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Say you have a peer-to-peer system. It may be a “structured” distributed
hash table (DHT) like Chord or Kademlia, or may be an “unstructured” net-
work like Gnutella.

Suppose that you want to search for information within the peer-to-
peer system, and if you have a structured DHT suppose that you want to
search outside the domain of the DHT (node id). How do you do that?

Suppose you want to sample the system. That is, suppose each node v
has a numeric property xv , and youwant tomeasure the average value of x
across the network. For example, you might want to measure the average
number of files stored at each node.

How do you do that?
One simple way is to iterate through all the nodes. But that is most

often not practical if at all possible. The problem is that the whole network
is a large and decentralized system, which means that you do not have a
global view of the network. Instead, you have only a local view.

1 A Local View of the Network

A local view means that each node v knows the nodes that v connects to,
and perhaps those that connect to v . In other words, a none knows its
immediate neighbors.
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v

a very limited local view of the network

This local view is typical of peer-to-peer systems and other networks
such as ad-hoc wireless networks, and can be used for several purposes
and with several types of algorithms.

2 RandomWalks

In particular, one way to use a local view for sampling is to use random
walks. Random walks are also the essential components of other types of
algorithms, such as “gossip” routing.

2



GE VS TI

VD FR BE

OW

NW

UR GR

NE LU

ZG

SZ

GL

SG

JU

SO

BS BL AG SH

ZH

TG

AR

AL

A random walk is just what it says it is: it is a path through the network
induced by a very simple randomized algorithm. Notice that, as in the ex-
ample above, a randomwalk is not necessarily a simple path. That is, it may
go through the same node more than once.

The randominzed algorithm builds a random walk as follows: at each
step, the walk visits node v , and the walk can either stop or proceed by
moving to a nodew adjacent to v . Typically, the walk stops after a pre-set
number of hops, which defines the length of the walk. The choice of next
hop from node v is made at random according to a given fixed distribution
of probabilities (among v ’s neighbors) that depends only on the current
node v , as shown in the graph below. The given and fixed probability of
selecting neighbor w from node v is also called the transition probability
from v tow .

Other Applications

• Relevance score for hyper-linked documents (PageRank)

– Input: a large collection of linked documents such as Web pages

– Output: a ranking of the pages by reputation

– a page that is linked by reputable pages acquires more reputa-
tion

– equivalent to a random walk over the Web
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Problem: given a directed graph G = (V ,A), compute the probability
pu that a sufficiently long random walk would end at node u ∈ V for all
nodes u .

Approaches:

1. Simulation

2. Math! (linear algebra)
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Under some very general conditions, namely if the network is ergodic,
the visitation probabilities converge to a certain probability distribution
that does not depend on the starting node. More specifically, let u0 be
the starting node and let uk be the node reached after a random walk of k
hops; then the probability xv (k ) = Pr[uk = v ] converges, with the length
of the walk k → ∞, to a certain value πv that depends on the network and
the fixed transition probabilities, but does not depend on the starting node
u0.

The probability distribution π is also called the stationary distribution. In
the graph below, the intensity of the color of each node indicates the sta-
tionary distribution when the transition probabilities are uniform. That is,
from each nodev , the randomwalk transitions to each one ofv ’s neighbors
with equal probability.
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stationary distribution (hops → ∞)

Controlling or simply knowing the stationary distribution is very impor-
tant if one wants to measure network properties by sampling the network.
Also, it is important to know how long one needs to walk in order to ap-
proximate the asyptotic limit of the stationary distribution. This is where
we can apply basic notions of linear algebra.
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let p i (t ) = Pr[walk is at node vi at time t ]
p(0) = [0 1 0]T means the walk starts at v2

p1(t + 1) = 0.5 · p3(t )

p2(t + 1) = p1(t ) + 0.5 · p3(t )

p3(t + 1) = p2(t )

Consider the simple network shown above, with the annotated transi-
tion probabilities, which happen to be uniform. The main idea is to rep-
resent the state of all possible random walks after t hops as a vector of
probabilities p(t ), where the i -th element p i (t ) represents the probability
that a walk visits node vi after t hops.

Then one hop in the random walk is simply a linear transformation—
that is, a multiplication—of the vector p(t ) by the matrix A of the transition
probabilities. For example, consider the second equation above: p2(t+1) =
p1(t ) + 0.5 · p3(t ) says that the probability of visiting node v2 at hop-count
t + 1 is the probability of visiting v1 at hop t multiplied by the probability of
transitioning from v1 to v2, plus the probability of visiting v3 multiplied by
the probability of transitioning from v3 to v2.

5



Therefore, we can express one hop in the random walk with the simple
equation in matrix form: p(t + 1) = Ap(t ), and for a sequence of t hopes
starting from the initial distribution p(0), p(t ) = Atp(0).

p(t + 1) = Ap(t ) p(t ) = Atp(0)

We can then analyze a random walk by analizing Atp(0) for increas-
ing walk lengths t . To do that, it is very useful to look at the eigenval-
ues and eigenvectors of A, namely the vectors x1, x2, . . . , xn and scalars
λ1,λ2, . . . , λn such that Axi = λixi . And in general, with t repreated trans-
formations, Atxi = λt

i
xi .

Expressing p(0) as a linear combination of A’s eigenvectors (for some
scalar coefficients c1, c2, . . .):

p(0) = c1x1 + c2x2 + · · · + cnxn

p(t ) = Atp(0) = λt
1
c1x1 + λt

2
c2x2 + · · · + λtncnxn

A is stochastic: 1 = |λ1 | > |λ2 | ≥ |λ3 | ≥ . . .

π ǫt ≈ |λ2 |
t → 0Stationary distribution

Mixing Time: τ ≈ log |λ2 | ǫ s.t. ǫt < ǫ for t > τ

A is a stochastic matrix, meaning that its columns sum to 1, since they
represent probability distributions. A very useful fact about stochastic ma-
trices is that its largest eigenvalue λ1 is 1, and all other eigenvalues are less
than one (in modulus).

Therefore, as t grows, the component of the initial probability vector
p(0) along the first eigenvector, λt

1
c1x1, remains constant and equals c1x1,

while all other components λt
2
c2x2, . . . , λ

t
ncnxn vanish exponentially.

Therefore, the stationary distribution is simply the first component c1x1,
which is simply the first eigenvalue normalized to add up to 1.

And the other components can be seen as an error that goes to zero. Of
all these components, the slowest one to go to zero is the one associated
with the second largest eigenvalue (modulus).

Therefore, the mixing time of a network—the minimal number of hops
in a randomwalk that would get the visitation probabilities close enough to
the stationary distribution (up to a given error ǫ)—can be computed from
the second largest eigenvalue of A.

Notice that, if the network is ergodic, then we know for sure that there
is a stationary distribution π that satisfies the equation π = Aπ .

So, we can compute the stationary distribution directly by solving this
system of equations:

6



Aπ = π
n∑

i=1

πi = 1

p
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