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Basic Concepts

The Internet uses packet switching

Packet switch: a link-layer switch or a router

Communication link: a connection between packet switches and/or end
systems

Route: sequence of switches that a packet goes through (a.k.a. path)

Protocol: control the sending and receiving of information to and from end
systems and packet switches
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Communication Links

Various types and forms of medium

◮ Fiber-optic cable

◮ Twisted-pair copper wire

◮ Coaxial cable

◮ Wireless local-area links (e.g., 802.11, Bluetooth)

◮ Satellite channel

◮ . . .
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Packet Switching

The Internet is a packet-switched network

Information is transmitted in packets

Switches operate on individual packets

A switch (router) receives packets and forwards them along to other switches or
to end systems

Every forwarding decision is taken on the basis of the information contained in
the packet
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Circuit Switching

The telephone network is a typical circuit-switched network

◮ not any more, really, but still. . .

Communication requires a connection setup phase in which the network
reserves all the necessary resources for that connection (links, buffers,
switches, etc.)

After a successful setup, the communicating systems are connected by a set of
links dedicated to the connection for the entire duration of their conversation

When the conversation ends, the network tears down the connection, freeing
the corresponding resources (links, buffers, etc.) for other connections
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Circuit vs. Packet Switching

Circuit switching requires an expensive setup phase

◮ however, once the connection is established, little or no processing is required

Packet switching does not incur any setup cost

◮ however, it always incurs a significant processing and space overhead, on a
per-packet basis

◮ processing cost for forwarding

◮ space overhead because every packet must be self-contained
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Circuit switching admits a straightforward implementation of quality-of-service
guarantees

◮ network resources are reserved at connection setup time

Guaranteeing any quality of service with packet switching is very difficult

◮ no concept of a “connection”

◮ and again, processing, space overhead, etc.
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Circuit vs. Packet Switching (3)

Circuit switching allows only a limited sharing of communication resources

◮ once a connection is established, the resources are blocked even though there
might be long silence periods

◮ i.e., circuit switching is an inefficient way to use the network

Packet switching achieves a much better utilization of network resources

◮ it is designed specifically to share links

◮ it is designed specifically to share links



Virtual Circuits

Idea: combine the advantages of circuit switching and packet switching



Virtual Circuits

Idea: combine the advantages of circuit switching and packet switching

There is a connection setup phase



Virtual Circuits

Idea: combine the advantages of circuit switching and packet switching

There is a connection setup phase

The connection does not create a physical circuit, but rather a “virtual circuit”



Virtual Circuits

Idea: combine the advantages of circuit switching and packet switching

There is a connection setup phase

The connection does not create a physical circuit, but rather a “virtual circuit”

Information is sent in packets, so links can be shared more effectively



Virtual Circuits

Idea: combine the advantages of circuit switching and packet switching

There is a connection setup phase

The connection does not create a physical circuit, but rather a “virtual circuit”

Information is sent in packets, so links can be shared more effectively

Packets carry a virtual circuit identifier instead of the destination address



Virtual Circuits

Idea: combine the advantages of circuit switching and packet switching

There is a connection setup phase

The connection does not create a physical circuit, but rather a “virtual circuit”

Information is sent in packets, so links can be shared more effectively

Packets carry a virtual circuit identifier instead of the destination address

◮ Important observation: at any given time there are much fewer connections than
destinations

◮ much faster per-packet processing (forwarding)

◮ lower per-packet space overhead
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Type of Service

Two end systems can communicate through the Internet, but exactly what kind
of communication service is that of the Internet?

Connectionless, “best effort”
◮ the network accepts “datagrams” for delivery—this is conceptually similar to the
postal service

◮ “best effort” really means unreliable though not malicious

Connection-oriented, reliable
◮ virtual duplex communication channel (A↔ B)—conceptually similar to a
telephone service

◮ information is transmitted “reliably” and in order
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Type of Service (2)

How reliable is a “reliable” service?

The term “reliable”means that information will eventually reach its destination
if a route is viable within a certain amount of time

The network makes absolutely no guarantees on latency (i.e., the time it takes to
transmit some information from a source to a destination)
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Application (e.g., HTTP, SMTP, and DNS)
◮ application functionalities
◮ application messages

Transport (e.g., TCP and UDP)
◮ application multiplexing, reliable transfer (TCP), congestion control (TCP)
◮ datagrams (UDP) or segments (TCP)

Network (IP)
◮ end to end datagram, best-effort service, routing, fragmentation
◮ packets (IP)

Link (e.g., Ethernet and PPP)
◮ point-to-point or local broadcast communication
◮ frames (or packets)

Physical
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Delay (Latency) and Rate (Throughput)

connection

t0
first bit

enters

t1
first bit

exists

100 · · · 110

t2
last bit

exits

ℓ bits
︷ ︸︸ ︷

Propagation Delay dprop = t1 − t0 sec

Transmission Rate R =
ℓ

t2 − t1
bits/sec

Total transfer time dend-end = d +
ℓ

R
sec
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Store-And-Forward Delay

XH1 H2
d1, R1 d2, R2

dx

dend-end = d1 +
ℓ

R1
+ dx +

ℓ

R2
+ d2

X1 X2 X3 XNH1

dp, R dp, R dp, R
dx dx dx dx

dend-end = N

(

dp +
ℓ

R
+ dx

)
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End-toEnd Throughput

XH1 H2
d1, R1 d2, R2

dx

Rend-end = min{R1, R2}

X1 X2 X3 XNH1

dp, R1 dp, R2 dp, R3
dx dx dx dx

Rend-end = min{R1, R2, . . . , RN}
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Queuing Delay

dx = dcpu + dqueue

where
dqueue = |q|/Rx

queue length

output rate

. . .Rx is also the rate at which packets get out of the queue
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Transport Layer in the Internet

Transport Control Protocol (TCP)

◮ conntection-oriented (i.e., “connections”)

User Datagram Protocol (UDP)

◮ connectionless (i.e., “messages”)

Terminology

◮ transport-layer packets are called segments

Basic assumptions on the underlying network layer

◮ every host has one unique IP address

◮ best-effort delivery service

◮ no guarantees on the integrity of segments

◮ no guarantees on the order in which segments are delivered
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Transport-Layer Value-Added Service

Transport-layer multiplexing/demultiplexing

◮ i.e., connecting applications as opposed to hosts

Reliable data transfer

◮ i.e., integrity and possibly ordered delivery

Connections

◮ i.e., streams

◮ can be seen as the same as ordered delivery

Congestion control

◮ i.e., end-to-end traffic (admission) control so as to avoid destructive congestions
within the network



Multiplexing/Demultiplexing

Internet



Multiplexing/Demultiplexing

Internet

GET / HTTP/1.1
Web

browser

Web
server



Multiplexing/Demultiplexing

Internet

GET / HTTP/1.1

HELO ...Web
browser

Web
server

e-mail
client

e-mail
server



Multiplexing/Demultiplexing

Internet

GET / HTTP/1.1

HELO ...

GET /index.html HTTP/1.1
Web

browser

Web
server

e-mail
client

e-mail
server

Web
browser



Multiplexing/Demultiplexing

Internet

GET / HTTP/1.1

HELO ...

GET /index.html HTTP/1.1
Web

browser

Web
server

e-mail
client

e-mail
server

Web
browser

How do we distinguish all these “connections”?



Multiplexing/Demultiplexing

Internet

GET / HTTP/1.1

HELO ...

GET /index.html HTTP/1.1
Web

browser

Web
server

e-mail
client

e-mail
server

Web
browser

How do we distinguish all these “connections”?
(in this case, connections between the same two hosts)
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Ports

Each application running on a host is identified (within that host) by a unique
port number

◮ port numbers are simply cross-platform process identifiers

How do we identify a “connection”?

◮ two pairs of host and application identifiers

◮ i.e., two pairs (IP-address, port)

How do we find out which application (host and port number) to connect to?

◮ outside the scope of the definition of the transport layer

◮ but of course we can have “well-known” service numbers
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Ports

The message format of both UDP and TCP starts with the source and
destination port numbers

0 1516 31

source port destination port

. . .

E.g.,

A B

src port

1234

dst port

80

dst portsrc port

123480
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Transmission Control Protocol

The Internet’s primary transport protocol

◮ defined in RFC 793, RFC 1122, RFC 1323, RFC 2018, and RFC 2581

Connection-oriented service

◮ endpoints “shake hands” to establish a connection

◮ not a circuit-switched connection, nor a virtual circuit

Full-duplex service

◮ both endpoints can both send and receive, at the same time
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Preliminary Definitions

TCP segment: envelope for TCP data

◮ TCP data are sent within TCP segments

◮ TCP segments are usually sent within an IP packet

Maximum segment size (MSS):maximum amount of application data
transmitted in a single segment

◮ typically related to the MTU of the connection, to avoid network-level
fragmentation (we’ll talk about all of this later)

Maximum transmission unit (MTU): largest link-layer frame available to the
sender host

◮ path MTU: largest link-layer frame that can be sent on all links from the sender
host to the receiver host



TCP Segment Format

0 31

source port destination port

sequence number

acknowledgment number

hdrlen unused U A P R S F receive window

Internet checksum urgent data pointer

options field

data
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TCP Header Fields

Source and destination ports: (16-bit each) application identifiers

Sequence number: (32-bit) used to implement reliable data transfer

Acknowledgment number: (32-bit) used to implement reliable data transfer

Receive window: (16-bit) size of the “window” on the receiver end

Header length: (4-bit) size of the TCP header in 32-bit words

Optional and variable-length options field: may be used to negotiate protocol
parameters
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TCP Header Fields

ACK flag: (1-bit) signals that the value contained in the acknowledgment number
represents a valid acknowledgment

SYN flag: (1-bit) used during connection setup and shutdown

RST flag: (1-bit) used during connection setup and shutdown

FIN flag: (1-bit) used during connection shutdown

PSH flag: (1-bit) “push” flag, used to solicit the receiver to pass the data to the
application immediately

URG flag: (1-bit) “urgent” flag, used to inform the receiver that the sender has
marked some data as “urgent”. The location of this urgent data is marked by
the urgent data pointer field

Checksum: (16-bit) used to detect transmission errors
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Sequence Numbers

Sequence numbers are associated with bytes in the data stream
◮ not with segments, as we have used them before

The sequence number in a TCP segment indicates the sequence number of the
first byte carried by that segment

application data stream

4Kb

MSS=1024b

1. . . . . . 1024 1025. . . 2048 2049. . . 3072 3073. . . 4096

a TCP segment

2
0
4
9

sequence number
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Acknowledgment Numbers

An acknowledgment number represents the first sequence number not yet
seen by the receiver

◮ TCP acknowledgments are cumulative

A B

[Seq# = 1200, . . .], size(data) = 1000

[Seq# = 2200, . . .], size(data) = 500

[Seq# = . . . , Ack# = 2700]
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Sequence Numbers and ACK Numbers

Notice that a TCP connection is a full-duplex link

◮ therefore, there are two streams

◮ two different sequence numbers

E.g., consider a simple “Echo” application:

A B

[Seq# = 100, Data =“C”]

[Ack# = 101, Seq# = 200, Data =“C”]

[Seq# = 101, Ack# = 201, Data =“i”]

[Seq# = 201, Ack# = 102, Data =“i”]

Acknowledgments are “piggybacked” on data segments
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Reliability and Timeout

TCP provides reliable data transfer using a timer to detect lost segments

◮ timeout without an ACK→ lost packet→ retransmission

How long to wait for acknowledgments?

Retransmission timeouts should be larger than the round-trip time RTT = 2L

◮ as close as possible to the RTT

TCP controls its timeout by continuously estimating the current RTT
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Round-Trip Time Estimation

RTT is measured using ACKs

◮ only for packets transmitted once

Given a single sample S at any given time

Exponential weighted moving average (EWMA)

RTT = (1 − α)RTT
′
+ αS

◮ RFC 2988 recommends α = 0.125

TCP also measures the variability of RTT

DevRTT = (1 − β )DevRTT
′
+ β |RTT

′
− S |

◮ RFC 2988 recommends β = 0.25
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Timeout Value

The timeout interval T must be larger than the RTT
◮ so as to avoid unnecessary retransmission

However, T should not be too far from RTT
◮ so as to detect (and retransmit) lost segments as quickly as possible

TCP sets its timeouts using the estimated RTT (RTT) and the variability estimate

DevRTT :

T = RTT + 4DevRTT
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Reliable Data Transfer (Sender)

A simplified TCP sender

r_send(data)

if (timer not running)
start_timer()

u_send([data,next_seq_num])
next_seq_num← next_seq_num + length(data)

timeout

u_send(pending segment with smallest sequence number)
start_timer()

u_recv([ACK,y])

if (y > base)
base← y
if (there are pending segments)
start_timer()

else . . .
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Acknowledgment Generation (Receiver)

Arrival of in-order segment with expected sequence number; all data up to
expected sequence number already acknowledged
◮ Delayed ACK: wait 500ms for another in-order segment; If that does not arrive,
send ACK

Arrival of in-order segment with expected sequence number. One other
in-order segment waiting for ACK (see above)
◮ Cumulative ACK: immediately send cumulative ACK (for both segments)

Arrival of out of order segment with higher-than-expected sequence number
(gap detected)
◮ Duplicate ACK: immediately send duplicate ACK

Arrival of segment that (partially or completely) fills a gap in the received data
◮ Immediate ACK: immediately send ACK if the packet start at the lower end of the
gap
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Reaction to ACKs (Sender)

u_recv([ACK,y])

if (y > base)
base← y
if (there are pending segments)
start_timer()

else
ack_counter[y] ← ack_counter[y] + 1
if (ack_counter[y] = 3)
u_send(segment with sequence number y)
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Connection Setup

Three-way handshake

client server

[SYN, Seq# = cli_init_seq]

[SYN, ACK, Ack# = cli_init_seq + 1, Seq# = srv_init_seq]

[ACK, Seq# = cli_init_seq + 1, Ack# = srv_init_seq + 1]
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The TCP State Machine (Client)

CLOSED

SYN_SENT

application
opens connection

send SYN

ESTABLISHED

receive SYN,ACK

send ACK

FIN_WAIT_1

application
closes connection

send FIN

FIN_WAIT_2

receive ACK

TIME_WAIT

receive FIN

send ACK

wait 30 seconds
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The TCP State Machine (Server)

CLOSED

LISTEN

application
opens server socket

SYN_RCVD

receive SYN

send SYN,ACK

ESTABLISHED

receive ACK

CLOSE_WAIT

receive FIN

send ACK

LAST_ACK

send FIN

receive ACK
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Queuing Delay

Total latency is the sum of link latency, processing time, and the time that a
packet spends in the input queue

L = dTX + dCPU + dq where dq = |q|/R

Ideal case: constant input data rate

λin < R

In this case the dq = 0, because |q| = 0 (ideal input flow)

Extreme case: constant input data rate

λin > R

In this case |q| = (λin − R)t and therefore

dq =
λin − R

R
t
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Steady-state queuing delay

dq =

{

0 λin < R
λin−R
R

t λin > R

dq

λin
R

ideal input flow
λin constant

dq

λin
R

realistic input flow
λin variable
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Queuing Delay

Conclusion: as the input rate λin approaches the maximum throughput R,
packets will experience very long delays

More realistic assumptions and models

◮ finite queue length (buffers) in routers

◮ effects of retransmission overhead

◮ full queues along multi-hops paths

λout

λin

R

congestion
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Congestion Control (in TCP)

Approach:

The sender limits its output rate according to the state of the network
◮ The sender output rate becomes (part of) the input rate for the network (λin)

Ingredients:

1. How does the sendermeasure the state of the network?

◮ we need eyes to see the traffic ahead

2. how does the sender set its output rate?

◮ we need accelerator and brakes to speed up or slow down

3. how should the sender control its output rate?

◮ we need a brain and we need to know how to drive!
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Detecting Congestion (Eyes)

If all traffic is correctly acknowledged, with fresh acknowledgments, then the
sender assumes (quite correctly) that there is no congestion

Congestion means that some queues overflow in one or more routers between
the sender and the receiver

◮ the visible effect is that some segments are dropped

Therefore the sender assumes that the network is congested when it (the
sender) detects a segment loss

◮ duplicate acknowledgements (i.e., NACK)

◮ time out (i.e., no ACKs at all)
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Congestion Window (Accellerator/Brakes)

The sender maintains a congestion window W

The congestion window limits the amount of bytes that the sender pushes into
the network before blocking waiting for acknowledgments

LastByteSent − LastByteAcked ≤ W

where

W = min (CongestionWindow, ReceiverWindow)

The resulting maximum output rate is roughly

λ =
W

2L
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Congestion Control (Brain, Algorithm)

Additive-increase and multiplicative-decrease

Slow start

Reaction to timeout events
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Additive-Increase/Multiplicative-Decrease

How W is reduced: at every loss event, TCP halves the congestion window

◮ e.g., suppose the window sizeW is currently 20Kb, and a loss is detected

◮ TCP reducesW to 10Kb

How W is increased: at every (good) acknowledgment, TCP incrementsW by
1MSS/W , so as to increase W by MSS every round-trip time 2L. This process is
called congestion avoidance

◮ e.g., supposeW = 14600 and MSS = 1460, then the sender increasesW to 16060
after 10 acknowledgments acknowledgments



Additive-Increase/Multiplicative-Decrease

Window size W over time

W

Time
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Slow Start

What is the initial value ofW?

The initial value ofW is MSS, that is 1 segment, which is quite low for modern
networks

To get quickly to a good throughput level, TCP increases its sending rate
exponentially for its first growth phase, up to a slow-start threshold (ssthresh)

After the threshold, TCP proceeds with its linear push

This process is called “slow start” because of the small initial value ofW
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Timeouts vs. NACKs

As we know, three duplicate ACKs are interpreted as a NACK

Both timeouts and NACKs signal a loss, but they say different things about the
status of the network

A timeout indicates congestion

Three (duplicate) ACKs suggest that the network is still able to deliver segments
along that path

So, TCP reacts differently to a timeout and to a triple duplicate ACKs
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Timeouts vs. NACKs

Assuming the current window size is W = W

Timeout

◮ go back to W = MSS

◮ set ssthresh = W/2

◮ run slow start up to W = ssthresh

◮ then proceed with congestion avoidance

NACK (i.e., triple duplicate-ack)

◮ set ssthresh = W/2

◮ cutW in half: W = W/2

◮ run congestion avoidance, ramping upW linearly

◮ This is called fast recovery
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Sender Behavior

W

Time

MSS

NACK

timeout

NACK

NACK

SS CA SS CA CA CA

SS=slow start CA=congestion avoidance
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Forwarding

Input: datagram destination

Output: output port

Simple design: “forwarding table”

Issues

◮ how big is the forwarding table?

◮ how fast does the router have to forward datagrams?

◮ how does the router build and maintain the forwarding table?
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Router Functions

routing
communications
with neighbors:
routing protocol

routing
table

forwarding
table

forwarding
input packets

from input ports
output packets
to output ports
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Finding paths through a network

a b c

d e f

g h j

3 4
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1 1 1

1 1 2
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Example: a→ j?
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Graph Model

The network is modeled as a graph

G = (V, E)

◮ V is a set of vertices representing the routers

◮ E ⊆ V × V is a set of edges representing communication links

◮ e.g., (u, v) ∈ E iff router u is on the same subnet as v

◮ G is assumed to be an undirected graph, meaning that links are bidirectional

◮ i.e., (u, v) ∈ E ⇔ (v, u) ∈ E for all u, v ∈ N

◮ A cost function c : E → Ò

◮ costs are always positive: c(e) > 0 for all e ∈ E

◮ links are symmetric: c(u, v) = c(v, u) for all u, v ∈ N
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Routing in the Graph Model

For every router u ∈ V , for every other router v ∈ V , compute the path
Pu→v = u, x1, x2, . . . , xn, v such that

◮ Pu→v is completely contained in the network graph G. I.e.,
(u, x1) ∈ V, (x1, x2) ∈ V, . . . , (xn, v) ∈ V

◮ Pu→v is a least-cost path, where the cost of the path is
c(Pu→v) = c(u, x1) + c(x1, x2) + . . . + c(xn, v)

Compile u’s forwarding table by adding the following entry:

A(v) → Iu(x1)

◮ A(v) is the address (or set of addresses) of router v

◮ Iu(x1) is the interface that connects u to the first next-hop router x1 in
Pu→v = u, x1, x2, . . . , xn, v
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a b c

d e f

g h j

3
1

1
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21 1

1 1 2
4

14

Example: a→ j

◮ least-cost path is Pa→j = a, e, b, f , j

◮ a’s forwarding table will contain an entry j→ 2 since Ia(e) = 2
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Two General Strategies

There are two main strategies to implement a routing algorithm

Link-state routing

◮ global view of the network

◮ local computation of least-cost paths

Distance-vector routing

◮ local view of the network

◮ global computation of least-cost paths
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Link-State Routing

Router umaintains a complete view of the network graph G (including all links
and their costs)

◮ every router v advertises its adjacent links (their costs) to every other router in the
network; this information is called link state

◮ link-state advertisements (LSAs) are broadcast through the entire network

◮ routers collect link-state advertisements from other routers, and they use them to
compile and maintain a complete view of G

Using its local representation of G, router u computes the least-cost paths from
u to every other router in the network

◮ the computation is local



Link-State Advertisements

a b c

d e f

g h j

3 4

3 9

21
1 1 1

1 1 2
4

14



Link-State Advertisements

a b c

d e f

g h j

3 4

3 9

21
1 1 1

1 1 2
4

14

LSAa = {(a, b, 3), (a, e, 1), (a, d, 1)}



Link-State Advertisements

a b c

d e f

g h j

3 4

3 9

21
1 1 1

1 1 2
4

14

LSAa = {(a, b, 3), (a, e, 1), (a, d, 1)}

ab d

e

3
1

1



Link-State Advertisements

a b c

d e f

g h j

3 4

3 9

21
1 1 1

1 1 2
4

14

LSAa = {(a, b, 3), (a, e, 1), (a, d, 1)}
LSAh = {(h, e, 1), (h, f , 4), (h, j, 14)}

ab d

e

3
1

1



Link-State Advertisements

a b c

d e f

g h j

3 4

3 9

21
1 1 1

1 1 2
4

14

LSAa = {(a, b, 3), (a, e, 1), (a, d, 1)}
LSAh = {(h, e, 1), (h, f , 4), (h, j, 14)}

ab d

e

3
1

1

h

j

f

1

4 14



Link-State Advertisements

a b c

d e f

g h j

3 4

3 9

21
1 1 1

1 1 2
4

14

LSAa = {(a, b, 3), (a, e, 1), (a, d, 1)}
LSAh = {(h, e, 1), (h, f , 4), (h, j, 14)}
LSAd = {(d, a, 1), (d, g, 1), (d, e, 3)}

ab d

e

3
1

1

h

j

f

1

4 14



Link-State Advertisements

a b c

d e f

g h j

3 4

3 9

21
1 1 1

1 1 2
4

14

LSAa = {(a, b, 3), (a, e, 1), (a, d, 1)}
LSAh = {(h, e, 1), (h, f , 4), (h, j, 14)}
LSAd = {(d, a, 1), (d, g, 1), (d, e, 3)}

ab d

e

3
1

1

h

j

f

1

4 14

g

1
3



Link-State Advertisements

a b c

d e f

g h j

3 4

3 9

21
1 1 1

1 1 2
4

14

LSAa = {(a, b, 3), (a, e, 1), (a, d, 1)}
LSAh = {(h, e, 1), (h, f , 4), (h, j, 14)}
LSAd = {(d, a, 1), (d, g, 1), (d, e, 3)}
LSAf = {(f , c, 1), (f , b, 1), (f , e, 3), (f , h, 4), (f , j, 2)}

ab d

e

3
1

1

h

j

f

1

4 14

g

1
3



Link-State Advertisements

a b c

d e f

g h j

3 4

3 9

21
1 1 1

1 1 2
4

14

LSAa = {(a, b, 3), (a, e, 1), (a, d, 1)}
LSAh = {(h, e, 1), (h, f , 4), (h, j, 14)}
LSAd = {(d, a, 1), (d, g, 1), (d, e, 3)}
LSAf = {(f , c, 1), (f , b, 1), (f , e, 3), (f , h, 4), (f , j, 2)}

ab d

e

3
1

1

h

j

f

1

4 14

g

1
3

c
1

9
2

2



Link-State Advertisements

a b c

d e f

g h j

3 4

3 9

21
1 1 1

1 1 2
4

14

LSAa = {(a, b, 3), (a, e, 1), (a, d, 1)}
LSAh = {(h, e, 1), (h, f , 4), (h, j, 14)}
LSAd = {(d, a, 1), (d, g, 1), (d, e, 3)}
LSAf = {(f , c, 1), (f , b, 1), (f , e, 3), (f , h, 4), (f , j, 2)}
. . .
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Link-State Routing Ingredients

What do we need to implement link-state routing?

Every router sends its LSA to every other router in the network, so we need a
broadcast routing scheme

Once we have all the LSAs from every router, and therefore we complete
knowledge of G, we need an algorithm to compute least-cost paths in a graph
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Broadcast Routing

Flooding
◮ every router forwards a broadcast packet to every adjacent router, except the one
that sent the packet

Simple and elegant

Correct w.r.t. the broadcast requirement: a broadcast packet will eventually
reach every router

Any problem with this solution?

◮ cycles in the network create packet storms
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Broadcast Routing (2)

Reverse-path broadcast
◮ every router forwards a broadcast packet to every adjacent router, except the one
where it received the packet router

◮ a router u accepts a broadcast packet p originating at router s only if p arrives on
the link that is on the direct (unicast) path from u to s

Correct w.r.t. the broadcast requirement: a broadcast packet will eventually
reach every router

No packet storms even in the presence of cycles in G

Any problem with this solution?

◮ it requires (unicast) routing information

◮ so it is obviously useless to implement a routing algorithm
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Broadcast Routing (3)

Sequence-number controlled flooding

◮ the originator s of a broadcast packet marks the packet with a sequence number ns

◮ every router u stores the most recent sequence number seen from each source
router. Let’s assume that u has seen sequence numbers from s up to ns

◮ a router accepts a broadcast packet p originating at s only if p carries a sequence
number seq(p) that is higher than the most recent one seen from s: seq(p) > ns

◮ accepted packets are forwarded to every adjacent router, except the previous-hop
router

◮ u updates its table of sequence numbers ns ← seq(p)
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Internet-Level Routing

Scalability

◮ hundreds of millions of hosts in today’s Internet

◮ transmitting routing information (e.g., LSAs) would be too expensive

◮ forwarding would also be too expensive

Administrative autonomy

◮ one organization might want to run a distance-vector routing protocol, while
another might want to run a link-state protocol

◮ an organization might not want to expose its internal network structure
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Hierarchical Structure

Today’s Internet is organized in autonomous systems (ASs)

◮ independent administrative domains

Gateway routers connect an autonomous system with other autonomous
systems

An intra-autonomous system routing protocol runs within an autonomous system
(e.g., OSPF)

◮ this protocol determines internal routes

◮ internal router↔ internal router

◮ internal router↔ gateway router

◮ gateway router↔ gateway router
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Inter-AS Routing

An inter-autonomous system routing protocol determines routing at the
autonomous-system level

AS1

AS2

AS3

AS4

At AS3:
AS1→ AS1; AS2→ AS2; AS4→ AS1.
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Hierarchical Routing

All routers within an AS compute their intra-AS routing information

◮ using an intra-doman routing protocol

Gateway routers figure out inter-AS routing information

◮ using an inter-domain routing protocol

inter-AS routing information is propagated within an AS

◮ using an appropriate protocol

Both inter-AS and intra-AS routing information is used to compile the forwarding
tables
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Hierarchical Routing (2)

Destinations within the same autonomous system are reached as usual

What about a destination x outside the autonomous system?

◮ inter-AS information is used to figure out that x is reachable through gateway Gx

◮ intra-AS information is used to figure out how to reach Gx within the AS

◮ what if x is reachable through multiple gateway routers Gx, G
′
x, . . .?

◮ use intra-AS routing information to determine the costs of the (least-cost) paths to
Gx, G

′
x, . . .

◮ “hot-potato” routing: send it through the closest gateway
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Benefits of Hierarchical Routing

Administrative autonomy

◮ each autonomous system decides what intra-AS routing to use

◮ an autonomous system needs to expose only minimal information about the
internal structure of its network

◮ essentially only (sub)net addresses

Scalability

◮ routers within an autonomous system need to know very little about the internal
structure of other autonomous systems

◮ essentially only (sub)net addresses

External subnet addresses are likely to “aggregate” in groups that admit
compact representations

◮ this process is called supernetting
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Inter-AS Routing in the Internet

The Border Gateway Protocol (BGP) is the inter-AS routing protocol in today’s
Internet

◮ provides reachability information from neighbor ASs

◮ transmits reachability information to all internal routers within an AS

◮ determines good routes to all outside subnets

◮ based on reachability information

◮ based on policies

◮ BGP is a path-vector protocol
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BGP Architecture and Terminology

BGP session: a semi-permanent connection between two routers

BGP peers: two routers engaged in a BGP session

◮ BGP sessions are established over TCP

BGP external session (eBGP): a session across two autonomous systems

BGP internal session (iBGP): a session within an autonomous system

◮ note that internal sessions carry inter-AS information

◮ intra-AS routing uses a separate protocol (e.g., OSPF)
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BGP Architecture and Terminology (2)

BGP advertisement: a router advertises routes to networks, much like an entry
in a distance-vector

◮ destinations are denoted by address prefixes

◮ an AS may or may not forward an advertisement for a foreign network; doing so
means being willing to carry traffic for that network

◮ this is where a router may aggregate prefixes (a.k.a., “supernetting”)
E.g.,

128.138.242.0/24
128.138.243.0/24

}

→ 128.138.242.0/23

191.224.128.0/22
191.224.136.0/21
191.224.132.0/22

}

→ 191.224.128.0/20



BGP Architecture and Terminology (3)

Autonomous system number (ASN): a unique identifier for each AS (with more
than one gateway)



BGP Architecture and Terminology (3)

Autonomous system number (ASN): a unique identifier for each AS (with more
than one gateway)

BGP attributes: a route advertisement includes a number of attributes

◮ AS-PATH: sequence of ASNs through which the advertisement has been sent



BGP Architecture and Terminology (3)

Autonomous system number (ASN): a unique identifier for each AS (with more
than one gateway)

BGP attributes: a route advertisement includes a number of attributes

◮ AS-PATH: sequence of ASNs through which the advertisement has been sent

◮ NEXT-HOP: specifies the interface (IP address) to use to forward packets towards
the advertised destination
◮ used to resolve ambiguous cases where an AS can be reached through multiple
gateways (interfaces)
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Autonomous system number (ASN): a unique identifier for each AS (with more
than one gateway)

BGP attributes: a route advertisement includes a number of attributes

◮ AS-PATH: sequence of ASNs through which the advertisement has been sent

◮ NEXT-HOP: specifies the interface (IP address) to use to forward packets towards
the advertised destination
◮ used to resolve ambiguous cases where an AS can be reached through multiple
gateways (interfaces)

BGP import policy: used to decide whether to accept or reject the route
advertisement

◮ e.g., a router may not want to send its traffic through one of the AS listed in
AS-PATH
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Route Selection

1. Router preference: routes are ranked according to a preference value

◮ configured at the router

◮ or learned from another router within the same AS

◮ essentially a configuration parameter for the AS

2. Shortest AS-PATH

3. Closest NEXT-HOP router

4. . . .


