R1 e dp2. R2 2 dp 3. R3 3 ="

f—@—®—® - ®

dend-end = N (d_p +T+ d_x)

Store-And-Forward Delay

d d d d
dp,1, R1 e dp2. R2 2 dp 3. R3 3 ="

f—@—®—® - ®

dend-end = N (d_p +T+ d_x)

where
d_p = avg{dp,}

-]
T = avg E
i

dy = avg{dy,}

Store-And-Forward Delay

d d d d
dp,1, R1 e dp2. R2 2 dp 3. R3 3 ="

f—@—®—® - ®

dend-end = N (d_p +T+ d_x)

where
d_p = avg{dp,}

-]
T = avg E
i

dy = avg{dy,}

End-to-End Throughput

di, R

d2, Ry

End-to-End Throughput

)

di, R

d2, Ry

End-to-End Throughput

Rend-end =

)

dx

di, R ~ d2, Ry

End-to-End Throughput

0

‘k)(/i

Rend-end = min{R1, Ry}

)

End-to-End Throughput

dx

di, R d2, Ry

Rend-end = min{R1, Ry}

d d d d
dp, Ry dp Ry dp Ry i

@@ @

End-to-End Throughput

dx

di, R d2, Ry

Rend-end = min{R1, Ry}

dx dx dx dx
dp. Ry dp. Ry dp. R3
—O—O—® @

Rend-end = Min{R1,Ry, ..., Ry}

Processing and Queuing Delays

di, R

dx

Processing and Queuing Delays

d2, Ry

0

‘k)(/i

)

Processing and Queuing Delays

X
dl, Rl d2’ RZ
H, @ H,

Processing and Queuing Delays

di, Ry d2, Ry

H1

H,

-

dy = dcpu + dqueue

dqueue = |q|/Rx

Processing and Queuing Delays

di, Ry d2, Ry

H1

H,

-

queue length

output rate

Queuing Delay

dx =dcpu t+ dqueue
queue length I
where /_

dqueue = |Q|/Rx

\ output rate I

Queuing Delay

dx =dcpu t+ dqueue
queue length I
where /_

dqueue = |q|/Rx

\ output rate I

Ry is the transmission rate, which means that it is also the the rate at which packets get out of
the queue

Queuing Delay

dx = depu + dgueve
queue length I

dqueue =1q|/Rx

\ output rate

Ry is the transmission rate, which means that it is also the the rate at which packets get out of
the queue

dend-end = N (d_p +T +depy +avg {%})

i

Examples

Hosts A and B are connected through a path of n = 10 hops, each with delay d, = 10ms and
transmission rate R = 1Gb/s. The maximum packet size is MTU = 1500B. Each router along the
path has Q = 20MB buffers (queues).

Examples
Hosts A and B are connected through a path of n = 10 hops, each with delay d, = 10ms and
transmission rate R = 1Gb/s. The maximum packet size is MTU = 1500B. Each router along the

path has Q = 20MB buffers (queues).

m Question 1: How long does it take for host A to transmit S = 1MB of data?

Examples
Hosts A and B are connected through a path of n = 10 hops, each with delay d, = 10ms and
transmission rate R = 1Gb/s. The maximum packet size is MTU = 1500B. Each router along the
path has Q = 20MB buffers (queues).

m Question 1: How long does it take for host A to transmit S = 1MB of data?

m Question 2: What is the total transfer time for S = 1MB of data from A to B if the usable
payload is MSS = 1400B in the best case?

Examples
Hosts A and B are connected through a path of n = 10 hops, each with delay d, = 10ms and
transmission rate R = 1Gb/s. The maximum packet size is MTU = 1500B. Each router along the
path has Q = 20MB buffers (queues).

m Question 1: How long does it take for host A to transmit S = 1MB of data?

m Question 2: What is the total transfer time for S = 1MB of data from A to B if the usable
payload is MSS = 1400B in the best case?

m Question 3: What is the total transfer time for S = 1MB of data from A to B if the usable
payload is MSS = 1400B in the worst case?

Part Il

Application Protocols

Application Protocols

HTTP

Application Protocols

HTTP

SMTP

Application Protocols

Application Protocols

HTTP

SMTP

DNS

Application Protocols

HTTP

SMTP

DNS

Application Protocols

HTTP

SMTP

DNS

— GET / HTTP/1.1...

—>

Application Protocols

HTTP

SMTP

DNS

— GET / HTTP/1.1... —>»

[«€—— HTTP/1.1 200... —

Application Protocols

HTTP

SMTP

DNS

— GET / HTTP/1.1... —>»

[«€—— HTTP/1.1 200... —

- GET... ————————>

Application Protocols

HTTP

SMTP

DNS

— GET / HTTP/1.1... —>»

[«€—— HTTP/1.1 200... —

- GET... ————————>

[€—— HTTP/1.1 200... —

Application Protocols

HTTP

SMTP

DNS

connection

— GET /

HTTP/1.1... —»

[«€—— HTTP/1.1 200... —

— GET...

—_>

[€—— HTTP/1.1 200... —

Application Protocols

HTTP

SMTP

DNS

connection

— GET / HTTP/1.1... —>»

[«€—— HTTP/1.1 200... —

- GET... ————————>

[€—— HTTP/1.1 200... —

[€— 250 Yo... —
— HELO... ———————— >
— MAIL FRO.M.:.'.. —>
— RCPT TO:‘.;..—)
— QUIT —)‘ “

| €————— 221 Bye —

Application Protocols

HTTP

SMTP

DNS

connection

connection

— GET / HTTP/1.1... —>»

[«€—— HTTP/1.1 200... —

- GET... ————————>

[€—— HTTP/1.1 200... —

[€— 250 Yo... —
— HELO... ———————— >
— MAIL FRO.M.:.... —>
— RCPT TO:'.A...—)
— QUIT —)‘ “

| €————— 221 Bye —

Application Protocols

HTTP SMTP DNS
connection connection messages
root
— GET / HTTP/1.1... —>» [€— 250 Yo... —
l«—— HTTP/1.1 200... — - HELO... ———————> .ch
[~ MAIL FROM:... ——] DNS
- GET... ————— > - RCPT TO:... ———> usi.ch
l«—— HTTP/1.1 200... — - QUIT —————————> app.

| €————— 221 Bye —

Application Protocols

HTTP SMTP DNS
connection connection messages
root
— GET / HTTP/1.1... —» |[€—— 250 Yo... —
[€—— HTTP/1.1 200... — = HELO... ———> .ch
- MAIL FROM:... ——— DNS
- GET... ————— > - RCPT TO:... ———> usi.ch
l«—— HTTP/1.1 200... — - QUIT ————> app.

| €————— 221 Bye —

Application Protocols

HTTP SMTP DNS
connection connection messages
root
— GET / HTTP/1.1... —>» [€— 250 Yo... —
[€—— HTTP/1.1 200... — - HELO... ——————> .ch
[~ MAIL FROM:... ——] DNS
- GET... ————— > - RCPT TO:... ———> usi.ch
l€«—— HTTP/1.1 200... — - QUIT —————————» app.

| €————— 221 Bye —

Application Protocols

HTTP SMTP DNS
connection connection messages
root

— GET / HTTP/1.1... —>»

[«€—— HTTP/1.1 200... —

- GET... ————————>

[€—— HTTP/1.1 200... —

[€— 250 Yo... —
— HELO... ———————— >
— MAIL FRO.M.:.'.. —>
— RCPT TO:‘.;..—)
— QUIT —)‘ “

| €————— 221 Bye —

/.ch

DNS
usi.ch
app.

Application Protocols

HTTP SMTP DNS
connection connection messages
root

— GET / HTTP/1.1... —>»

[«€—— HTTP/1.1 200... —

- GET... ————————>

[€—— HTTP/1.1 200... —

[€— 250 Yo... —
— HELO... ———————— >
— MAIL FRO.M.:.'.. —>
— RCPT TO:‘.;..—)
— QUIT —)‘ “

| €————— 221 Bye —

Application Protocols

HTTP SMTP DNS
connection connection messages
root
— GET / HTTP/1.1... —» |[€—— 250 Yo... —
[€—— HTTP/1.1 200... — = HELO... ———> .ch
[~ MAIL FROM:... ——] DNS
- GET... ————— > - RCPT TO:... ———> usi.ch
l«—— HTTP/1.1 200... — - QUIT ————> app.

| €————— 221 Bye —

Application Protocols

HTTP SMTP DNS
connection connection messages
root
— GET / HTTP/1.1... —» |[€—— 250 Yo... —
[€—— HTTP/1.1 200... — = HELO... ———> .ch
[~ MAIL FROM:... ——] DNS
- GET... ————— > - RCPT TO:... ———> \usi_ch
l«—— HTTP/1.1 200... — - QUIT ————> app.

| €————— 221 Bye —

Application Protocols

HTTP SMTP DNS
connection connection messages
root
— GET / HTTP/1.1... —» |[€—— 250 Yo... —
[€—— HTTP/1.1 200... — = HELO... ———> .ch
[~ MAIL FROM:... ——] DNS
- GET... ————— > - RCPT TO:... ———> l usi.ch
l«—— HTTP/1.1 200... — - QUIT ————> app.

| €————— 221 Bye —

Part IV

Application Multiplexing

Transport Layer in the Internet

Transport Layer in the Internet

m Transport Control Protocol (TCP)

» conntection-oriented (i.e., “connections”)

Transport Layer in the Internet

m Transport Control Protocol (TCP)

» conntection-oriented (i.e., “connections”)

m User Datagram Protocol (UDP)

> connectionless (i.e., “messages”)

Transport Layer in the Internet

m Transport Control Protocol (TCP)

» conntection-oriented (i.e., “connections”)

m User Datagram Protocol (UDP)

> connectionless (i.e., “messages”)

m Terminology

> transport-layer packets are called segments

Transport Layer in the Internet

m Transport Control Protocol (TCP)

» conntection-oriented (i.e., “connections”)

m User Datagram Protocol (UDP)

> connectionless (i.e., “messages”)

m Terminology

> transport-layer packets are called segments

B Basic assumptions on the underlying network layer

Transport Layer in the Internet

m Transport Control Protocol (TCP)

» conntection-oriented (i.e., “connections”)

m User Datagram Protocol (UDP)

> connectionless (i.e., “messages”)

m Terminology

> transport-layer packets are called segments

B Basic assumptions on the underlying network layer

> every host has one unique IP address

Transport Layer in the Internet

m Transport Control Protocol (TCP)

» conntection-oriented (i.e., “connections”)

m User Datagram Protocol (UDP)

> connectionless (i.e., “messages”)

m Terminology

> transport-layer packets are called segments

B Basic assumptions on the underlying network layer

> every host has one unique IP address
> best-effort delivery service

> no guarantees on the integrity of segments
> no guarantees on the order in which segments are delivered

Transport-Layer Value-Added Service

Transport-Layer Value-Added Service

m Transport-layer multiplexing/demultiplexing

> i.e., connecting applications as opposed to hosts

Transport-Layer Value-Added Service

m Transport-layer multiplexing/demultiplexing

> i.e., connecting applications as opposed to hosts

m Reliable data transfer

> i.e.,integrity and possibly ordered delivery

Transport-Layer Value-Added Service

m Transport-layer multiplexing/demultiplexing

> i.e., connecting applications as opposed to hosts

m Reliable data transfer

> i.e.,integrity and possibly ordered delivery

m Connections

> i.e., streams
> can be seen as the same as ordered delivery

Transport-Layer Value-Added Service

m Transport-layer multiplexing/demultiplexing

> i.e., connecting applications as opposed to hosts

m Reliable data transfer

> i.e.,integrity and possibly ordered delivery

m Connections

> i.e., streams
> can be seen as the same as ordered delivery

m Congestion control

> i.e., end-to-end traffic (admission) control so as to avoid destructive congestions within the
network

Multiplexing/Demultiplexing
—)
N

O

Multiplexing/Demultiplexing

C]\ /C]

GET / HTTP/7

Web
browser

Web
server

Multiplexing/Demultiplexing

server

Multiplexing/Demultiplexing

C]\ /C]

server

Multiplexing/Demultiplexing

C]\ /C]

server

How do we distinguish all these “connections”?

Multiplexing/Demultiplexing

C]\ /C]

server

How do we distinguish all these “connections”?
(in this case, connections between the same two hosts)

Ports

Ports

m Each connection from host A to host B is identified by two port numbers P, and Pg

Ports

m Each connection from host A to host B is identified by two port numbers P, and Pg
m Thus a “connection” is identified by two pairs of host and port identifiers

(IP address, port), «— (IP address, port)g

Ports

m Each connection from host A to host B is identified by two port numbers P, and Pg
m Thus a “connection” is identified by two pairs of host and port identifiers

(IP address, port), «— (IP address, port)g

m How do we find out which application (host and port number) to connect to?

Ports

m Each connection from host A to host B is identified by two port numbers P, and Pg
m Thus a “connection” is identified by two pairs of host and port identifiers

(IP address, port), «— (IP address, port)g

m How do we find out which application (host and port number) to connect to?

> outside the scope of the definition of the transport layer
> but of course we can have “well-known” service numbers

Ports

Ports

m The message format of both UDP and TCP starts with the source and destination port
numbers
0 1516 31

source port destination port

Ports

m The message format of both UDP and TCP starts with the source and destination port

numbers

mEg,

0 1516

31

source port

destination port

src port dst port
1234 80

3—>

Ports

m The message format of both UDP and TCP starts with the source and destination port

numbers

mEg,

0 1516

31

source port

destination port

src port dst port
1234 80

D re—

src port dst port

Ports

m The message format of both UDP and TCP starts with the source and destination port

numbers

mEg,

0 1516

31

source port

destination port

src port dst port
1234 80

D re—

80 1234

src port dst port

PartV

Reliability

A Human Reliability Protocol

m Transmission coded for error detection

> the sender sends information using a redundant “code”

» the receiver can decode the correct data it receives, or it can notice a transmission error

A Human Reliability Protocol

m Transmission coded for error detection

> the sender sends information using a redundant “code”

» the receiver can decode the correct data it receives, or it can notice a transmission error

m Receiver feedback

> the receiver sends positive or negative acknowledgments

A Human Reliability Protocol

m Transmission coded for error detection

> the sender sends information using a redundant “code”

» the receiver can decode the correct data it receives, or it can notice a transmission error

m Receiver feedback

> the receiver sends positive or negative acknowledgments

B Retransmission

» the sender retransmits upon a NACK or a timeout (silence)

A Human Reliability Protocol

m Transmission coded for error detection

> the sender sends information using a redundant “code”

» the receiver can decode the correct data it receives, or it can notice a transmission error

m Receiver feedback

> the receiver sends positive or negative acknowledgments

B Retransmission

» the sender retransmits upon a NACK or a timeout (silence)

m Sequence numbers

» each transmission is stamped with a sequence number that the receiver can detect and
discard data already delivered

Simple Reliability Protocol

sender receiver

Simple Reliability Protocol

sender receiver

send([pkt;,0])

sender

send([pkt;,0])

[/OA/fJ)O]

Simple Reliability Protocol

receiver

sender

send([pkt;,0])

['0/“1,0]

Simple Reliability Protocol

receiver

send([ACK,0]); deliver(pkt;)

sender

send([pkt;,0])

['0/“1,0]

Simple Reliability Protocol

receiver

send([ACK,0]); deliver(pkt;)

sender

send([pkt;,0])

send([pkt,,1])

['0/“1,0]

Simple Reliability Protocol

receiver

send([ACK,0]); deliver(pkt;)

Simple Reliability Protocol

sender receiver

send([pkt;,0])

send([ACK,0]); deliver(pkt;)

send([pkt,,1])

Simple Reliability Protocol

sender receiver

send([pkt;,0])

send([ACK,0]); deliver(pkt;)

send([pkt,,1])

send([ACK,1]); deliver(pkt,)

Simple Reliability Protocol

sender receiver

send([pkt;,0])

send([ACK,0]); deliver(pkt;)

send([pkt,,1])

send([ACK,1]); deliver(pkt,)

Network Usage

sender receiver

Network Usage

sender receiver

Network Usage

sender receiver

!

sender

Network Usage

receiver

epktl /R

sender

receiver

Network Usage

Network Usage

sender receiver

utilization
factor

157pkt’/ R

U= 2d+ 8o /R

Example: How much of the network capacity is actually used over a link with with propagation
delay dp = 50ms, transmission rate R = 1MB/s, and maximum packet size MTU = 150087

Improving Network Usage

m How do we achieve a better utilization factor?

m How do we achieve a better utilization factor?

sender

¢ petd

['OA'fJ,OJ

Improving Network Usage

receiver

Improving Network Usage

m How do we achieve a better utilization factor?

sender receiver

Improving Network Usage

m How do we achieve a better utilization factor?

sender receiver

Improving Network Usage

m How do we achieve a better utilization factor?

sender receiver

Go-Back-N

m Idea: the sender transmits multiple packets without waiting for an acknowledgement

Go-Back-N

m Idea: the sender transmits multiple packets without waiting for an acknowledgement

m Sender has up to W unacknowledged packets in the pipeline

> the sender’s state machine gets very complex
> we represent the sender’s state with its queue of acknowledgements

Go-Back-N

m Ildea: the sender transmits multiple packets without waiting for an acknowledgement

m Sender has up to W unacknowledged packets in the pipeline

> the sender’s state machine gets very complex
> we represent the sender’s state with its queue of acknowledgements

Go-Back-N

m Ildea: the sender transmits multiple packets without waiting for an acknowledgement

m Sender has up to W unacknowledged packets in the pipeline

> the sender’s state machine gets very complex
> we represent the sender’s state with its queue of acknowledgements

acknowledged pending available unavailable

Go-Back-N

m Idea: the sender transmits multiple packets without waiting for an acknowledgement

m Sender has up to W unacknowledged packets in the pipeline

> the sender’s state machine gets very complex
> we represent the sender’s state with its queue of acknowledgements

acknowledged pending available unavailable

first pending
acknowledgement
(base)

Go-Back-N

m Idea: the sender transmits multiple packets without waiting for an acknowledgement

m Sender has up to W unacknowledged packets in the pipeline

> the sender’s state machine gets very complex
> we represent the sender’s state with its queue of acknowledgements

acknowledged pending available unavailable
first pending next available
acknowledgement sequence number

(base) (next_seq_num)

Go-Back-N

m Idea: the sender transmits multiple packets without waiting for an acknowledgement

m Sender has up to W unacknowledged packets in the pipeline

> the sender’s state machine gets very complex
> we represent the sender’s state with its queue of acknowledgements

acknowledged pending available unavailable
first pending next available
acknowledgement sequence number
(base) (next_seq_num)

window size (W)

Sliding Window Protocol: Sender

A A

base next_seq_num
1

sliding window

Sliding Window Protocol: Sender

A A

base next_seq_num
.

sliding window
m application_send(pkt;)

Sliding Window Protocol: Sender

A A

base next_seq_num
1

sliding window

m application_send(pkt;)

> send([pkt;,next_seq_num])

Sliding Window Protocol: Sender

A A

base next_seq_num
1]

sliding window
m application_send(pkt;)

> send([pkt;,next_seq_num])
> next_seq_num <« next_seq_num + 1

Sliding Window Protocol: Sender

A A

base next_seq_num
1]

sliding window
m application_send(pkt;)

> send([pkt;,next_seq_num])
> next_seq_num <« next_seq_num + 1

m recv([ACK,A])

Sliding Window Protocol: Sender
A A

base next_seq_num
1

sliding window
m application_send(pkt;)

> send([pkt;,next_seq_num])
> next_seq_num <« next_seq_num + 1

m recv([ACK,A])

> base — A+1

Sliding Window Protocol: Sender
A A

base next_seq_num
1

sliding window

m application_send(pkt;)

> send([pkt;,next_seq_num])
> next_seq_num <« next_seq_num + 1

m recv([ACK,A])

> base — A+1
> notice that acknowledgements are cumulative

Comments

m Concepts

Comments

m Concepts

> sequence numbers

Comments

m Concepts

> sequence numbers
> sliding window

Comments

m Concepts
> sequence numbers
> sliding window
> cumulative acknowledgements

Comments

m Concepts

> sequence numbers

> sliding window

> cumulative acknowledgements

> checksums, timeouts, and sender-initiated retransmission

Comments

m Concepts
> sequence numbers
> sliding window
> cumulative acknowledgements
> checksums, timeouts, and sender-initiated retransmission

m Advantages: simple, minimal state

m Concepts

>

| 4
| 4
>

sequence numbers

sliding window

cumulative acknowledgements

checksums, timeouts, and sender-initiated retransmission

m Advantages: simple, minimal state

>
>

the sender maintains two counters and one timer, plus packet buffer
the receiver maintains one counter, no packet buffer

Comments

m Concepts

>

| 4
| 4
>

sequence numbers

sliding window

cumulative acknowledgements

checksums, timeouts, and sender-initiated retransmission

m Advantages: simple, minimal state

>
>

the sender maintains two counters and one timer, plus packet buffer
the receiver maintains one counter, no packet buffer

m Disadvantages: not optimal, not adaptive

Comments

Comments

m Concepts

>

| 4
| 4
>

sequence numbers

sliding window

cumulative acknowledgements

checksums, timeouts, and sender-initiated retransmission

m Advantages: simple, minimal state

>
>

the sender maintains two counters and one timer, plus packet buffer
the receiver maintains one counter, no packet buffer

m Disadvantages: not optimal, not adaptive

>

the sender can fill the window without filling the pipeline

Comments

m Concepts

>

| 4
| 4
>

sequence numbers

sliding window

cumulative acknowledgements

checksums, timeouts, and sender-initiated retransmission

m Advantages: simple, minimal state

>
>

the sender maintains two counters and one timer, plus packet buffer
the receiver maintains one counter, no packet buffer

m Disadvantages: not optimal, not adaptive

>

>

the sender can fill the window without filling the pipeline
the receiver could buffer out-of-order packets...

Performance Analysis

m What is a good value for W?

Performance Analysis

m What is a good value for W?

» W that achieves the maximum utilization of the connection

Performance Analysis

m What is a good value for W?

» W that achieves the maximum utilization of the connection

= stream
500ms
1Mb/s
= 7

Swas
Il

Performance Analysis

m What is a good value for W?

» W that achieves the maximum utilization of the connection

= stream
500ms
1Mb/s
= 7

Swas
Il

m The problem may seem a bit underspecified. What is the (average) packet size?

¢t = 1Kb
d = 500ms
R = 1Mb/s
w 2R — 1000

epkt

Performance Analysis

m The RTT-rate product (2d x R) is the crucial factor

Performance Analysis

m The RTT-rate product (2d x R) is the crucial factor

> WX € <2dXR

> why W x £y > 2d X R doesn’t make much sense?

Performance Analysis

m The RTT-rate product (2d x R) is the crucial factor

> WX € <2dXR
> why W x £y > 2d X R doesn’t make much sense?
> maximum channel utilization when W x €,; = 2d X R

> 2d x R can be thought of as the capacity of a connection

Problems with Go-Back-N

m Let’s consider a fully utilized connection

m Let’s consider a fully utilized connection

gpkt
d
R

w

1Kb

500ms
1Mb/s

Rxd — 1000

epkt

Problems with Go-Back-N

Problems with Go-Back-N

m Let’s consider a fully utilized connection

bt = 1Kb
d = 500ms
R = 1Mb/s
w = %’ = 1000

m What happens if the first packet (or acknowledgement) is lost?

Problems with Go-Back-N

m Let’s consider a fully utilized connection

bt = 1Kb
d = 500ms
R = 1Mb/s
w = %’ = 1000

m What happens if the first packet (or acknowledgement) is lost?

m Sender retransmits the entire content of its buffers

Problems with Go-Back-N

m Let’s consider a fully utilized connection

bt = 1Kb
d = 500ms
R = 1Mb/s
w = %’ = 1000

m What happens if the first packet (or acknowledgement) is lost?

m Sender retransmits the entire content of its buffers
> W X €y = 2d X R = 1Mb

> retransmitting 1Mb to recover 1Kb worth of data isn’t exactly the best solution. Not to
mention conjestions...

Problems with Go-Back-N

m Let’s consider a fully utilized connection

bt = 1Kb
d = 500ms
R = 1Mb/s
w = %’ = 1000

m What happens if the first packet (or acknowledgement) is lost?

m Sender retransmits the entire content of its buffers
> W X €y = 2d X R = 1Mb

> retransmitting 1Mb to recover 1Kb worth of data isn’t exactly the best solution. Not to
mention conjestions...

m |s there a better way to deal with retransmissions?

Selective Repeat

m Idea: have the sender retransmit only those packets that it suspects were lost or
corrupted

Selective Repeat

m Idea: have the sender retransmit only those packets that it suspects were lost or
corrupted

> sender maintains a vector of acknowledgement flags

Selective Repeat

m Idea: have the sender retransmit only those packets that it suspects were lost or
corrupted

> sender maintains a vector of acknowledgement flags

> receiver maintains a vector of acknowledged falgs

Selective Repeat

m Idea: have the sender retransmit only those packets that it suspects were lost or
corrupted

> sender maintains a vector of acknowledgement flags
> receiver maintains a vector of acknowledged falgs

> infact, receiver maintains a buffer of out-of-order packets

Selective Repeat

m Idea: have the sender retransmit only those packets that it suspects were lost or
corrupted

> sender maintains a vector of acknowledgement flags
> receiver maintains a vector of acknowledged falgs
> infact, receiver maintains a buffer of out-of-order packets

> sender maintains a timer for each pending packet

Selective Repeat

m Idea: have the sender retransmit only those packets that it suspects were lost or
corrupted

> sender maintains a vector of acknowledgement flags

> receiver maintains a vector of acknowledged falgs

> infact, receiver maintains a buffer of out-of-order packets
> sender maintains a timer for each pending packet

» sender resends a packet when its timer expires

Selective Repeat

m Idea: have the sender retransmit only those packets that it suspects were lost or
corrupted

> sender maintains a vector of acknowledgement flags

> receiver maintains a vector of acknowledged falgs

> infact, receiver maintains a buffer of out-of-order packets
> sender maintains a timer for each pending packet

» sender resends a packet when its timer expires

> sender slides the window when the lowest pending sequence number is acknowledged

Selective Repeat: Sender

A A

base next_seq_num
1

sliding window

Selective Repeat: Sender

A A

base next_seq_num
1

sliding window

m application_send(pkt;)

Selective Repeat: Sender

A A

base next_seq_num
1

sliding window
m application_send(pkt;)

> send([pkt;,next_seq_num])
> start_timer(next_seq_num)

Selective Repeat: Sender

A A

base next_seq_num
1]

sliding window

m application_send(pkt;)
> send([pkt;,next_seq_num])
> start_timer(next_seq_num)
> next_seq_num <« next_seq_num + 1

Selective Repeat: Sender

A A

base next_seq_num
1]

sliding window
m application_send(pkt;)

> send([pkt;,next_seq_num])
> start_timer(next_seq_num)
> next_seq_num <« next_seq_num + 1

m recv([ACK,A])

Selective Repeat: Sender

base next_seq_num

sliding window

m application_send(pkt;)

> send([pkt;,next_seq_num])
> start_timer(next_seq_num)
> next_seq_num <« next_seq_num + 1

m recv([ACK,A])
> acks[A] <« 1 // remember that Awas ACK’d

Selective Repeat: Sender

base next_seq_num

sliding window

m application_send(pkt;)

> send([pkt;,next_seq_num])
> start_timer(next_seq_num)
> next_seq_num <« next_seq_num + 1

m recv([ACK,A])

> acks[A] <« 1 // remember that Awas ACK’d
> acknowledgements are no longer cumulative

Selective Repeat: Receiver

Selective Repeat: Receiver

received acceptable not usable

A

rcv_base
1
T

sliding window

Selective Repeat: Receiver

received ¢, acceptable not usable

A

rcv_base
1
T

sliding window

m recv([pkti,X1]) and rcv_base < X; < rcv_base + W

Selective Repeat: Receiver

received ¢, acceptable not usable

A

rcv_base
1
T

sliding window

m recv([pkti,X1]) and rcv_base < X; < rcv_base + W
> buffer[X1] « pkt;
> send([ACK, X1]*) // no longer a “cumulative” ACK

Selective Repeat: Receiver

received acceptable not usable

A

rcv_base
1
T

sliding window

Selective Repeat: Receiver

X2
received ¢, acceptable not usable

A

rcv_base
1
T

sliding window

m recv([pkt,,X;]) and rcv_base < X, < rcv_base + W
> buffer[X,] « pkt,
> send([ACK, X2]*)

Selective Repeat: Receiver

X2
received ¢, acceptable not usable

A

rcv_base
1
T

sliding window

m recv([pkt,,X;]) and rcv_base < X, < rcv_base + W
> buffer[X,] « pkt,
> send([ACK, X2]*)
> if X, = rcv_base:

Selective Repeat: Receiver

X3 B
received ¢, ¢, acceptable not usable

A

rcv_base
1
T

sliding window

m recv([pkt,,X;]) and rcv_base < X, < rcv_base + W
> buffer[X,] « pkt,
> send([ACK, X2]*)
> if X, = rcv_base:
B « first_missing_seq_num()
foreachiinrcv_base...B - 1:
deliver(buffer[i])

Selective Repeat: Receiver

received acceptable not usable

A

rcv_base
1
T

sliding window

m recv([pkt,,X;]) and rcv_base < X, < rcv_base + W
> buffer[X,] « pkt,
> send([ACK, X2]*)
> if X, = rcv_base:
B « first_missing_seq_num()
foreachiinrcv_base...B - 1:

deliver(buffer[i])
rcv_base «— B

Selective Repeat: Sender

Selective Repeat: Sender

base next_seq_num

sliding window

Selective Repeat: Sender

base next_seq_num

sliding window

m Timeout for sequence number T

Selective Repeat: Sender

base next_seq_num

sliding window

m Timeout for sequence number T
> send([pkt[T], T]")

Selective Repeat: Sender

base next_seq_num

sliding window

Selective Repeat: Sender

base next_seq_num

sliding window

m recv([ACK,A])

Selective Repeat: Sender

base next_seq_num

sliding window

m recv([ACK,A])
> acks[A] <« 1

Selective Repeat: Sender

base next_seq_num

sliding window

m recv([ACK,A])
> acks[A] <« 1
> if A = base:

Selective Repeat: Sender

A A

base next_seq_num
1

sliding window

m recv([ACK,A])
> acks[A] <« 1
> if A= base:
base « first_missing_ack_num()

Transmission Control Protocol

m The Internet’s primary transport protocol
> defined in RFC 793, RFC 1122, RFC 1323, RFC 2018, and RFC 2581

Transmission Control Protocol

m The Internet’s primary transport protocol
> defined in RFC 793, RFC 1122, RFC 1323, RFC 2018, and RFC 2581

m Connection-oriented service

> endpoints “shake hands” to establish a connection
> not a circuit-switched connection, nor a virtual circuit

Transmission Control Protocol

m The Internet’s primary transport protocol
> defined in RFC 793, RFC 1122, RFC 1323, RFC 2018, and RFC 2581

m Connection-oriented service

> endpoints “shake hands” to establish a connection
> not a circuit-switched connection, nor a virtual circuit

m Full-duplex service

> both endpoints can both send and receive, at the same time

Preliminary Definitions

Preliminary Definitions

m TCP segment: envelope for TCP data

> TCP data are sent within TCP segments
> TCP segments are usually sent within an IP packet

Preliminary Definitions

m TCP segment: envelope for TCP data

> TCP data are sent within TCP segments
> TCP segments are usually sent within an IP packet

m Maximum segment size (MSS): maximum amount of application data transmitted in a
single segment

> typically related to the MTU of the connection, to avoid network-level fragmentation (we’ll
talk about all of this later)

Preliminary Definitions

m TCP segment: envelope for TCP data

> TCP data are sent within TCP segments
> TCP segments are usually sent within an IP packet

m Maximum segment size (MSS): maximum amount of application data transmitted in a
single segment

> typically related to the MTU of the connection, to avoid network-level fragmentation (we’ll
talk about all of this later)

®m Maximum transmission unit (MTU): largest link-layer frame available to the sender host

> path MTU: largest link-layer frame that can be sent on all links from the sender host to the
receiver host

TCP Segment Format

0 31
I e Ay v

source port destination port

sequence number

acknowledgment number

hdrlen unused U|A|P|R[S|F receive window

Internet checksum urgent data pointer

[options field [

[data I

TCP Header Fields

TCP Header Fields

m Source and destination ports: (16-bit each) application identifiers

TCP Header Fields

m Source and destination ports: (16-bit each) application identifiers
m Sequence number: (32-bit) used to implement reliable data transfer

m Acknowledgment number: (32-bit) used to implement reliable data transfer

TCP Header Fields

m Source and destination ports: (16-bit each) application identifiers
m Sequence number: (32-bit) used to implement reliable data transfer
m Acknowledgment number: (32-bit) used to implement reliable data transfer

m Receive window: (16-bit) size of the “window” on the receiver end

TCP Header Fields

m Source and destination ports: (16-bit each) application identifiers

m Sequence number: (32-bit) used to implement reliable data transfer

m Acknowledgment number: (32-bit) used to implement reliable data transfer
m Receive window: (16-bit) size of the “window” on the receiver end

m Header length: (4-bit) size of the TCP header in 32-bit words

TCP Header Fields

Source and destination ports: (16-bit each) application identifiers
Sequence number: (32-bit) used to implement reliable data transfer
Acknowledgment number: (32-bit) used to implement reliable data transfer
Receive window: (16-bit) size of the “window” on the receiver end

Header length: (4-bit) size of the TCP header in 32-bit words

Optional and variable-length options field: may be used to negotiate protocol parameters

TCP Header Fields

TCP Header Fields

m ACK flag: (1-bit) signals that the value contained in the acknowledgment number
represents a valid acknowledgment

TCP Header Fields

m ACK flag: (1-bit) signals that the value contained in the acknowledgment number
represents a valid acknowledgment

m SYN flag: (1-bit) used during connection setup and shutdown

TCP Header Fields
m ACK flag: (1-bit) signals that the value contained in the acknowledgment number
represents a valid acknowledgment
m SYN flag: (1-bit) used during connection setup and shutdown

m RST flag: (1-bit) used during connection setup and shutdown

TCP Header Fields
m ACK flag: (1-bit) signals that the value contained in the acknowledgment number
represents a valid acknowledgment
m SYN flag: (1-bit) used during connection setup and shutdown
m RST flag: (1-bit) used during connection setup and shutdown

m FIN flag: (1-bit) used during connection shutdown

TCP Header Fields
ACK flag: (1-bit) signals that the value contained in the acknowledgment number
represents a valid acknowledgment
SYN flag: (1-bit) used during connection setup and shutdown
RST flag: (1-bit) used during connection setup and shutdown
FIN flag: (1-bit) used during connection shutdown

PSH flag: (1-bit) “push” flag, used to solicit the receiver to pass the data to the application
immediately

TCP Header Fields
ACK flag: (1-bit) signals that the value contained in the acknowledgment number
represents a valid acknowledgment
SYN flag: (1-bit) used during connection setup and shutdown
RST flag: (1-bit) used during connection setup and shutdown
FIN flag: (1-bit) used during connection shutdown

PSH flag: (1-bit) “push” flag, used to solicit the receiver to pass the data to the application
immediately

URG flag: (1-bit) “urgent” flag, used to inform the receiver that the sender has marked
some data as “urgent”. The location of this urgent data is marked by the urgent data
pointer field

TCP Header Fields

ACK flag: (1-bit) signals that the value contained in the acknowledgment number
represents a valid acknowledgment

m SYN flag: (1-bit) used during connection setup and shutdown
m RST flag: (1-bit) used during connection setup and shutdown
m FIN flag: (1-bit) used during connection shutdown

m PSH flag: (1-bit) “push” flag, used to solicit the receiver to pass the data to the application
immediately

m URG flag: (1-bit) “urgent” flag, used to inform the receiver that the sender has marked
some data as “urgent”. The location of this urgent data is marked by the urgent data
pointer field

m Checksum: (16-bit) used to detect transmission errors

Sequence Numbers

Sequence Numbers

m Sequence numbers are associated with bytes in the data stream
> not with segments, as we have used them before

Sequence Numbers

m Sequence numbers are associated with bytes in the data stream
> not with segments, as we have used them before

B The sequence number in a TCP segment indicates the sequence number of the first byte
carried by that segment

Sequence Numbers

m Sequence numbers are associated with bytes in the data stream
> not with segments, as we have used them before

B The sequence number in a TCP segment indicates the sequence number of the first byte
carried by that segment
application data stream
[4Kb |

Sequence Numbers

m Sequence numbers are associated with bytes in the data stream
> not with segments, as we have used them before

B The sequence number in a TCP segment indicates the sequence number of the first byte
carried by that segment
application data stream
[4Kb |

— MSS=1024b —

Sequence Numbers

m Sequence numbers are associated with bytes in the data stream
> not with segments, as we have used them before

B The sequence number in a TCP segment indicates the sequence number of the first byte
carried by that segment
application data stream
[4Kb |

— MSS=1024b —

Sequence Numbers

m Sequence numbers are associated with bytes in the data stream
> not with segments, as we have used them before

B The sequence number in a TCP segment indicates the sequence number of the first byte
carried by that segment
application data stream
[4Kb |

— MSS=1024b —
1... ...1024 1025... 2048 2049... 3072 3073... 4096

Sequence Numbers

m Sequence numbers are associated with bytes in the data stream
> not with segments, as we have used them before

B The sequence number in a TCP segment indicates the sequence number of the first byte
carried by that segment
application data stream
[4Kb |

— MSS=1024b —
1... ...1024 1025... 2048 2049... 3072 3073... 4096

a TCP segment

Sequence Numbers

m Sequence numbers are associated with bytes in the data stream
> not with segments, as we have used them before

B The sequence number in a TCP segment indicates the sequence number of the first byte
carried by that segment
application data stream
[4Kb |

— MSS=1024b —
1... ...1024 1025... 2048 2049... 3072 3073... 4096

a TCP segment

2049

Sequence Numbers

m Sequence numbers are associated with bytes in the data stream
> not with segments, as we have used them before

B The sequence number in a TCP segment indicates the sequence number of the first byte
carried by that segment

application data stream

I 4Kb i

— MSS=1024b —

1... ...1024 1025... 2048 2049... 3072 3073... 4096
sequence number a TCP segment

\%’
o
I3

Acknowledgment Numbers

Acknowledgment Numbers

m An acknowledgment number represents the first sequence number not yet seen by the
receiver
» TCP acknowledgments are cumulative

Acknowledgment Numbers

m An acknowledgment number represents the first sequence number not yet seen by the
receiver
» TCP acknowledgments are cumulative

A B

Acknowledgment Numbers

m An acknowledgment number represents the first sequence number not yet seen by the
receiver
» TCP acknowledgments are cumulative

A B

—— [Seq# = 1200, .. .],size(data) = 1000 ————>

Acknowledgment Numbers

m An acknowledgment number represents the first sequence number not yet seen by the
receiver
» TCP acknowledgments are cumulative

A B

—— [Seq# = 1200, .. .],size(data) = 1000 ————>

—— [Seq# = 2200, .. .],size(data) = 500 ———— >

Acknowledgment Numbers

m An acknowledgment number represents the first sequence number not yet seen by the
receiver
» TCP acknowledgments are cumulative

A B

—— [Seq# = 1200, .. .],size(data) = 1000 ————>

—— [Seq# = 2200, .. .],size(data) = 500 ———— >

< [Seq# = ... ,Ack# = 2700] —

Sequence Numbers and ACK Numbers

Sequence Numbers and ACK Numbers

m Notice that a TCP connection is a full-duplex link

> therefore, there are two streams
> two different sequence numbers

Sequence Numbers and ACK Numbers

m Notice that a TCP connection is a full-duplex link
> therefore, there are two streams

> two different sequence numbers

E.g., consider a simple “Echo” application:
A B

Sequence Numbers and ACK Numbers

m Notice that a TCP connection is a full-duplex link
> therefore, there are two streams

> two different sequence numbers

E.g., consider a simple “Echo” application:
A B

—— [Seq# = 100, Data =“C”]

Sequence Numbers and ACK Numbers

m Notice that a TCP connection is a full-duplex link
> therefore, there are two streams

> two different sequence numbers

E.g., consider a simple “Echo” application:
A B

—— [Seq# = 100, Data =“C”]

l«<—— [Ack# = 101, Seq# = 200, Data =“C”] ——

Sequence Numbers and ACK Numbers

m Notice that a TCP connection is a full-duplex link
> therefore, there are two streams

> two different sequence numbers

E.g., consider a simple “Echo” application:
A B

—— [Seq# = 100, Data =“C”]
l«<—— [Ack# = 101, Seq# = 200, Data =“C”] ——

—— [Seq# = 101, Ack# = 201, Data ="“i"] ——— >

Sequence Numbers and ACK Numbers

m Notice that a TCP connection is a full-duplex link

> therefore, there are two streams
> two different sequence numbers

E.g., consider a simple “Echo” application:
A B

—— [Seq# = 100, Data =“C”]

l«<—— [Ack# = 101, Seq# = 200, Data =“C”] ——
—— [Seq# = 101, Ack# = 201, Data ="“i"] ——— >

< [Seq# = 201, Ack# = 102, Data =“i"] ——

Sequence Numbers and ACK Numbers

m Notice that a TCP connection is a full-duplex link
> therefore, there are two streams

> two different sequence numbers

E.g., consider a simple “Echo” application:
A B

—— [Seq# = 100, Data =“C”]
l«<—— [Ack# = 101, Seq# = 200, Data =“C”] ——
—— [Seq# = 101, Ack# = 201, Data ="“i"] ——— >

< [Seq# = 201, Ack# = 102, Data =“i"] ——

m Acknowledgments are “piggybacked” on data segments

Reliability and Timeout

m Duplicate acknowledgments to detect lost segments

> receiver notices a missing packet — duplicate ACKs — retransmission by sender

m Atimerto detect lost segments

> timeout without an ACK — lost packet — retransmission

Reliability and Timeout

m Duplicate acknowledgments to detect lost segments

> receiver notices a missing packet — duplicate ACKs — retransmission by sender

m Atimerto detect lost segments

> timeout without an ACK — lost packet — retransmission

m How long to wait for acknowledgments?

Reliability and Timeout

m Duplicate acknowledgments to detect lost segments

> receiver notices a missing packet — duplicate ACKs — retransmission by sender

m Atimerto detect lost segments

> timeout without an ACK — lost packet — retransmission

m How long to wait for acknowledgments?

m Retransmission timeouts should be larger than the round-trip time RTT = 2L

» asclose as possible to the RTT

Reliability and Timeout

m Duplicate acknowledgments to detect lost segments

> receiver notices a missing packet — duplicate ACKs — retransmission by sender

m Atimerto detect lost segments

> timeout without an ACK — lost packet — retransmission

m How long to wait for acknowledgments?

m Retransmission timeouts should be larger than the round-trip time RTT = 2L

» asclose as possible to the RTT

m TCP controls its timeout by continuously estimating the current RTT

Round-Trip Time Estimation

Round-Trip Time Estimation

m RTT is measured using ACKs

> only for packets transmitted once

B Given asingle sample S at any given time

B Exponential weighted moving average (EWMA)

ﬁ:(l—a)ﬁ,+a5

Round-Trip Time Estimation

m RTT is measured using ACKs

> only for packets transmitted once

B Given asingle sample S at any given time

B Exponential weighted moving average (EWMA)
RTT = (l—a)ﬁ,+a5

» RFC 2988 recommends a = 0.125

Round-Trip Time Estimation

m RTT is measured using ACKs

> only for packets transmitted once

B Given asingle sample S at any given time

B Exponential weighted moving average (EWMA)

RTT = (l—a)ﬁ,+a5
» RFC 2988 recommends a = 0.125

m TCP also measures the variability of RTT

DevRTT = (1 - B)DevRTT + B|RTT -S|

Round-Trip Time Estimation

m RTT is measured using ACKs

> only for packets transmitted once

B Given asingle sample S at any given time

B Exponential weighted moving average (EWMA)

RTT = (l—a)ﬁ,+a5
» RFC 2988 recommends a = 0.125

m TCP also measures the variability of RTT

DevRTT = (1 - B)DevRTT + B|RTT -S|

> RFC 2988 recommends 8 = 0.25

Timeout Value

Timeout Value

B The timeout interval T must be larger than the RTT
> so as to avoid unnecessary retransmission

m However, T should not be too far from RTT
> so as to detect (and retransmit) lost segments as quickly as possible

Timeout Value

B The timeout interval T must be larger than the RTT
> so as to avoid unnecessary retransmission

m However, T should not be too far from RTT
> so as to detect (and retransmit) lost segments as quickly as possible

B TCP sets its timeouts using the estimated RTT (RTT) and the variability estimate DevRTT:

T = RTT + 4DevRTT

Reliable Data Transfer (Sender)

A simplified TCP sender

m application_send(data)
if (timer not running)
start_timer()
send([data,next_seq_num])
next_seq_num « next_seq_num + length(data)

Reliable Data Transfer (Sender)

A simplified TCP sender

m application_send(data)
if (timer not running)
start_timer()
send([data,next_seq_num])
next_seq_num « next_seq_num + length(data)

m timeout
send(pending segment with smallest sequence number)
start_timer()

Reliable Data Transfer (Sender)

A simplified TCP sender

m application_send(data)
if (timer not running)
start_timer()
send([data,next_seq_num])
next_seq_num « next_seq_num + length(data)

m timeout
send(pending segment with smallest sequence number)
start_timer()

m recv([ACK,y])
if (y > base)
base « y
if (there are pending segments)
start_timer()
else...

Acknowledgment Generation (Receiver)

Acknowledgment Generation (Receiver)

m Arrival of in-order segment with expected sequence number; all data up to expected
sequence number already acknowledged

Acknowledgment Generation (Receiver)

m Arrival of in-order segment with expected sequence number; all data up to expected
sequence number already acknowledged

> Delayed ACK: wait 500ms for another in-order segment; If that does not arrive, send ACK

Acknowledgment Generation (Receiver)

m Arrival of in-order segment with expected sequence number; all data up to expected
sequence number already acknowledged

> Delayed ACK: wait 500ms for another in-order segment; If that does not arrive, send ACK

m Arrival of in-order segment with expected sequence number. One other in-order segment
waiting for ACK (see above)

Acknowledgment Generation (Receiver)

m Arrival of in-order segment with expected sequence number; all data up to expected
sequence number already acknowledged

> Delayed ACK: wait 500ms for another in-order segment; If that does not arrive, send ACK

m Arrival of in-order segment with expected sequence number. One other in-order segment
waiting for ACK (see above)

» Cumulative ACK: immediately send cumulative ACK (for both segments)

Acknowledgment Generation (Receiver)

m Arrival of in-order segment with expected sequence number; all data up to expected
sequence number already acknowledged

> Delayed ACK: wait 500ms for another in-order segment; If that does not arrive, send ACK

m Arrival of in-order segment with expected sequence number. One other in-order segment
waiting for ACK (see above)

» Cumulative ACK: immediately send cumulative ACK (for both segments)

m Arrival of out of order segment with higher-than-expected sequence number (gap
detected)

Acknowledgment Generation (Receiver)

m Arrival of in-order segment with expected sequence number; all data up to expected
sequence number already acknowledged

> Delayed ACK: wait 500ms for another in-order segment; If that does not arrive, send ACK

m Arrival of in-order segment with expected sequence number. One other in-order segment
waiting for ACK (see above)

» Cumulative ACK: immediately send cumulative ACK (for both segments)

m Arrival of out of order segment with higher-than-expected sequence number (gap
detected)

» Duplicate ACK: immediately send duplicate ACK

Acknowledgment Generation (Receiver)

Arrival of in-order segment with expected sequence number; all data up to expected
sequence number already acknowledged

> Delayed ACK: wait 500ms for another in-order segment; If that does not arrive, send ACK

Arrival of in-order segment with expected sequence number. One other in-order segment
waiting for ACK (see above)

» Cumulative ACK: immediately send cumulative ACK (for both segments)

Arrival of out of order segment with higher-than-expected sequence number (gap
detected)

» Duplicate ACK: immediately send duplicate ACK

Arrival of segment that (partially or completely) fills a gap in the received data

Acknowledgment Generation (Receiver)

Arrival of in-order segment with expected sequence number; all data up to expected
sequence number already acknowledged

> Delayed ACK: wait 500ms for another in-order segment; If that does not arrive, send ACK

Arrival of in-order segment with expected sequence number. One other in-order segment
waiting for ACK (see above)

» Cumulative ACK: immediately send cumulative ACK (for both segments)

Arrival of out of order segment with higher-than-expected sequence number (gap
detected)

» Duplicate ACK: immediately send duplicate ACK

Arrival of segment that (partially or completely) fills a gap in the received data
> Immediate ACK: immediately send ACK if the packet start at the lower end of the gap

Reaction to ACKs (Sender)

Reaction to ACKs (Sender)

m recv([ACK,y])
if (v > base)
base « y
if (there are pending segments)
start_timer()

Reaction to ACKs (Sender)

m recv([ACK,y])
if (v > base)
base « y
if (there are pending segments)
start_timer()
else
ack_counter|y] « ack_counter[y] +1
if (ack_counter[y] = 3)
send(segment with sequence number y)

Connection Setup

Connection Setup

Three-way handshake

Connection Setup

Three-way handshake

client server

Connection Setup

Three-way handshake

client server

L [SYN, Seq+# = cli_init_seq] >

Connection Setup

Three-way handshake

client server

L [SYN, Seq+# = cli_init_seq] >

<« [SYN, ACK, Ack+# = cli_init_seq + 1, Seq# = srv_init_seq] -

Connection Setup

Three-way handshake

client server

L [SYN, Seq+# = cli_init_seq] >

<« [SYN, ACK, Ack+# = cli_init_seq + 1, Seq# = srv_init_seq] -

L [ACK, Seq# = cli_init_seq + 1, Ack# = srv_init_seq + 1] —————>

Connection Shutdown

“Thisis it.”
“Okay, Bye now.”
« Bye.”

Connection Shutdown

“Thisis it.”
“Okay, Bye now.”
« Bye.”

client server

Connection Shutdown

“Thisis it.”
“Okay, Bye now.”
« Bye.”

client server

- [FIN] >

Connection Shutdown

“Thisis it.”
“Okay, Bye now.”
« Bye.”
client server
- [FIN] >

< [ACK] -

Connection Shutdown

“Thisis it.”
“Okay, Bye now.”
« Bye.”
client server
- [FIN] >
< [ACK] {

[FIN]

Connection Shutdown

“Thisis it.”
“Okay, Bye now.”
« Bye.”
client server
- [FIN] >
< [ACK] {
[FINT] -

- [ACK] >

The TCP State Machine (Client)

The TCP State Machine (Client)

application
opens connection
send SYN

The TCP State Machine (Client)

application
opens connection
send SYN

SYN_SENT
receive SYN,ACK

{send ACK

ESTABLISHED

The TCP State Machine (Client)

application
opens connection
send SYN

SYN_SENT
receive SYN,ACK

{send ACK

ESTABLISHED

application

closes connection
send FIN

The TCP State Machine (Client)

application
opens connection
send SYN

SYN_SENT
receive SYN,ACK

{send ACK

ESTABLISHED

application
closes connection
send FIN

receive ACK

The TCP State Machine (Client)

application
opens connection
send SYN

@ SYN_SENT
receive FIN _receive SYN,ACK
send ACK Wend ACK

FIN_WAIT_2

ESTABLISHED

application
closes connection
send FIN

receive ACK

The TCP State Machine (Client)

application
opens connection
send SYN

SYN_SENT
receive SYN,ACK

{send ACK

ESTABLISHED

wait 30 seconds

receive FIN
send ACK

FIN_WAIT_2

application
closes connection
send FIN

receive ACK

The TCP State Machine (Server)

The TCP State Machine (Server)

application
opens server socket

The TCP State Machine (Server)

application
opens server socket

LISTEN

receive SYN

send SYN,ACK

The TCP State Machine (Server)

application
opens server socket

LISTEN

receive SYN
send SYN,ACK

receive ACK

ESTABLISHED

The TCP State Machine (Server)

application
opens server socket

LISTEN

receive SYN
send SYN,ACK

receive FIN

receive ACK
send ACK

ESTABLISHED

The TCP State Machine (Server)

application
opens server socket

CLSTAKD LISTEN

receive SYN

send FIN send SYN,ACK

receive FIN

receive ACK
send ACK

ESTABLISHED

The TCP State Machine (Server)

application
opens server socket

receive ACK

LISTEN

receive SYN
send SYN,ACK

receive FIN

receive ACK
send ACK

ESTABLISHED

Part VI

Congestion Control

Understanding Congestion

m Arouter behaves a lot like a kitchen sink

Understanding Congestion

m Arouter behaves a lot like a kitchen sink

max rate= R

Understanding Congestion

m Arouter behaves a lot like a kitchen sink

AL =R/2

max rate= R

throughput = R/2

Understanding Congestion

m Arouter behaves a lot like a kitchen sink

AL = R/2 A =R/2

max rate= R

throughput =R

Understanding Congestion

m Arouter behaves a lot like a kitchen sink
A3 =R/2

AL = R/2 A =R/2

max rate= R

throughput =R

Understanding Congestion

m Arouter behaves a lot like a kitchen sink
A3 =R/2

AL = R/2 A =R/2

max rate= R

throughput =R

Understanding Congestion

m Arouter behaves a lot like a kitchen sink
A3 =R/2

AL = R/2 A =R/2

max rate= R

throughput =R

Understanding Congestion

m Arouter behaves a lot like a kitchen sink
A3 =R/2

AL = R/2 A =R/2

max rate= R

throughput =R

Understanding Congestion

m Arouter behaves a lot like a kitchen sink
A3 =R/2

AL = R/2 A =R/2

max rate= R

throughput =R

Queuing Delay

Queuing Delay

m Total latency is the sum of link latency, processing time, and the time that a packet
spends in the input queue

L=dx+ dcpu+dq where dq = |q|/R

Queuing Delay

m Total latency is the sum of link latency, processing time, and the time that a packet
spends in the input queue

L=dx+ dcpu+dq where dq = |q|/R

m /deal case: constant input data rate
Ain <R

In this case the dq = 0, because |g| = 0 (ideal input flow)

Queuing Delay

m Total latency is the sum of link latency, processing time, and the time that a packet
spends in the input queue

L=dx+ dcpu+dq where dq = |q|/R

m /deal case: constant input data rate
Ain <R

In this case the dq = 0, because |g| = 0 (ideal input flow)

m Extreme case: constant input data rate

In this case |g| = (Aj, — R)t and therefore

Queuing Delay

Queuing Delay

m Steady-state queuing delay

i”—_Rt A,’n>R

0 A,‘,,<R
dq:{/l
R

Queuing Delay

m Steady-state queuing delay

—_Rt A,’n>R

0 /\in <R
dq = {/1,-,,
R

R
Ain

ideal input flow
Ain constant

Queuing Delay

m Steady-state queuing delay

—_Rt A,’n>R

0 /\in <R
dq = {/1,-,,
R

1
1
1
|
1
dg dq :
1
1
1

R R
Ain /‘in

ideal input flow realistic input flow
Ajn constant Ain variable

Queuing Delay

Queuing Delay

m Conclusion: as the input rate Aj, approaches the maximum throughput R, packets will
experience very long delays

Queuing Delay

m Conclusion: as the input rate Aj, approaches the maximum throughput R, packets will
experience very long delays

m More realistic assumptions and models
> finite queue length (buffers) in routers
» effects of retransmission overhead
> full queues along multi-hops paths

Queuing Delay

m Conclusion: as the input rate Aj, approaches the maximum throughput R, packets will
experience very long delays

m More realistic assumptions and models

> finite queue length (buffers) in routers
> effects of retransmission overhead
> full queues along multi-hops paths

Aout

Queuing Delay

m Conclusion: as the input rate Aj, approaches the maximum throughput R, packets will

experience very long delays

m More realistic assumptions and models

> finite queue length (buffers) in routers

» effects of retransmission overhead

> full queues along multi-hops paths

Aout

congestion

What to Do?

m What to do when the network is congested?

A3 =R/2

AL =R/2 A =R/2

max rate = R

throughput = R

What to Do?
m What to do when the network is congested? BACK OFF!
A3 =R/2

AL =R/2 A =R/2

max rate = R

throughput = R

What to Do?

m What to do when the network is congested? BACK OFF!

A3 = R/4

A1 =R/4

max rate = R

throughput = R

What to Do?

m What to do when the network is congested? BACK OFF!

A3 = R/4

A1 =R/4

max rate = R

throughput = R

What to Do?

m What to do when the network is congested? BACK OFF!

A3 = R/4

A1 =R/4

max rate = R

throughput = R

What to Do?

m What to do when the network is congested? BACK OFF!

A3 = R/4

A1 =R/4

max rate = R

throughput = R

Congestion Control (in TCP)

Approach:
m The sender limits its output rate according to the state of the network
> The sender output rate becomes (part of) the input rate for the network (A;,)

Congestion Control (in TCP)

Approach:
m The sender limits its output rate according to the state of the network
> The sender output rate becomes (part of) the input rate for the network (A;,)

Ingredients:
1. How does the sender measure the state of the network?

> we need eyes to see the traffic ahead

Congestion Control (in TCP)

Approach:
m The sender limits its output rate according to the state of the network
> The sender output rate becomes (part of) the input rate for the network (A;,)

Ingredients:
1. How does the sender measure the state of the network?

> we need eyes to see the traffic ahead

2. how does the sender set its output rate?

> we need accelerator and brakes to speed up or slow down

Congestion Control (in TCP)

Approach:
m The sender limits its output rate according to the state of the network
> The sender output rate becomes (part of) the input rate for the network (A;,)

Ingredients:
1. How does the sender measure the state of the network?

> we need eyes to see the traffic ahead

2. how does the sender set its output rate?

> we need accelerator and brakes to speed up or slow down

3. how should the sender control its output rate?

» we need a brain and we need to know how to drive!

Detecting Congestion (Eyes)

Detecting Congestion (Eyes)

m If all trafficis correctly acknowledged, with fresh acknowledgments, then the sender
assumes (quite correctly) that there is no congestion

Detecting Congestion (Eyes)

m If all trafficis correctly acknowledged, with fresh acknowledgments, then the sender
assumes (quite correctly) that there is no congestion

m Congestion means that some queues overflow in one or more routers between the
sender and the receiver

> the visible effect is that some segments are dropped

Detecting Congestion (Eyes)

m If all trafficis correctly acknowledged, with fresh acknowledgments, then the sender
assumes (quite correctly) that there is no congestion

m Congestion means that some queues overflow in one or more routers between the
sender and the receiver

> the visible effect is that some segments are dropped

B Therefore the sender assumes that the network is congested when it (the sender) detects
a segment loss
» duplicate acknowledgements (i.e., NACK)
> time out (i.e., no ACKs at all)

Congestion Window (Accelerator/Brakes)

m The sender maintains a congestion window W

Congestion Window (Accelerator/Brakes)

m The sender maintains a congestion window W

m The congestion window limits the amount of bytes that the sender pushes into the
network before blocking waiting for acknowledgments

Congestion Window (Accelerator/Brakes)

m The sender maintains a congestion window W

m The congestion window limits the amount of bytes that the sender pushes into the
network before blocking waiting for acknowledgments

LastByteSent — LastByteAcked < W

where

W = min (CongestionWindow, ReceiverlWindow)

Congestion Window (Accelerator/Brakes)

m The sender maintains a congestion window W

m The congestion window limits the amount of bytes that the sender pushes into the
network before blocking waiting for acknowledgments

LastByteSent — LastByteAcked < W

where
W = min (CongestionWindow, ReceiverlWindow)

B The resulting maximum output rate is roughly

w
A=—
2L

Congestion Control (Brain, Algorithm)

Congestion Control (Brain, Algorithm)

m Additive-increase and multiplicative-decrease

Congestion Control (Brain, Algorithm)

m Additive-increase and multiplicative-decrease

m Slow start

Congestion Control (Brain, Algorithm)

m Additive-increase and multiplicative-decrease
m Slow start

B Reaction to timeout events

Additive-Increase/Multiplicative-Decrease

Additive-Increase/Multiplicative-Decrease

m How IV is reduced: at every loss event, TCP halves the congestion window

Additive-Increase/Multiplicative-Decrease

m How IV is reduced: at every loss event, TCP halves the congestion window

> e.g., suppose the window size W is currently 20Kb, and a loss is detected
» TCP reduces W to 10Kb

Additive-Increase/Multiplicative-Decrease

m How IV is reduced: at every loss event, TCP halves the congestion window

> e.g., suppose the window size W is currently 20Kb, and a loss is detected
» TCP reduces W to 10Kb

m How W is increased: at every (good) acknowledgment, TCP increments W by 1MSS/W, so
as to increase W by MSS every round-trip time 2L. This process is called congestion
avoidance

Additive-Increase/Multiplicative-Decrease

m How IV is reduced: at every loss event, TCP halves the congestion window

> e.g., suppose the window size W is currently 20Kb, and a loss is detected
» TCP reduces W to 10Kb

m How W is increased: at every (good) acknowledgment, TCP increments W by 1MSS/W, so
as to increase W by MSS every round-trip time 2L. This process is called congestion
avoidance

> e.g.,suppose W = 14600 and MSS = 1460, then the sender increases W to 16060 after 10
acknowledgments acknowledgments

Additive-Increase/Multiplicative-Decrease

m Window size W over time

Time

Slow Start

m Whatis the initial value of W?

Slow Start

m Whatis the initial value of W?

m Theinitial value of W is MSS, that is 1 segment, which is quite low for modern networks

Slow Start

m What is the initial value of W?
m Theinitial value of W is MSS, that is 1 segment, which is quite low for modern networks

m To get quickly to a good throughput level, TCP increases its sending rate exponentially for
its first growth phase, up to a slow-start threshold (ssthresh)

Slow Start

m What is the initial value of W?
m Theinitial value of W is MSS, that is 1 segment, which is quite low for modern networks

m To get quickly to a good throughput level, TCP increases its sending rate exponentially for
its first growth phase, up to a slow-start threshold (ssthresh)

m After the threshold, TCP proceeds with its linear push

Slow Start

m What is the initial value of W?
m Theinitial value of W is MSS, that is 1 segment, which is quite low for modern networks

m To get quickly to a good throughput level, TCP increases its sending rate exponentially for
its first growth phase, up to a slow-start threshold (ssthresh)

m After the threshold, TCP proceeds with its linear push

m This process is called “slow start” because of the small initial value of W

Timeouts vs. NACKs

m As we know, three duplicate ACKs are interpreted as a NACK

Timeouts vs. NACKs

m As we know, three duplicate ACKs are interpreted as a NACK

m Both timeouts and NACKs signal a loss, but they say different things about the status of
the network

Timeouts vs. NACKs

m As we know, three duplicate ACKs are interpreted as a NACK

m Both timeouts and NACKs signal a loss, but they say different things about the status of
the network

m Atimeout indicates congestion

Timeouts vs. NACKs

m As we know, three duplicate ACKs are interpreted as a NACK

m Both timeouts and NACKs signal a loss, but they say different things about the status of
the network

m Atimeout indicates congestion

B Three (duplicate) ACKs suggest that the network is still able to deliver segments along
that path

Timeouts vs. NACKs

m As we know, three duplicate ACKs are interpreted as a NACK

m Both timeouts and NACKs signal a loss, but they say different things about the status of
the network

m Atimeout indicates congestion

B Three (duplicate) ACKs suggest that the network is still able to deliver segments along
that path

m So, TCP reacts differently to a timeout and to a triple duplicate ACKs

Timeouts vs. NACKs

Assuming the current window sizeis W = W

Timeouts vs. NACKs

Assuming the current window sizeis W = W
m Timeout
> gobackto W = MSS
> setssthresh = W/2
> run slow start up to W = ssthresh

» then proceed with congestion avoidance

Timeouts vs. NACKs

Assuming the current window sizeis W = W
m Timeout
> gobackto W = MSS
> setssthresh = W/2
> run slow start up to W = ssthresh

» then proceed with congestion avoidance

m NACK (i.e., triple duplicate-ack)
> setssthresh = W/2
> cutWin half: W =Ww/2
> run congestion avoidance, ramping up W linearly

» Thisis called fast recovery

Sender Behavior

Time

Sender Behavior

MSS

Time

Sender Behavior

w NACK

MSS

Time

Sender Behavior

w NACK

MSS

Time

Sender Behavior

timeout

w NACK

MSS

Time

Sender Behavior

timeout

w NACK

MSS

Time

Sender Behavior

timeout

MSS

Time

Sender Behavior

timeout

MSS

Time

Sender Behavior

NACK

timeout

MSS

Time

Sender Behavior

NACK

timeout

MSS

Time

Sender Behavior

NACK

timeout

MSS

Time

Sender Behavior

NACK

timeout

MSS

Time

Sender Behavior

SS=slow start CA=congestion avoidance

SS CA SS CA

CA CA

MSS

timeout

NACK

Time

Part VIl

Network Layer

Datagram Network

Datagram Network

Datagram Network

Datagram Network

Datagram Network

Datagram Network

Datagram Network

\

)

Datagram Network

\

m Potentially multiple paths for the same source/destination

Datagram Network

\

)

m Potentially multiple paths for the same source/destination

Datagram Network

\

)

m Potentially multiple paths for the same source/destination

Datagram Network

\

)

m Potentially multiple paths for the same source/destination

Datagram Network

\

)

m Potentially multiple paths for the same source/destination

Datagram Network

\

)

m Potentially multiple paths for the same source/destination

Datagram Network

\

)

m Potentially multiple paths for the same source/destination

Datagram Network

\

m Potentially multiple paths for the same source/destination

Datagram Network

\

m Potentially multiple paths for the same source/destination

m Potentially asymmetric paths

Datagram Network

\

m Potentially multiple paths for the same source/destination

m Potentially asymmetric paths

Datagram Network

\

m Potentially multiple paths for the same source/destination

m Potentially asymmetric paths

Datagram Network

\

m Potentially multiple paths for the same source/destination

m Potentially asymmetric paths

Datagram Network

\

m Potentially multiple paths for the same source/destination

m Potentially asymmetric paths

Datagram Network

\

m Potentially multiple paths for the same source/destination

m Potentially asymmetric paths

Datagram Network

\

O)

m Potentially multiple paths for the same source/destination
m Potentially asymmetric paths

m No connection, each packet handled independently

Datagram Network

\

O)

m Potentially multiple paths for the same source/destination
m Potentially asymmetric paths
m No connection, each packet handled independently

m No connection, each packet handled independently

Network/Router Functions

communications
with neighbors:
routing protocol

routing

Network/Router Functions

routing
&> table

communications
with neighbors:
routing protocol

routing

forwarding
table

Network/Router Functions

routing
&> table

Network/Router Functions

co.mmur.ncatlons : routing
with neighbors: routing |y
routing protocol

l

forwarding

table

input packets
from input ports

output packets

forwarding jmmp- to output ports

Network/Router Functions

communications routing
with neighbors: routing |-y table control plane
routing protocol l

forwarding

table

input packets
from input ports

" output packets
forwarding jmy- to output ports data plane

Forwarding

Forwarding

m Asends a datagram to B

Forwarding

NEEYORC g)—8]

m Asends a datagram to B

m The datagram is forwarded towards B

Forwarding

m Asends a datagram to B

m The datagram is forwarded towards B

forwarding

table

dest.

B

output

port 4

Forwarding

forwarding

table

dest.

B

output

port 4

Forwarding

forwarding

table

dest.

B

output

port 4

Forwarding

Forwarding

forwarding

table
dest. | output

B port 4

Forwarding

m /nput: datagram destination

Forwarding

m /nput: datagram destination

m Output: output port

Forwarding

m /nput: datagram destination
m Output: output port

m Simple design: “forwarding table”

Forwarding
m /nput: datagram destination
m Output: output port

m Simple design: “forwarding table”

m Issues

m /nput: datagram destination
m Output: output port

m Simple design: “forwarding table”

m Issues

> how bigis the forwarding table?

Forwarding

m /nput: datagram destination
m Output: output port

m Simple design: “forwarding table”

m Issues

> how bigis the forwarding table?

> how fast does the router have to forward datagrams?

Forwarding

m /nput: datagram destination
m Output: output port

m Simple design: “forwarding table”

B Issues
> how bigis the forwarding table?
> how fast does the router have to forward datagrams?

> how does the router build and maintain the forwarding table?

Forwarding

Interconnection of Networks

s
|
|
|
|
|
|
|
|
|

Interconnection of Networks

—_—— e — -

111.3.3.2 111.3.3.1

U

IPv4 Addressing

m 32-bit addresses

IPv4 Addressing

m 32-bit addresses

m An IP address is associated with an interface, not a host
» ahost with more than one interface may have more than one IP address

IPv4 Addressing

m 32-bit addresses

m An IP address is associated with an interface, not a host
» ahost with more than one interface may have more than one IP address

m The assignment of addresses over an Internet topology is crucial to limit the complexity
of routing and forwarding

IPv4 Addressing

m 32-bit addresses

m An IP address is associated with an interface, not a host
» ahost with more than one interface may have more than one IP address

m The assignment of addresses over an Internet topology is crucial to limit the complexity
of routing and forwarding

m The key idea is to assign addresses with the same prefix to interfaces that are on the
same subnet

IPv4 Addressing

32-bit addresses

An IP address is associated with an interface, not a host
» ahost with more than one interface may have more than one IP address

The assignment of addresses over an Internet topology is crucial to limit the complexity
of routing and forwarding

The key idea is to assign addresses with the same prefix to interfaces that are on the
same subnet

Why is the idea of the common prefix so important?

IPv4 Addressing

32-bit addresses

An IP address is associated with an interface, not a host
» ahost with more than one interface may have more than one IP address

The assignment of addresses over an Internet topology is crucial to limit the complexity
of routing and forwarding

The key idea is to assign addresses with the same prefix to interfaces that are on the
same subnet

Why is the idea of the common prefix so important?

Because it compresses the forwarding tables by an exponential factor!

» there might be some 64 thousands hosts in 128.138.-.-
but they all appear as one table entry from the outside

Example: Bad Address Allocation

89.5.22.1

129.58.12.10

T'SVT TT'68

Example: Good Address Allocation

3 T'Credt CCTECT

Classless Interdomain Routing

Classless Interdomain Routing

m Allinterfaces in the same subnet share the same address prefix

> e.g.,inthe previous example we have
123.1.1.—,123.1.2.—,101.0.1.—, and 111.3.3.—

Classless Interdomain Routing

m Allinterfaces in the same subnet share the same address prefix

> e.g.,inthe previous example we have
123.1.1.—,123.1.2.—,101.0.1.—, and 111.3.3.—

m Network addresses prefix-length notation: address/prefix-length

Classless Interdomain Routing

m Allinterfaces in the same subnet share the same address prefix

> e.g.,inthe previous example we have
123.1.1.—,123.1.2.—,101.0.1.—, and 111.3.3.—

m Network addresses prefix-length notation: address/prefix-length

> e.g.,123.1.1.0/24, 123.1.1.0/24, 101.0.1.0/24, and 111.3.3.0/24

Classless Interdomain Routing

m Allinterfaces in the same subnet share the same address prefix

> e.g.,inthe previous example we have
123.1.1.—,123.1.2.—,101.0.1.—, and 111.3.3.—

m Network addresses prefix-length notation: address/prefix-length

> e.g.,123.1.1.0/24, 123.1.1.0/24, 101.0.1.0/24, and 111.3.3.0/24

> 123.1.1.0/24 means that all the addresses share the same leftmost 24 bits with address
123.1.1.0

Classless Interdomain Routing

m Allinterfaces in the same subnet share the same address prefix

> e.g.,inthe previous example we have
123.1.1.—,123.1.2.—,101.0.1.—, and 111.3.3.—

m Network addresses prefix-length notation: address/prefix-length

> e.g.,123.1.1.0/24, 123.1.1.0/24, 101.0.1.0/24, and 111.3.3.0/24

> 123.1.1.0/24 means that all the addresses share the same leftmost 24 bits with address
123.1.1.0

m This addressing scheme is not limited to entire bytes. For example, a network address
might be 128.138.207.160/27

> asopposed to the original scheme which divided the address space in “classes”

address class | prefix length
A 8
B 16
C 24

Examples

m Network address 128.138.207.160/27

Examples

m Network address 128.138.207.160/27

subnet

10000000 10001010 11001111 101 00000twe

Examples

m Network address 128.138.207.160/27

subnet

10000000 10001010 11001111 101 00000twe

128.138.207.185?

Examples

m Network address 128.138.207.160/27

subnet

10000000 10001010 11001111 101 00000twe
128.138.207.185?

10000000 10001010 11001111 10111001two

Examples

m Network address 128.138.207.160/27

subnet

10000000 10001010 11001111 101 00000twe
128.138.207.185?
10000000 10001010 11001111 10111001two

128.138.207.98?

Examples

m Network address 128.138.207.160/27

subnet

10000000 10001010 11001111 101 00000twe
128.138.207.185?

10000000 10001010 11001111 10111001two
128.138.207.98?

10000000 10001010 11001111 01100010two

Network address 128.138.207.160/27

subnet

10000000 10001010 11001111 101 00000twe
128.138.207.185?

10000000 10001010 11001111 10111001two
128.138.207.98?

10000000 10001010 11001111 01100010two

128.138.207.194?

Examples

m Network address 128.138.207.160/27

128.138.207.185?

128.138.207.98?

128.138.207.194?

subnet

10000000 10001010

10000000 10001010

10000000 10001010

10000000 10001010

11001111

11001111

11001111

11001111

101 00000two

1011100140

01100010two

11000010two

Examples

Ranges

m What is the range of addresses in 128.138.207.160/27?

Ranges

m What is the range of addresses in 128.138.207.160/27?

subnet

10000000 10001010 11001111 101 00000twe

m What is the range of addresses in 128.138.207.160/27?

subnet

10000000

10000000
10000000
10000000
10000000

10000000

10001010

10001010
10001010
10001010
10001010

10001010

11001111

11001111
11001111
11001111
11001111

11001111

101 00000two

10100000¢two
10100001two
10100010two
1010001 1two

1011111140

Ranges

m What is the range of addresses in 128.138.207.160/27?

subnet

10000000

10000000
10000000
10000000
10000000

10000000

10001010

10001010
10001010
10001010
10001010

10001010

11001111

11001111
11001111
11001111
11001111

11001111

101 00000two

10100000¢two
10100001two
10100010two
1010001 1two

1011111140

128.138.207.160-128.138.207.191

Ranges

Net Mask

m Network addresses, mask notation: address/mask

Net Mask

m Network addresses, mask notation: address/mask

m A prefix of length p corresponds to a mask

p times 32—p times
—_——
M=11---100---0 two

> e.g.,128.138.207.160/27=128.138.207.160/255.255.255.224

m Network addresses, mask notation: address/mask

m A prefix of length p corresponds to a mask

p times 32—p times
—_——
M=11---100---0 two

> e.g.,128.138.207.160/27=128.138.207.160/255.255.255.224

> 127.0.0.1/8=?

Net Mask

Net Mask

m Network addresses, mask notation: address/mask

m A prefix of length p corresponds to a mask

p times 32—p times
—_——
M=11---100---0 two

> e.g.,128.138.207.160/27=128.138.207.160/255.255.255.224
> 127.0.0.1/8=127.0.0.1/255.0.0.0

Net Mask

m Network addresses, mask notation: address/mask

m A prefix of length p corresponds to a mask

p times 32—p times
—_——
M=11---100---0 two

> e.g.,128.138.207.160/27=128.138.207.160/255.255.255.224
> 127.0.0.1/8=127.0.0.1/255.0.0.0
> 192.168.0.3/24=?

Net Mask

m Network addresses, mask notation: address/mask

m A prefix of length p corresponds to a mask

p times 32—p times
—_——
M=11---100---0 two

> e.g.,128.138.207.160/27=128.138.207.160/255.255.255.224
> 127.0.0.1/8=127.0.0.1/255.0.0.0
> 192.168.0.3/24=192.168.0.3/255.255.255.0

Net Mask

m Network addresses, mask notation: address/mask
m A prefix of length p corresponds to a mask

p times 32—p times
—_——
M=11---100---0 two

e.g.,128.138.207.160/27=128.138.207.160/255.255.255.224
127.0.0.1/8=127.0.0.1/255.0.0.0
192.168.0.3/24=192.168.0.3/255.255.255.0
195.176.181.11/32=?

vV v Vvyy

Net Mask

m Network addresses, mask notation: address/mask
m A prefix of length p corresponds to a mask

p times 32—p times
—_——
M=11---100---0 two

e.g.,128.138.207.160/27=128.138.207.160/255.255.255.224
127.0.0.1/8=127.0.0.1/255.0.0.0
192.168.0.3/24=192.168.0.3/255.255.255.0
195.176.181.11/32=195.176.181.11/255.255.255.255

vV v Vvyy

Net Mask

m Network addresses, mask notation: address/mask
m A prefix of length p corresponds to a mask

p times 32—p times
—_——
M=11---100---0 two

e.g.,128.138.207.160/27=128.138.207.160/255.255.255.224
127.0.0.1/8=127.0.0.1/255.0.0.0
192.168.0.3/24=192.168.0.3/255.255.255.0
195.176.181.11/32=195.176.181.11/255.255.255.255

vV v Vvyy

m InJava:

Net Mask

m Network addresses, mask notation: address/mask
m A prefix of length p corresponds to a mask

p times 32—p times
—_——
M=11---100---0 two

> e.g.,128.138.207.160/27=128.138.207.160/255.255.255.224
» 127.0.0.1/8=127.0.0.1/255.0.0.0
> 192.168.0.3/24=192.168.0.3/255.255.255.0
> 195.176.181.11/32=195.176.181.11/255.255.255.255
m InJava:
boolean match(int address, int network, int mask) {

return (address & mask) == (network & mask);

Allocation of Address Blocks

Allocation of Address Blocks

thedude.org

123.4.0.0/24

123.4.1.0/24

maude.com

123.4.0.0/16

123.4.20.0/24

bowling.edu

Allocation of Address Blocks

thedude.org

123.4.0.0/24

123.4.1.0/24

maude.com

123.4.0.0/16

123.4.20.0/24

bowling.edu

98.7.1.0/24

margie.net

98.7.1.0/16

Allocation of Address Blocks

thedude.org

123.4.0.0/24

123.4.1.0/24

maude.com

123.4.0.0/16

bowling.edu

123.4.20.0/24

98.7.1.0/24

margie.net

98.7.1.0/16
123.4.20.0/24

Longest-Prefix Matching

Longest-Prefix Matching

m In choosing where to forward a datagram, a router chooses the entry that matches the
destination address with the longest prefix

Longest-Prefix Matching

m In choosing where to forward a datagram, a router chooses the entry that matches the
destination address with the longest prefix

E.g.,

forwarding table
network | port

123.4.0.0/16 1
98.7.1.0/16
123.4.20.0/24
128.0.0.0/1
66.249.0.0/16
0.0.0.0/1
128.138.0.0/16

AW WINDN

Longest-Prefix Matching

m In choosing where to forward a datagram, a router chooses the entry that matches the
destination address with the longest prefix

E.g.,

> 123.4.1.69—7 forwarding table
network | port

123.4.0.0/16 1
98.7.1.0/16
123.4.20.0/24
128.0.0.0/1
66.249.0.0/16
0.0.0.0/1
128.138.0.0/16

AW WINDN

Longest-Prefix Matching

m In choosing where to forward a datagram, a router chooses the entry that matches the
destination address with the longest prefix

E.g.,

> 123.4.1.69—1 forwarding table
network | port

123.4.0.0/16 1
98.7.1.0/16
123.4.20.0/24
128.0.0.0/1
66.249.0.0/16
0.0.0.0/1
128.138.0.0/16

AW WINDN

Longest-Prefix Matching

m In choosing where to forward a datagram, a router chooses the entry that matches the
destination address with the longest prefix

E.g.,

> 123.4.1.69—1 forwarding table

> 68.142.226.44—7 network | port
123.4.00/16 | 1
98.7.1.0/16
123.4.20.0/24
128.0.0.0/1
66.249.0.0/16
0.0.0.0/1
128.138.0.0/16

AW WINDN

Longest-Prefix Matching

m In choosing where to forward a datagram, a router chooses the entry that matches the
destination address with the longest prefix

E.g.,

> 123.4.1.69—1 forwarding table

> 68.142.226.44—4 network | port
123.4.00/16 | 1
98.7.1.0/16
123.4.20.0/24
128.0.0.0/1
66.249.0.0/16
0.0.0.0/1
128.138.0.0/16

AW WINDN

Longest-Prefix Matching

m In choosing where to forward a datagram, a router chooses the entry that matches the
destination address with the longest prefix

E.g.,

> 123.4.1.69—1 forwarding table

> 68.142.226.44—4 network | port
123.4.00/16 | 1
98.7.1.0/16
123.4.20.0/24
128.0.0.0/1
66.249.0.0/16
0.0.0.0/1
128.138.0.0/16

> 98.7.2.71-7?

AW WINDN

Longest-Prefix Matching

m In choosing where to forward a datagram, a router chooses the entry that matches the
destination address with the longest prefix

E.g.,

> 123.4.1.69—1 forwarding table

> 68.142.226.44—4 network | port
123.4.00/16 | 1
98.7.1.0/16
123.4.20.0/24
128.0.0.0/1
66.249.0.0/16
0.0.0.0/1
128.138.0.0/16

> 98.7.2.71-2

AW WINDN

Longest-Prefix Matching

m In choosing where to forward a datagram, a router chooses the entry that matches the
destination address with the longest prefix

E.g.,

> 123.4.1.69—1 forwarding table
> 68.142.226.44—4 network | port
> 98.7.2.71-2 19283.74.10.00//1166 ;
> 200.100.2.1—7? 1 23:4:26.0 124 5
128.0.0.0/1 3

66.249.0.0/16 3

0.0.0.0/1 4

128.138.0.0/16 4

Longest-Prefix Matching

m In choosing where to forward a datagram, a router chooses the entry that matches the
destination address with the longest prefix

E.g.,

> 123.4.1.69—1 forwarding table
> 68.142.226.44—4 network | port
> 98.7.2.71-2 19283.74.10.00//1166 ;
> 200.100.2.1-3 1 23:4:26.0 124 5
128.0.0.0/1 3

66.249.0.0/16 3

0.0.0.0/1 4

128.138.0.0/16 4

Longest-Prefix Matching

m In choosing where to forward a datagram, a router chooses the entry that matches the
destination address with the longest prefix

E.g.,

> 123.4.1.69—1 forwarding table
> 68.142.226.44—4 network | port
> 98.7.2.71—2 19283-74-1060//1 166 ;
> 200.100.2.1-3 123:4:26.0/24 2
> 128.138.207.167—? 128.0.0.0/1 3
66.249.0.0/16 | 3

0.0.0.0/1 4

128.138.0.0/16 | 4

Longest-Prefix Matching

m In choosing where to forward a datagram, a router chooses the entry that matches the
destination address with the longest prefix

E.g.,

> 123.4.1.69—1 forwarding table
> 68.142.226.44—4 network | port
> 98.7.2.71—2 19283-74-1060//1 166 ;
> 200.100.2.1-3 123:4:26.0/24 2
> 128.138.207.167—4 128.0.0.0/1 3
66.249.0.0/16 | 3

0.0.0.0/1 4

128.138.0.0/16 | 4

Longest-Prefix Matching

m In choosing where to forward a datagram, a router chooses the entry that matches the
destination address with the longest prefix

E.g.,

> 123.4.1.69—1 forwarding table
> 68.142.226.44—4 network | port
> 98.7.2.71—52 19283-74-10-03/1166 ;
> 200.100.2.1—3 123:4: 26.0 124 5
> 128.138.207.167—4 128.0.0.0/1 3
> 123.4.20.11—? 66.249.0.(/)/16 3
0.0.0.0/1 4

128.138.0.0/16 | 4

Longest-Prefix Matching

m In choosing where to forward a datagram, a router chooses the entry that matches the
destination address with the longest prefix

E.g.,

> 123.4.1.69—1 forwarding table
> 68.142.226.44—4 network | port
> 98.7.2.71—52 19283-74-10-03/1166 ;
> 200.100.2.1—3 123:4: 26.0 124 5
> 128.138.207.167—4 128.0.0.0/1 3
> 123.4.20.11—2 66.249.0.(/)/16 3
0.0.0.0/1 4

128.138.0.0/16 | 4

Longest-Prefix Matching

m In choosing where to forward a datagram, a router chooses the entry that matches the
destination address with the longest prefix

E.g.,
> 123.4.1.69—1 forwarding table
> 68.142.226.44—4 network | port
> 98.7.2.712 1925'74'10'00/1 166 ;
> 200.100.2.1=3 1234200024 | 2
> 128.138.207.167—4 128.0.0.0/1 | 3
> 123420112 66.249.0.0/16 | 3
0.0.0.0/1 4
» ?
123.4.21.10— 128.138.0.0/16 | 4

Longest-Prefix Matching

m In choosing where to forward a datagram, a router chooses the entry that matches the
destination address with the longest prefix

E.g.,
> 123.4.1.69—1 forwarding table
> 68.142.226.44—4 network | port
> 98.7.2.712 1925'74'10'00/1 166 ;
> 200.100.2.1=3 1234200024 | 2
> 128.138.207.167—4 128.0.0.0/1 | 3
> 123420112 66.249.0.0/16 | 3
0.0.0.0/1 4
»
123421101 128.138.0.0/16 | 4

Routing Problem

Routing Problem

m Finding paths through a network

Routing Problem

m Finding paths through a network

Routing Problem

m Finding paths through a network

m Example: a — j?

Graph Model

m The network is modeled as a graph

G=(V,E)

Graph Model

m The network is modeled as a graph

G=(V,E)

> Vis a set of vertices representing the routers

Graph Model

m The network is modeled as a graph

G = (V,E)

> Vis a set of vertices representing the routers

> E C V xVisasetof edges representing communication links

> e.g., (u,v) € Eiff router uis on the same subnet as v

Graph Model

m The network is modeled as a graph

G = (V,E)

> Vis a set of vertices representing the routers

> E C V xVisasetof edges representing communication links

> e.g., (u,v) € Eiff router uis on the same subnet as v

> Gisassumed to be an undirected graph, meaning that links are bidirectional

> ie.,(uv)€eE & (v,u)eEforallu,veN

Graph Model

m The network is modeled as a graph

G = (V,E)

v

V is a set of vertices representing the routers

> E C V xVisasetof edges representing communication links

> e.g., (u,v) € Eiff router uis on the same subnet as v

> Gisassumed to be an undirected graph, meaning that links are bidirectional

> ie.,(uv)€eE & (v,u)eEforallu,veN

v

Acostfunctionc: E—- R

> costs are always positive: c(e) > Oforalle € E
> links are symmetric: c(u,v) = c(v,u) forallu,v e N

Routing in the Graph Model

m Forevery router u € V, for every other router v € V, compute the path
Py,—yv = U,X1,X2, . ..,Xn, v such that

Routing in the Graph Model

m Forevery router u € V, for every other router v € V, compute the path
Py,—yv = U,X1,X2, . ..,Xn, v such that

> P,y iscompletely contained in the network graph G. l.e.,
(uyx1) eV, (x5, x2) €V,...,(xp,v) €V

Routing in the Graph Model

m Forevery router u € V, for every other router v € V, compute the path
Py,—yv = U,X1,X2, . ..,Xn, v such that

> P,y iscompletely contained in the network graph G. l.e.,
(uyx1) eV, (x5, x2) €V,...,(xp,v) €V

> P,y isaleast-cost path, where the cost of the path is
c(Py—y) =c(u,x1) + c(x1,x2) + ...+ c(Xp, V)

Routing in the Graph Model

m Forevery router u € V, for every other router v € V, compute the path
Py,—yv = U,X1,X2, . ..,Xn, v such that

> P,y iscompletely contained in the network graph G. l.e.,
(uyx1) eV, (x5, x2) €V,...,(xp,v) €V

> P,y isaleast-cost path, where the cost of the path is
c(Py—y) =c(u,x1) + c(x1,x2) + ...+ c(Xp, V)

m Compile u’s forwarding table by adding the following entry:

A(v) = 1,(x1)

> A(v) isthe address (or set of addresses) of router v

> /,(x1) is the interface that connects u to the first next-hop router x; in
Pu—)V = U,X]_,XZ, LIRS ’Xn» v

Back To The Example

m Example:a — §

Back To The Example

1
@—
1 1

m Example:a — §

> least-cost pathis P,_,; = a,e,b,f,j

Back To The Example

1
N 3

@

1 1
3 9

m Example:a — §
> least-cost pathis P,_,; = a,e,b,f,j

» a’s forwarding table will contain an entry sincely(e) =2

Two General Strategies

B There are two main strategies to implement a routing algorithm

Two General Strategies

B There are two main strategies to implement a routing algorithm

m Link-state routing

Two General Strategies

B There are two main strategies to implement a routing algorithm

m Link-state routing

> global view of the network

» local computation of least-cost paths

Two General Strategies

B There are two main strategies to implement a routing algorithm

m Link-state routing

> global view of the network

» local computation of least-cost paths

m Distance-vector routing

Two General Strategies

B There are two main strategies to implement a routing algorithm

m Link-state routing

> global view of the network

» local computation of least-cost paths

m Distance-vector routing

» local view of the network

> global computation of least-cost paths

Link-State Routing

m Router u maintains a complete view of the network graph G (including all links and their
costs)

Link-State Routing

m Router u maintains a complete view of the network graph G (including all links and their
costs)

> every router v advertises its adjacent links (their costs) to every other router in the network;
this information is called link state

> link-state advertisements (LSAs) are broadcast through the entire network

Link-State Routing

m Router u maintains a complete view of the network graph G (including all links and their
costs)

> every router v advertises its adjacent links (their costs) to every other router in the network;
this information is called link state

> link-state advertisements (LSAs) are broadcast through the entire network

> routers collect link-state advertisements from other routers, and they use them to compile
and maintain a complete view of G

Link-State Routing

m Router u maintains a complete view of the network graph G (including all links and their
costs)

> every router v advertises its adjacent links (their costs) to every other router in the network;
this information is called link state

> link-state advertisements (LSAs) are broadcast through the entire network

> routers collect link-state advertisements from other routers, and they use them to compile
and maintain a complete view of G

m Using its local representation of G, router u computes the least-cost paths from u to every
other router in the network

Link-State Routing

m Router u maintains a complete view of the network graph G (including all links and their
costs)

> every router v advertises its adjacent links (their costs) to every other router in the network;
this information is called link state

> link-state advertisements (LSAs) are broadcast through the entire network

> routers collect link-state advertisements from other routers, and they use them to compile
and maintain a complete view of G

m Using its local representation of G, router u computes the least-cost paths from u to every
other router in the network

> the computation is local

Link-State Advertisements

Link-State Advertisements

LSA, = {(a,b,3),(a,e,1),(a,d, 1)}

Link-State Advertisements

1
(®

LSA, = {(a,b,3),(a,e,1),(a,d, 1)}

Link-State Advertisements

1
(®

LSA, = {(a,b,3),(a,e,1),(a,d, 1)}
LSA, = {(h,e, 1), (h,f,4), (h,j,14)}

Link-State Advertisements

LSA, = {(a,b,3),(a,e,1),(a,d, 1)}
LSA, = {(h,e, 1), (h,f,4), (h,j,14)}

Link-State Advertisements

LSA; = {(a,b,3), (a,e,1),(a,d, 1)}
LSA, = {(h,e, 1), (h,f,4),(h,j,14)}
LSAy ={(d,a,1),(d,g,1),(d,e,3)}

Link-State Advertisements

LSA; = {(a,b,3), (a,e,1),(a,d, 1)}
LSA, = {(h,e, 1), (h,f,4),(h,j,14)}
LSAy ={(d,a,1),(d,g,1),(d,e,3)}

Link-State Advertisements

LSA, = {(a,b,3),(a,e,1),(a,d, 1)}
LSA, = {(h,e, 1), (h,f,4), (h,j,14)}
LSAy ={(d,a,1),(d,g,1),(d, e, 3)}
LSAr = {(f,c, 1), (f,b,1), (f,e,3),(f,h,4),(f,),2)}

Link-State Advertisements

LSA, = {(a,b,3),(a,e,1),(a,d, 1)}
LSA, = {(h,e, 1), (h,f,4), (h,j,14)}
LSAy ={(d,a,1),(d,g,1),(d, e, 3)}
LSAr = {(f,c, 1), (f,b,1), (f,e,3),(f,h,4),(f,),2)}

Link-State Advertisements

LSA, = {(a,b,3),(a,e,1),(a,d, 1)}
LSA, = {(h,e, 1), (h,f,4), (h,j,14)}
LSAy ={(d,a,1),(d,g,1),(d, e, 3)}
LSAr = {(f,c, 1), (f,b,1), (f,e,3),(f,h,4),(f,),2)}

Link-State Routing Ingredients

What do we need to implement link-state routing?

Link-State Routing Ingredients
What do we need to implement link-state routing?

m Every router sends its LSA to every other router in the network, so we need a broadcast
routing scheme

Link-State Routing Ingredients
What do we need to implement link-state routing?

m Every router sends its LSA to every other router in the network, so we need a broadcast
routing scheme

B Once we have all the LSAs from every router, and therefore we complete knowledge of G,
we need an algorithm to compute least-cost paths in a graph

Broadcast Routing

Broadcast Routing

m Flooding

> every router forwards a broadcast packet to every adjacent router, except the one that sent
the packet

Broadcast Routing

m Flooding

> every router forwards a broadcast packet to every adjacent router, except the one that sent
the packet

m Simple and elegant

Broadcast Routing

m Flooding

> every router forwards a broadcast packet to every adjacent router, except the one that sent
the packet

m Simple and elegant

m Correct w.r.t. the broadcast requirement: a broadcast packet will eventually reach every
router

Broadcast Routing

m Flooding

> every router forwards a broadcast packet to every adjacent router, except the one that sent
the packet

m Simple and elegant

m Correct w.r.t. the broadcast requirement: a broadcast packet will eventually reach every
router

m Any problem with this solution?

Broadcast Routing

m Flooding

> every router forwards a broadcast packet to every adjacent router, except the one that sent
the packet

m Simple and elegant

m Correct w.r.t. the broadcast requirement: a broadcast packet will eventually reach every
router

m Any problem with this solution?

> cyclesin the network create packet storms

Broadcast Routing (2)

Broadcast Routing (2)

m Reverse-path broadcast

> every router forwards a broadcast packet to every adjacent router, except the one where it
received the packet router

> arouter u accepts a broadcast packet p originating at router s only if p arrives on the link that
is on the direct (unicast) path fromutos

Broadcast Routing (2)

m Reverse-path broadcast

> every router forwards a broadcast packet to every adjacent router, except the one where it
received the packet router

> arouter u accepts a broadcast packet p originating at router s only if p arrives on the link that
is on the direct (unicast) path fromutos

m Correct w.r.t. the broadcast requirement: a broadcast packet will eventually reach every
router

Broadcast Routing (2)

m Reverse-path broadcast

> every router forwards a broadcast packet to every adjacent router, except the one where it
received the packet router

> arouter u accepts a broadcast packet p originating at router s only if p arrives on the link that
is on the direct (unicast) path fromutos

m Correct w.r.t. the broadcast requirement: a broadcast packet will eventually reach every
router

m No packet storms even in the presence of cyclesin G

Broadcast Routing (2)

m Reverse-path broadcast

> every router forwards a broadcast packet to every adjacent router, except the one where it
received the packet router

> arouter u accepts a broadcast packet p originating at router s only if p arrives on the link that
is on the direct (unicast) path fromutos

m Correct w.r.t. the broadcast requirement: a broadcast packet will eventually reach every
router

m No packet storms even in the presence of cyclesin G

m Any problem with this solution?

Broadcast Routing (2)

m Reverse-path broadcast

> every router forwards a broadcast packet to every adjacent router, except the one where it
received the packet router

> arouter u accepts a broadcast packet p originating at router s only if p arrives on the link that
is on the direct (unicast) path fromutos

m Correct w.r.t. the broadcast requirement: a broadcast packet will eventually reach every
router

m No packet storms even in the presence of cyclesin G

m Any problem with this solution?

> it requires (unicast) routing information

> soitis obviously useless to implement a routing algorithm

Broadcast Routing (3)

m Sequence-number controlled flooding

Broadcast Routing (3)

m Sequence-number controlled flooding

> the originator s of a broadcast packet marks the packet with a sequence number n;

Broadcast Routing (3)

m Sequence-number controlled flooding

> the originator s of a broadcast packet marks the packet with a sequence number n;

> every router u stores the most recent sequence number seen from each source router. Let’s
assume that u has seen sequence numbers from s up to ns

Broadcast Routing (3)

m Sequence-number controlled flooding

> the originator s of a broadcast packet marks the packet with a sequence number n;

> every router u stores the most recent sequence number seen from each source router. Let’s
assume that u has seen sequence numbers from s up to ns

> arouter accepts a broadcast packet p originating at s only if p carries a sequence number
seq(p) that is higher than the most recent one seen from s: seq(p) > n;

Broadcast Routing (3)

m Sequence-number controlled flooding

>

>

the originator s of a broadcast packet marks the packet with a sequence number n;

every router u stores the most recent sequence number seen from each source router. Let’s
assume that u has seen sequence numbers from s up to ns

a router accepts a broadcast packet p originating at s only if p carries a sequence number
seq(p) that is higher than the most recent one seen from s: seq(p) > n;

accepted packets are forwarded to every adjacent router, except the previous-hop router

Broadcast Routing (3)

m Sequence-number controlled flooding

>

>

the originator s of a broadcast packet marks the packet with a sequence number n;

every router u stores the most recent sequence number seen from each source router. Let’s
assume that u has seen sequence numbers from s up to ns

a router accepts a broadcast packet p originating at s only if p carries a sequence number
seq(p) that is higher than the most recent one seen from s: seq(p) > n;

accepted packets are forwarded to every adjacent router, except the previous-hop router

u updates its table of sequence numbers ng « seq(p)

Internet-Level Routing

Internet-Level Routing

m Scalability

» hundreds of millions of hosts in today’s Internet

Internet-Level Routing

m Scalability

» hundreds of millions of hosts in today’s Internet

> transmitting routing information (e.g., LSAs) would be too expensive

Internet-Level Routing

m Scalability
» hundreds of millions of hosts in today’s Internet
> transmitting routing information (e.g., LSAs) would be too expensive

> forwarding would also be too expensive

Internet-Level Routing

m Scalability

» hundreds of millions of hosts in today’s Internet
> transmitting routing information (e.g., LSAs) would be too expensive

> forwarding would also be too expensive

m Administrative autonomy

Internet-Level Routing

m Scalability

» hundreds of millions of hosts in today’s Internet
> transmitting routing information (e.g., LSAs) would be too expensive

> forwarding would also be too expensive

m Administrative autonomy

> one organization might want to run a distance-vector routing protocol, while another might
want to run a link-state protocol

Internet-Level Routing

m Scalability
» hundreds of millions of hosts in today’s Internet
> transmitting routing information (e.g., LSAs) would be too expensive

> forwarding would also be too expensive

m Administrative autonomy

> one organization might want to run a distance-vector routing protocol, while another might
want to run a link-state protocol

> an organization might not want to expose its internal network structure

Hierarchical Structure

m Today’s Internet is organized in autonomous systems (ASs)

> independent administrative domains

Hierarchical Structure

m Today’s Internet is organized in autonomous systems (ASs)

> independent administrative domains

m Gateway routers connect an autonomous system with other autonomous systems

Hierarchical Structure

m Today’s Internet is organized in autonomous systems (ASs)

> independent administrative domains

m Gateway routers connect an autonomous system with other autonomous systems

m An intra-autonomous system routing protocol runs within an autonomous system (e.g.,
OSPF)

> this protocol determines internal routes

> internal router < internal router
> internal router <> gateway router

> gateway router < gateway router

Hierarchical Structure

Hierarchical Structure

Hierarchical Structure

Inter-AS Routing

m Aninter-autonomous system routing protocol determines routing at the
autonomous-system level

Inter-AS Routing

m Aninter-autonomous system routing protocol determines routing at the
autonomous-system level

At AS3:
AS1 —

Inter-AS Routing

m Aninter-autonomous system routing protocol determines routing at the
autonomous-system level

At AS3:
AS1 —s AS1;

Inter-AS Routing

m Aninter-autonomous system routing protocol determines routing at the
autonomous-system level

At AS3:
AS1 — AS1;AS2 —

Inter-AS Routing

m Aninter-autonomous system routing protocol determines routing at the
autonomous-system level

At AS3:
AS1 — AS1; AS2 — AS2;

Inter-AS Routing

m Aninter-autonomous system routing protocol determines routing at the
autonomous-system level

At AS3:
AS1 — AS1;AS2 — AS2; AS4 —

Inter-AS Routing

m Aninter-autonomous system routing protocol determines routing at the
autonomous-system level

At AS3:
AS1 — AS1;AS2 — AS2; AS4 — ASL.

Hierarchical Routing

m All routers within an AS compute their intra-AS routing information

» using an intra-doman routing protocol

Hierarchical Routing

m All routers within an AS compute their intra-AS routing information

» using an intra-doman routing protocol

m Gateway routers figure out inter-AS routing information

> using an inter-domain routing protocol

Hierarchical Routing

m All routers within an AS compute their intra-AS routing information

» using an intra-doman routing protocol

m Gateway routers figure out inter-AS routing information

> using an inter-domain routing protocol

m inter-AS routing information is propagated within an AS

> using an appropriate protocol

Hierarchical Routing

m All routers within an AS compute their intra-AS routing information

» using an intra-doman routing protocol

m Gateway routers figure out inter-AS routing information

> using an inter-domain routing protocol

m inter-AS routing information is propagated within an AS

> using an appropriate protocol

m Both inter-AS and intra-AS routing information is used to compile the forwarding tables

Hierarchical Routing (2)

m Destinations within the same autonomous system are reached as usual

Hierarchical Routing (2)

m Destinations within the same autonomous system are reached as usual

m What about a destination x outside the autonomous system?

Hierarchical Routing (2)

m Destinations within the same autonomous system are reached as usual

m What about a destination x outside the autonomous system?

> inter-AS information is used to figure out that x is reachable through gateway G,

Hierarchical Routing (2)

m Destinations within the same autonomous system are reached as usual

m What about a destination x outside the autonomous system?

> inter-AS information is used to figure out that x is reachable through gateway G,

» intra-AS information is used to figure out how to reach Gy within the AS

Hierarchical Routing (2)

m Destinations within the same autonomous system are reached as usual

m What about a destination x outside the autonomous system?

> inter-AS information is used to figure out that x is reachable through gateway G,
» intra-AS information is used to figure out how to reach Gy within the AS

> what if x is reachable through multiple gateway routers Gy, Gy, . . .7

Hierarchical Routing (2)

m Destinations within the same autonomous system are reached as usual

m What about a destination x outside the autonomous system?

> inter-AS information is used to figure out that x is reachable through gateway G,
» intra-AS information is used to figure out how to reach Gy within the AS

> what if x is reachable through multiple gateway routers Gy, Gy, . . .7
> use intra-AS routing information to determine the costs of the (least-cost) paths to Gy, Gy, . . .

> “hot-potato” routing: send it through the closest gateway

Benefits of Hierarchical Routing

m Administrative autonomy

Benefits of Hierarchical Routing

m Administrative autonomy

> each autonomous system decides what intra-AS routing to use

Benefits of Hierarchical Routing

m Administrative autonomy

> each autonomous system decides what intra-AS routing to use

> an autonomous system needs to expose only minimal information about the internal
structure of its network

> essentially only (sub)net addresses

Benefits of Hierarchical Routing

m Administrative autonomy

> each autonomous system decides what intra-AS routing to use

> an autonomous system needs to expose only minimal information about the internal
structure of its network

> essentially only (sub)net addresses

m Scalability

Benefits of Hierarchical Routing

m Administrative autonomy

> each autonomous system decides what intra-AS routing to use

> an autonomous system needs to expose only minimal information about the internal
structure of its network

> essentially only (sub)net addresses

m Scalability

> routers within an autonomous system need to know very little about the internal structure
of other autonomous systems

Benefits of Hierarchical Routing

m Administrative autonomy

> each autonomous system decides what intra-AS routing to use

> an autonomous system needs to expose only minimal information about the internal
structure of its network

> essentially only (sub)net addresses

m Scalability

> routers within an autonomous system need to know very little about the internal structure
of other autonomous systems

> essentially only (sub)net addresses

Benefits of Hierarchical Routing

m Administrative autonomy

> each autonomous system decides what intra-AS routing to use

> an autonomous system needs to expose only minimal information about the internal
structure of its network

> essentially only (sub)net addresses

m Scalability

> routers within an autonomous system need to know very little about the internal structure
of other autonomous systems

> essentially only (sub)net addresses

m External subnet addresses are likely to “aggregate” in groups that admit compact
representations

> this process is called supernetting

Inter-AS Routing in the Internet

Inter-AS Routing in the Internet

m The Border Gateway Protocol (BGP) is the inter-AS routing protocol in today’s Internet

Inter-AS Routing in the Internet

m The Border Gateway Protocol (BGP) is the inter-AS routing protocol in today’s Internet

> provides reachability information from neighbor ASs

Inter-AS Routing in the Internet

m The Border Gateway Protocol (BGP) is the inter-AS routing protocol in today’s Internet

> provides reachability information from neighbor ASs

> transmits reachability information to all internal routers within an AS

Inter-AS Routing in the Internet

m The Border Gateway Protocol (BGP) is the inter-AS routing protocol in today’s Internet
> provides reachability information from neighbor ASs
> transmits reachability information to all internal routers within an AS

> determines good routes to all outside subnets

Inter-AS Routing in the Internet

m The Border Gateway Protocol (BGP) is the inter-AS routing protocol in today’s Internet
> provides reachability information from neighbor ASs
> transmits reachability information to all internal routers within an AS

> determines good routes to all outside subnets

> based on reachability information

Inter-AS Routing in the Internet

m The Border Gateway Protocol (BGP) is the inter-AS routing protocol in today’s Internet

> provides reachability information from neighbor ASs
> transmits reachability information to all internal routers within an AS

> determines good routes to all outside subnets

> based on reachability information
> based on policies

Inter-AS Routing in the Internet

m The Border Gateway Protocol (BGP) is the inter-AS routing protocol in today’s Internet
> provides reachability information from neighbor ASs
> transmits reachability information to all internal routers within an AS

> determines good routes to all outside subnets

> based on reachability information
> based on policies

> BGP is a path-vector protocol

BGP Architecture and Terminology

m BGP session: a semi-permanent connection between two routers

BGP Architecture and Terminology

m BGP session: a semi-permanent connection between two routers

m BGP peers: two routers engaged in a BGP session

» BGP sessions are established over TCP

BGP Architecture and Terminology

m BGP session: a semi-permanent connection between two routers

m BGP peers: two routers engaged in a BGP session

» BGP sessions are established over TCP

m BGP external session (eBGP): a session across two autonomous systems

BGP Architecture and Terminology

m BGP session: a semi-permanent connection between two routers

m BGP peers: two routers engaged in a BGP session

» BGP sessions are established over TCP

m BGP external session (eBGP): a session across two autonomous systems

m BGP internal session (iBGP): a session within an autonomous system

> note that internal sessions carry inter-AS information

> intra-AS routing uses a separate protocol (e.g., OSPF)

Gateway Routers and eBGP

24

AS2

BGP Architecture and Terminology (2)

m BGP advertisement: a router advertises routes to networks, much like an entry in a
distance-vector

» destinations are denoted by address prefixes

BGP Architecture and Terminology (2)

m BGP advertisement: a router advertises routes to networks, much like an entry in a
distance-vector

» destinations are denoted by address prefixes

> an AS may or may not forward an advertisement for a foreign network; doing so means
being willing to carry traffic for that network

BGP Architecture and Terminology (2)

m BGP advertisement: a router advertises routes to networks, much like an entry in a
distance-vector

» destinations are denoted by address prefixes

> an AS may or may not forward an advertisement for a foreign network; doing so means
being willing to carry traffic for that network

> this is where a router may aggregate prefixes (a.k.a., “supernetting”)
E.g.,
128.138.242.0/24

128.138.243.0/24 } — 128.138.242.0/23

BGP Architecture and Terminology (2)

m BGP advertisement: a router advertises routes to networks, much like an entry in a

distance-vector

» destinations are denoted by address prefixes

> an AS may or may not forward an advertisement for a foreign network; doing so means
being willing to carry traffic for that network

> this is where a router may aggregate prefixes (a.k.a., “supernetting”)

E.g.,

128.138.242.0/24

128.138.243.0/24 } — 128.138.242.0/23
191.224.128.0/22

191.224.136.0/21 | —
191.224.132.0/22

BGP Architecture and Terminology (2)

m BGP advertisement: a router advertises routes to networks, much like an entry in a

distance-vector

» destinations are denoted by address prefixes

> an AS may or may not forward an advertisement for a foreign network; doing so means
being willing to carry traffic for that network

> this is where a router may aggregate prefixes (a.k.a., “supernetting”)

E.g.,

128.138.242.0/24
128.138.243.0/24 } — 128.138.242.0/23
191.224.128.0/22
191.224.136.0/21 § — 191.224.128.0/20
191.224.132.0/22

BGP Architecture and Terminology (3)

m Autonomous system number (ASN): a unique identifier for each AS (with more than one
gateway)

BGP Architecture and Terminology (3)

m Autonomous system number (ASN): a unique identifier for each AS (with more than one
gateway)

m BGP attributes: a route advertisement includes a number of attributes

> AS-PATH: sequence of ASNs to the given destination AS

BGP Architecture and Terminology (3)

m Autonomous system number (ASN): a unique identifier for each AS (with more than one
gateway)

m BGP attributes: a route advertisement includes a number of attributes

> AS-PATH: sequence of ASNs to the given destination AS
> NEXT-HOP: specifies the interface (IP address) to use to forward packets towards the
advertised destination

> used to resolve ambiguous cases where an AS can be reached through multiple gateways
(interfaces)

BGP Architecture and Terminology (3)

m Autonomous system number (ASN): a unique identifier for each AS (with more than one
gateway)

m BGP attributes: a route advertisement includes a number of attributes

> AS-PATH: sequence of ASNs to the given destination AS

> NEXT-HOP: specifies the interface (IP address) to use to forward packets towards the
advertised destination

> used to resolve ambiguous cases where an AS can be reached through multiple gateways
(interfaces)

m BGP import policy: used to decide whether to accept or reject the route advertisement

> e.g., arouter may not want to send its traffic through one of the AS listed in AS-PATH

Route Selection

1. Router preference: routes are ranked according to a preference value
> configured at the router
> orlearned from another router within the same AS
> essentially a configuration parameter for the AS

Route Selection

1. Router preference: routes are ranked according to a preference value

> configured at the router
> orlearned from another router within the same AS
> essentially a configuration parameter for the AS

2. Shortest AS-PATH

Route Selection

1. Router preference: routes are ranked according to a preference value

> configured at the router
> orlearned from another router within the same AS
> essentially a configuration parameter for the AS

2. Shortest AS-PATH

3. Closest NEXT-HOP router

=

N

. Router preference: routes are ranked according to a preference value

> configured at the router
> orlearned from another router within the same AS
> essentially a configuration parameter for the AS

. Shortest AS-PATH

. Closest NEXT-HOP router

Route Selection

	Network Architecture
	Delay and Throughput
	Application Protocols
	Application Multiplexing
	Reliability
	Congestion Control
	Network Layer

