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Abstract. Recently presented, IC3-inspired symbolic model checking
algorithms strengthen the procedure for showing inductiveness of lem-
mas expressing reachability of states. These approaches show an impres-
sive performance gain in comparison to previous state-of-the-art, but also
present new challenges to portfolio-based, lemma sharing parallelization
as the solvers now store lemmas that serve different purposes. In this
work we formalize this recent algorithm class for lemma sharing parallel
portfolios using two central engines, one for checking inductiveness and
the other for checking bounded reachability, and show when the respec-
tive engines can share their information. In our implementation based
on the PD-KIND algorithm, the approach provides a consistent speed-
up already in a multi-core environment, and surpasses in performance
the winners of a recent solver competition by a comfortable margin.
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Safe inductive invariants of symbolically described, infinite-state transition sys-
tems are valuable artefacts when proving safety for example in software model
checking. Algorithms suitable for obtaining such invariants include those based
on k-induction [27,32] and IC3 [8]. These algorithms rely on descriptions in
propositional or first-order logic that are solved with SAT and SMT solvers en-
hanced with over-approximation techniques based on Craig interpolation [12,7].
The elusive goal of such algorithms is to minimize the need for user intervention
in model checking through well-defined tasks that can be turned into a symbolic
traversal of a search space at the expense of increased computational cost.

Solvers for this problem have often a substantial heuristic component en-
abling different strategies in the algorithm execution. Recent results [10,30,24]
show the use of varied strategies to be a powerful tool for parallelizing model-
checking algorithms using algorithm portfolios. The abstract nature of the algo-
rithmic components enables literally infinite possibilities for adjusting the model-
checking algorithms, and the changes are known to affect dramatically not only



the algorithm run time but also its convergence. However, the key to truly scal-
able solving is the sharing of information among the solvers of the portfolio (see,
e.g., [24]), a usually much more complicated task than constructing the portfolio.

This paper describes a parallelization approach for a recently introduced
class (see [20,15]) of model-checking algorithms that combines the strength of
k-induction with IC3-style search in finding safe inductive invariants. The algo-
rithms consist of two components, the induction-checking engine and the finite
reachability engine. We describe what information sharing means in a portfolio
of instances of this class, and show with a robust experimental analysis on our
implementation that the class can profit greatly from this type of parallelization
already in a multi-core environment, surpassing in performance the state-of-the-
art. While in the following we refer to the class with the acronym IcE/FiRE, we
point out the two existing implementation that we are aware of, PD-KIND [20]
and KIC3 [15].

An instance of determining the safety of a transition system S consists of a
triple of predicates (I, T, P ), where I describes the initial states of the system, T
describes its transition relation, and P is a set of states to be tested to contain
all reachable states of S. The predicates are defined over a fixed set of state
variables X, and, in the case of T , a copy X ′ of X. A solution to the instance, if
one exists, is a predicate R containing I such that R(X)∧T (X,X ′) =⇒ R(X ′)
and R is contained in P .

In this paper we are studying a general class of algorithms that work on an
over-approximation F of the states of S reachable in n steps or less for some
n ≥ 1. The idea is to maintain the invariant that predicate F does not intersect
with ¬P , while trying to prove that F is (k-)inductive. When F is represented
symbolically as a set of formulas, individual elements of F can be checked for in-
ductiveness relative to F instead of checking F as a whole. Successfully checked
elements are collected in a new set G which represents an over-approximation of
the states of S reachable in m steps or less, for m > n. When G = F , such an F
(or G) has the properties of R and therefore is a solution for (I, T, P ). This new
class of algorithms, introduced in [20] and further refined in [15], is based on an
observation that it is, from a pragmatic point of view, better to use an engine
for k-induction instead of regular induction in showing F inductive. The class
can be described as a combination of the algorithms based on k-induction and
IC3. Intuitively it generalizes IC3, since k-induction is stronger than regular in-
duction. In addition, instances from this class perform well in experimentations.
For example, the model checker Sally [20], which implements PD-KIND, won
the transition system division of the 2019 edition of the CHC competition.3

In this paper we describe a parallelization approach for the IcE/FiRE class
of algorithms. We show that the algorithms allow sharing both the formulas con-
structed for F and the formulas inside the finite reachability engine. Our parallel
algorithm, implemented for multi-core environments on top of PD-KIND [20],
performs better than the state-of-the-art parallel and sequential solvers P3 [24],
Z3/Spacer [22], and PD-KIND itself [20]. The implementation shows surpris-

3 See https://chc-comp.github.io
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ingly good, consistent, close to linear speed-up at least up to nine cores that
is visible already for instances with run times as low as two seconds and tends
to become more pronounced for higher run times. We show that both types of
formula sharing are useful: the parallel solver solves more instances within our
timeout and solves the easier instances faster. The implementation is particularly
good at showing systems safe.

2 Related Work

Parallelization is a natural way of improving scalability of model-checking al-
gorithms, for example when facing the complexity of real-world problems. We
therefore review below only the work that we deem most relevant to our results.

In [24] we presented the P3 system for parallelizing the IC3-inspired algo-
rithm IC3/PDR for computing clusters using portfolio of lemma-sharing solvers
and search-space partitioning. The current work differs from that in several im-
portant aspects. First, we study a different class of algorithms, based on a com-
bination of IC3 and k-induction. Second, in the implementation our emphasis in
this work is on multicore environments instead of computing clusters. We also
target a different application domain, studying transition systems instead of gen-
eral constrained Horn clauses. Finally, in comparing the current system against
P3 we measure a significant improvement on the set of instances that both tools
can solve, providing practical evidence on the importance of the contribution.

Approaches for parallel IC3 were suggested, for example, in the original pub-
lication [8], and more recently in [10]. The current system differs from both, in
addition to basing on k-induction, by allowing constraints expressible in first-
order logic through an SMT encoding instead of purely propositional encoding,
therefore being more readily applicable in software model checking.

The Tarmo system [34] allows SAT-based bounded model checkers to share
learned clauses between queries of different execution bounds. The approach
could be applied at least in the FiRE systems underlying our bounded reacha-
bility queries by allowing the SMT solvers to share clauses as in [25,18]. However,
we leave the study of performance effects of such a technique for future work.

A system presented in [31] follows a different approach of determining the
feasibility of symbolic execution paths in parallel. Our approach is more sym-
bolic in the sense that it does not require the explicit enumeration of, in gen-
eral, an exponential number of paths done in [31]. Algorithms for parallel LTL
model checking are presented in [1]. The general approach relies on an automata-
theoretic formulation of reducing model checking to determining the emptiness
of Büchi automata. The parallelization idea focuses on using algorithms based
on DFS and BFS for this purpose. We consider this approach orthogonal to
ours, and leave it for future work to study the possible synergies. In [21] the
authors use three processes to parallelize a standard k-induction algorithm en-
riched with invariants generated from predefined templates. This approach was
generalized in [3] where program analysis with dynamic precision refinement gen-
erates continuously-refined invariants for the k-induction. Our approach is based



on the more general IcE/FiRE class, and allows scalability to arbitrary number
of cores. In [30] the authors present a more general approach of parallelizing
model checking by running several model checkers in parallel. However, the pa-
per does not address the problem of sharing information between the solvers, a
topic central to the current discussion.

Finally, our approach is greatly inspired by the sequential approaches com-
bining k-induction with IC3, in particular the PD-KIND algorithm [20] but
also the KIC3 framework [15]. In this work we aim at capturing the class of
these algorithms from the point of view of information sharing between different
solvers, and apply these results on parallelizing these algorithms.

A very recent, not yet published work [2] presents another approach of com-
bining k-induction and IC3/PDR. It extends the framework of [3] and employs
IC3/PDR (not only) for generation of auxiliary invariants for k-induction.

Combining and unifying different approaches to software verification, such
as IC3/PDR [8,14], k-induction [32] and BMC [5], is becoming increasingly pop-
ular [3,4,9,15,20]. Both combination and parallelization techniques benefit from
relentless continuous improvements [6,11,16,23,33] of the original algorithms.

3 Preliminaries

Let X denote a finite set of typed variables and let X ′ denote the set of primed
versions of variables from X, i.e., the next-state variables. Then a state formula
F (X) is any quantifier-free formula over variables from X and a transition for-
mula T (X,X ′) is any quantifier-free formula over variables from both X and
X ′. A transition system S (over X) is a pair 〈I, T 〉, where I is a state formula
denoting the initial states of the system and T is a transition formula. A state sX

is a type-consistent assignment of variables from X, i.e., sX(x) ∈ Dom(x) for all
x ∈ X. When clear from context, we omit X and write simply s. A state formula
F holds in a state s if it evaluates to true under s, that is, s � F . The states s
such that s � F are called the F -states. A sequence of states 〈s0, s1, . . . , sk〉 is
called a trace if sXi−1, s

X′

i � T (X,X ′) for all 1 ≤ i ≤ k. A state s is k-reachable
in S (reachable in k steps) if there exists a trace 〈s0, s1, . . . , sk〉 such that s0 � I
and sk = s. A state is reachable if it is k-reachable for some finite k.

A state formula F is a k-invariant of the system if it holds in all states
reachable in k or less steps. If F is a k-invariant then ¬F is not reachable in k
steps or less and we say that ¬F is k-inconsistent with S. When a concrete k is
not important or not determined, or when we we refet to multiple k-invariants
but with different values of k, we use a more general term bounded invariants. A
bounded invariant F is thus a state formula for which there exists k such that
F is a k-invariant. Similarly to IC3, we also use the term lemma to refer to a
bounded invariant.

Given a transition system S = 〈I, T 〉, a state formula P and a set of state
formulas F , we say that P is Fk-inductive if

k−1∧
i=0

((F(Xi) ∧ P (Xi)) ∧ T (Xi, Xi+1)) =⇒ P (Xk) (1)



If F = {P} and P is a (k−1)-invariant, then P is a k-inductive invariant of
S, meaning it is valid in all reachable states of S. When P is not Fk-inductive,
the negation of (1) is satisfiable and each satisfying assignment defines a trace
〈s0, . . . , sk〉 of k+1 states called a counter-example to (k-)induction (CTI). We
say that a CTI is reachable in S when s0 is reachable. A central task of the
algorithm presented in this paper is to check if elements of F are Fk-inductive.
Checking this for an element P of F and placing P to another set G if P is
Fk-inductive is referred to as pushing P to G.

Given a transition system S and a state formula P , the goal of verification
is to prove that P is valid on all reachable states of S, or equivalently that ¬P
is not reachable. We say that the system is safe with respect to P if P is indeed
an invariant of the system, and we say that it is unsafe if there exists a finite
trace starting from an initial state and ending in a ¬P -state. For the rest of the
paper we make the assumption that the problem is non-trivial, meaning that the
initial states satisfy the property P , or more formally, that I =⇒ P is valid.

4 The IcE/FiRE Framework

induction-checking
engine

finite
reachability

engine

bounded reachability queries

traces/bounded invariants

bounded
invariants

(I, T, P )

SAFE UNSAFE

Fig. 1: The IcE/FiRE framework for solving safety of transition systems

This section formalizes a general approach for checking safety of symboli-
cally represented transition systems in a way that allows us to present natu-
rally our parallelization techniques. The approach splits the reasoning about the
safety into two separate components (Fig. 1). The first, main, component is an
induction-checking engine (IcE), also referred to shortly as induction engine.
The goal of the induction engine is to decide the safety problem. It searches for
a k-inductive strengthening of the property P being checked. If it finds such a
strengthening it reports the system as safe. During the search it may discover
that no such strengthening exists since the negation of the property is reachable
from the initial states. In this case it reports the system as unsafe. To make
progress in its search, to remove spurious counterexamples to induction, and to



confirm real ones, IcE relies on the services of the second component – finite
reachability engine (FiRE). The role of FiRE is to answer bounded reachability
queries issued by IcE. Given a state formula s and a number n, a bounded reach-
ability query asks if any s-state is reachable from initial states in exactly n steps.
The finite reachability engine answers these queries and provides a reason for
the answer. In case of reachability, the reason is a trace of n + 1 states leading
from an initial state to an s-state. In case of unreachability, the reason is an
n-invariant blocking s.

The cooperation of these two engines is depicted on Fig. 1. During the
run, FiRE accumulates knowledge about the system in the form of bounded
invariants. This knowledge helps it to answer the subsequent queries faster. The
progress of IcE during its run is modelled using a set of rules that capture and
evolve the state of IcE. We discuss the rules in the next section and discuss how
IcE relies on FiRE when applying these rules.

The idea of separate components for inductive and bounded reachability
reasoning is present already in [20]. However, our formalization enables us to
easily extend the framework to parallel setting with information sharing and
reason about its correctness. In addition, thanks to its abstract nature, it covers
not only PD-KIND [20], but also other algorithms, such as KIC3 [15]. We show
this for PD-KIND in Sec. 5, but omit the similar proof for KIC3 due to lack of
space.

4.1 Induction-Checking Engine

Given a safety problem for a transition system (I, T, P ) the induction-checking
engine (IcE) searches for k-inductive strengthening of P . It maintains two dis-
tinct sets of state formulas: a base frame F and a successor frame G. In addition,
it maintains information about its current level n. Intuitively, if IcE is currently
working on level n, it already knows that the system is safe up to level n, i.e., ¬P
is not reachable in n steps or less. The base frame F serves both as a witness that
¬P is not reachable, as well as a candidate for the inductive strengthening of P .
IcE maintains an invariant that on level n every element of F is an n-invariant.
Moreover, P is always an element of F . The successor frame G collects those
elements of F that are Fk-inductive for some fixed k ≤ n+1. Since

∧
F is an n-

invariant, this means that all elements of G are at least (n+1)-invariants. When
all elements of the base frame are checked and either successfully pushed to G
or dropped, and no termination condition has been hit, G becomes the new base
frame and the successor frame is emptied. If at any point F = G then F is a
k-inductive strengthening of P , proving that P holds in the system (as shown
later in Lemma 1). In addition to the two frames IcE maintains a queue Q. The
queue contains the elements of F that still need to be processed at the current
level. We also refer to the elements of Q as obligations.

We now formalize the workings of the induction engine as a set of rules that
work on and modify the current state of IcE. The current state of IcE is a 5-tuple
〈F ,G, n, k,Q〉 with F being the base frame, G the successor frame, n the current
level, Q the current queue of obligations, and k defining the current depth of



induction. We refer to the state of IcE as configuration. For brevity we also
sometimes refer to the elements of F as lemmas instead of bounded invariants.
The initial configuration of IcE is 〈{P}, ∅, 0, 1, {P}〉 and IcE makes progress by
applying the following rules. Note that the rules Safe and Unsafe are special,
terminating rules.

Safe:
〈F ,G, n, k, ∅〉

SAFE

if
{
F = G

Unsafe:
〈F ,G, n, k,Q〉
UNSAFE

if
{
¬P is reachable in [n+ 1, n+ k] steps.

Next-Level:
〈F ,G, n, k, ∅〉
〈G, ∅, n′, k′,G〉

if


F 6= G
n′ > n∧
G is n′-invariant

1 ≤ k′ ≤ n′ + 1

Push-Lemma:
〈F ,G, n, k,Q ∪ {l}〉
〈F ,G ∪ {l}, n, k,Q〉

if
{
l is Fk-inductive

Add-Lemma:
〈F ,G, n, k,Q〉

〈F ∪ {l},G, n, k,Q ∪ {l}〉
if
{
l is an n-invariant

Drop-Lemma:
〈F ,G, n, k,Q ∪ {l}〉
〈F ,G, n, k,Q〉

if
{
l 6= P

The rules of IcE, namely Add-Lemma and Drop-Lemma, are abstract in
the sense that we do not prescribe when or how are the new lemmas learnt, nor
when they should be dropped. In sequential setting, new lemmas are typically
learnt from FiRE when a counter-example to induction of some obligation is
showed to be unreachable by FiRE. We discuss this in detail in Sec. 5 when we
instantiate the abstract IcE for a concrete algorithm.

One specific thing that we would like to point out is that Add-Lemma is
general enough to cover not only the internal learning, but also external learning.
By internal learning we mean the learning of lemmas from FiRE. The external
learning means that the lemmas can come from any other source. This is impor-
tant for parallelization as it enables incorporating bounded invariants discovered
by other instances working on the same problem.



Correctness of the induction-checking engine. The abstract nature of
the rules of IcE allows us to easily prove it correctness. That is, if the engine
terminates by applying the rule Safe (Unsafe) then the system really is safe
(unsafe).

Given our assumption that I =⇒ P , the following invariants are valid for the
initial configuration and are maintained by every rule (excluding the terminating
rules Safe, Unsafe):

1. P ∈ F
2. For each l ∈ F ∪ G ∪Q at level n, l is an n-invariant of S.
3. For each l ∈ G, l is Fk-inductive.

It is easy to verify that all invariants are valid for the initial configuration.
The first invariant is trivially preserved by all rules except Next-Level as F
either stays the same or grows. When Next-Level is applied that it must hold
that P ∈ G since it is put in Q at the beginning of each level and can never
be dropped. Since Q is empty when Next-Level is being applied, P must have
been successfully pushed to G using Push-Lemma.

The second invariant is preserved by the rules Next-Level, Push-Lemma
and Drop-Lemma since the set of formulas in consideration stays the same or
becomes smaller. The invariant is also preserved by Add-Lemma because of
the condition of the rule.

The third invariant trivially holds after applying Next-Level as the succes-
sor frame is empty at that moment. For the other rules, let us use G′ to denote
the successor frame after a rule has been applied. The invariant is also preserved
by rules Add-Lemma and Drop-Lemma since G′ = G. Finally, the invariant
is preserved by Push-Lemma because of the condition of the rule.

Lemma 1. When the algorithm terminates by applying Safe, the system satis-
fies the property P and

∧
F is a safe k-inductive invariant. When the algorithm

terminates by applying Unsafe, the system can reach a state where P does not
hold.

Proof. The first part follows from the invariants. When Safe is applied, then it
must be the case that F = G. This means that F is Fk-inductive and consists
of n-invariants of the system with k ≤ n+ 1. It follows that

∧
F is a k-inductive

invariant of the system. Moreover, P ∈ F , so P is an invariant. The second part
follows trivially from the condition of the rule Unsafe. ut

4.2 Finite Reachability Engine

The finite reachability engine (FiRE) is responsible for answering bounded reach-
ability queries issued by IcE. A bounded reachability query for a system S is
simply a pair 〈s, i〉 where s is a state formula and i is a natural number. It
represents a question if any s-state is reachable in S by exactly i steps. This is
naturally generalized to queries of the form 〈s, [i, j]〉, meaning reachability in at
least i and at most j steps. An answer to a bounded reachability query 〈s, i〉 is



either an i-invariant l such that l =⇒ ¬s in case of unreachability, or a trace
of i + 1 states starting from an initial state and ending in an s-state in case of
reachability.

We do not prescribe how FiRE should be implemented, but we note two
known instances: bounded model checking [5] and IC3/PDR [8]. An interesting
observation [20] is that when IC3/PDR only needs to answer bounded reacha-
bility queries then the requirements on the frames it maintains can be relaxed.
The frames do not need to be inductive nor form a monotone sequence.

From the parallelization perspective the advantage of FiRE based on bounded
invariants is two-fold. First, the correctness of FiRE is maintained when bounded
invariants are exchanged between different instances. Second, there is freedom
in generalizing the bounded invariants computed as certificates of unreachability
and this freedom can be exploited for portfolio approach to discover a variety of
interesting bounded invariants across multiple instances.

4.3 Cooperation of Multiple Instance

We base our parallelization on the portfolio approach running multiple instances
of the same algorithm with different parameters on a single problem. However,
we aim to go beyond that. We want the instances to cooperate and to share
information they discover about the problem they are solving. Our approach to
cooperation of multiple instances of IcE/FiRE framework is depicted in Fig. 2.
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Fig. 2: Multiple instances of IcE/FiRE framework sharing information



In our approach, several instances of IcE/FiRE framework (see Fig. 1) work
on the same problem and share information among themselves. However, the
communication is split to that between the finite reachability engines and to
that between induction-checking engines.

Cooperation of FiREs. Each reachability engine is gradually building and
refining its representation of the state space by discovering and accumulating
bounded invariants of the system. Since all instances work on the same transi-
tion system, a bounded invariant discovered by one instance is valid for other
instances as well. Thus, multiple reachability engines can share their informa-
tion through a global database of bounded invariants. Additionally, in this setting
each FiRE has a filter which controls which invariants are sent and received. The
filter can be set to send and receive all or none invariants, or it can implement a
heuristic. For example, it might be beneficial to send out only sufficiently small
invariants to avoid burdening the other instances too much.

Cooperation of IcEs. Unlike FiREs, it is not immediately obvious what infor-
mation IcEs could share between themselves. Natural candidates are elements
of the base frame or the successor frame. However, one needs to be careful since
different IcEs could be working on different levels and thus directly including
lemmas from other instance might violate the invariants of these frames. Our
solution is to accept external information in a way that can be modelled using
the rule Add-Lemma and thus guarantee to preserve the correctness of the en-
gine. Each engine sends out elements of the successor frame G. When an engine
is working on a level n and a lemma is pushed to G, it is guaranteed to be at
least (n+1)-invariant. Moreover, it is an interesting bounded invariant in the
sense that this engine so far believes it should be part of the inductive strength-
ening. The engine sends such lemma to the global pool for other instances to
see. When another engine receives this (n+1)-invariant, it checks if it can apply
Add-Lemma to add it to its base frame. If the engine’s current working level
is higher than n+1, such bounded invariant cannot be added. Moreover, our
preliminary experiments showed that it is better to have additional checks in
the filter for incoming lemmas in order not to spend too much time processing
useless external lemmas. We discuss our implementation and the experimental
results with different settings of sharing information in Sec. 6.

5 PD-KIND as an Instance of IcE/FiRE

In this section we reformulate the original description of PD-KIND [20] in
terms of our IcE/FiRE framework. This reformulation enables us to identify
the freedom in the algorithm that can be utilized for the portfolio approach
to parallelization. Additionally, the techniques mentioned in Sec. 4 for sharing
information between cooperating instances will become directly applicable for
PD-KIND. On top of that, it allows us to prove the correctness of the parallel
version of the algorithm.



5.1 Induction-Checking Engine of PD-KIND

The induction-checking engine of PD-KIND uses an extended configuration
〈F ,G, n, k,Q, nCTI 〉, where nCTI remembers the number of steps needed to reach
a non-F state from an F state. This helps to determine n′ > n such that all
elements of G are n′-invariants when applying Next-Level.

Additionally, IcE of PD-KIND maintains a mapping CEX of elements of F
to potential counter-examples they block. Formally, CEX is a function from F to
state formulas such that for each l ∈ F , l =⇒ ¬CEX (l) and every CEX (l)-state
can reach a ¬P -state. Maintaining the potential counter-examples in addition
to the bounded invariants allows for earlier discovery of real counter-examples.
It also provides a possible fall-back in case the bounded invariant is too strong
to be inductive.

The initial configuration of IcE is 〈{P}, ∅, 0, 1, {P}, 1〉, with CEX (P ) = ¬P ,
and the engine makes progress using the following set of rules.

Safe:
〈F ,G, n, k, ∅, nCTI 〉

SAFE

if
{
F = G

Next-Level:
〈F ,G, n, k, ∅, nCTI 〉
〈G, ∅, n′, k′,G, n′ + k′〉

if

F 6= Gn′ = n+ nCTI

1 ≤ k′ ≤ n′ + 1

Push-Lemma:
〈F ,G, n, k,Q ∪ {l}, nCTI 〉
〈F ,G ∪ {l}, n, k,Q, nCTI 〉

if
{
l is Fk-inductive

Unsafe:
〈F ,G, n, k,Q ∪ {l}, nCTI 〉

UNSAFE

if
{

CEX (l) is reachable in [n+1, n+k] steps

Add-Lemma:
〈F ,G, n, k,Q, nCTI 〉

〈F ∪ {l′},G, n, k,Q ∪ {l′}, nCTI 〉
if



∃l ∈ Q s.t.
¬CEX (l) is not Fk-inductive
with c′ being its CTI
Unsafe is not applicable
l′ is n-invariant that blocks c′

CEX (l′) = c′

Bad-Lemma:
〈F ,G, n, k,Q ∪ {l}, nCTI 〉

〈F ∪ {l′},G ∪ {l′}, n, k,Q, n′CTI )〉
if


N ∈ [n+1, n+k]
¬l reachable in N steps
l′ = ¬CEX (l)
¬CEX (l) is Fk-inductive
n′CTI = min(N,nCTI)



Strengthen-Lemma:
〈F ,G, n, k,Q ∪ {l}, nCTI 〉

〈F ∪ {l′},G, n, k,Q ∪ {l′}, nCTI 〉
if



¬CEX (l) is Fk-inductive
l is not Fk-inductive
with c′ being CTI
Bad-Lemma is not applicable
l′ is n-lemma s.t.
l′ =⇒ l ∧ ¬c′
CEX (l′) = CEX (l)

A run of the engine starts from the initial configuration and applies the
rules until Safe or Unsafe is applicable (which is generally not guaranteed to
happen). The engine can be viewed as operating on a certain level, defined by the
parameter n. At each level, the engine attempts to prove that the n-invariants
from F are Fk-inductive, strengthening the frame in the process if necessary or
giving up on n-invariants that do not hold for higher levels. When all elements
of the (refined) frame F have been processed two cases can happen. Either the
whole frame F has been pushed, in which case the engine can terminate using
Safe, or some element could not be pushed and thus Next-Level is applied.

If all elements have not been pushed yet, that is, Q is not empty, then an
n-invariant l from Q is picked and processed in the following way: When l is Fk-
inductive then l, and consequently ¬CEX (l), is in fact at least (n+1)-invariant.
In this case Push-Lemma is applied and l is removed from Q.

If Push-Lemma is not applicable and ¬CEX (l) is not Fk-inductive then
there exists a CTI witnessing this. This CTI can be either real (reachable in
S) or spurious (not reachable in S). A bounded reachability query is issued
to FiRE to determine the status. If it is real, the system S is unsafe because
CEX (l) is reachable and ¬P is reachable from CEX (l). In this case the algorithm
terminates by applying Unsafe. If CTI is spurious then a new lemma blocking
it is returned from FiRE and added to F by applying Add-Lemma.

The last possibility is that l is not Fk-inductive but ¬CEX (l) is Fk-inductive.
Now the reachability query regarding the CTI for l is issued to FiRE. If it is
not reachable then l is strengthened using the reason of unreachability returned
by FiRE – Strengthen-Lemma is applied. If it is reachable then l is not an
invariant of the system and must be discarded. Bad-Lemma is applied and l is
replaced by ¬CEX (l). Since we already know that ¬CEX (l) is Fk-inductive, it
can be immediately pushed to the next frame.

This formalization of PD-KIND allows us to prove its correctness, building
on the correctness of the abstract induction-checking engine (see Lemma 1). We
extend the proof for parallel version in Sec. 5.3.

Lemma 2. If PD-KIND terminates using the rule Safe (Unsafe), the tran-
sition system is safe (unsafe).

Proof. For Safe, notice that PD-KIND’s run can be viewed as a run of the ab-
stract engine (Sec. 4.1). To avoid name clashes we use a prime to denote the PD-
KIND’s rules in this proof. All four rules Safe’, Push-Lemma’, Next-Level’



and Add-Lemma’ directly map to their abstract counterpart. Bad-Lemma is
just Drop-Lemma applied on l followed by Add-Lemma and Push-Lemma
on ¬CEX (l). Finally, Strengthen-Lemma is Drop-Lemma applied on l, fol-
lowed by Add-Lemma applied on l′. Consequently, each PD-KIND’s run ter-
minating with Safe’ is mapped to an abstract engine’s run terminating with
Safe. By Lemma 1, the system is safe.

For Unsafe, we show that the following invariant is preserved throughout the
run: For each l in F ∪G ∪Q, CEX (l) can reach ¬P . The invariant holds for the
initial configuration since F ∪ G ∪Q = {P} and CEX (P ) = ¬P . Add-Lemma
preserves the invariant since for the only new lemma l′, CEX (l′) can reach
CEX (l), which can reach ¬P by the induction hypothesis. The invariant is also
preserved by Bad-Lemma and Strengthen-Lemma as CEX (l′) = CEX (l)
for the only new lemma l′ and an old lemma l. As the other rules do not change
the set F ∪G ∪Q, we can conclude that the invariant is always preserved. Thus,
when the algorithm terminates by rule Unsafe, ¬P is reachable and the system
is unsafe. ut

5.2 Finite Reachability Engine of PD-KIND

The finite reachability engine used in PD-KIND [20] can be described as IC3-
like algorithm. It answers the bounded reachability queries using a sequence of
reachability frames and local reasoning only, i.e., it does not unroll the tran-
sition relation. A reachability frame at level n, Rn, is a set of n-invariants.
Consequently, the set of Rn-states over-approximates the set of states reachable
in n steps or less. Unlike IC3, there is no further condition on the reachability
frames. They do not need to be monotone nor form an inductive sequence. Like
IC3, when FiRE receives a query 〈s, i〉, it checks if it is reachable in one step
from Ri−1 using a simple satisfiability query Ri−1 ∧ T ∧ s′. If it is unreachable,
then FiRE generalizes the reason for unreachability using Craig interpolation
and returns the answer together with the reason. If it is reachable, then FiRE
computes a predecessor t of s and recursively calls itself with query 〈t, i−1〉.
If this predecessor turns out to be unreachable, the (i−1)-invariant witnessing
the unreachability is used to refine Ri−1 and s is checked again. If the recursive
sequences of calls ever reaches an initial state, then the information about reach-
ability, together with the trace made of the predecessors is gradually returned.

Note that the only condition required for reachability frame Rn is that it
consists of n-invariants. In sequential setting FiRE learns new bounded invari-
ants on its own as it processes more and more reachability queries. However, in
parallel setting it can also receive bounded invariants from external source. More
specifically, it can receive bounded invariants discovered by other instances of
the same engine working in parallel on the same problem. Additionally, different
interpolation algorithms can be used in different instances, thus allowing the
engines to spread the search for useful bounded invariants.



5.3 Parallel PD-KIND

Since PD-KIND is an instantiation of the IcE/FiRE framework, it can be readily
plugged into the abstract parallel framework with information sharing described
in Sec. 4.3.

The bounded reachability information is stored in form of reachability frames
consisting of bounded invariants. Whenever FiRE learns new bounded invariant
as a response to bounded reachability query made by IcE, it can send it to the
other instances. It can also periodically query the common pool for new bounded
invariants and when it receives an external i-invariant, it can directly add it to
its reachability frame Ri.

Similarly, IcE sends out bounded invariants when it manages to push them
to the successor frame. When it receives an external bounded invariant, it must
check the necessary condition for adding it to the base frame. If the condition is
not met, it simply drops the lemma. Otherwise, it uses a heuristic to determine
usefulness of the lemma. Since PD-KIND assumes that each element of the base
frame is associated with a potential counter-example through the mapping CEX ,
each bounded invariant l that is sent out by IcE must also be accompanied by
its companion CEX (l).

It is important for the success of a parallel approach to diversify the search
for the solution. It was not possible to discuss this for the abstract framework
as it requires the concrete algorithm with its concrete settings that drive the
behaviour of the algorithm. Here we identify the key points where the behaviour
of PD-KIND can be adjusted and finally give an algorithm capturing PD-
KIND as an instance of IcE/FiRE framework in the parallel setting.
Choosing the depth of induction. When the induction engine moves to
the next level n by applying Next-Level there is freedom to choose a new
value k of the induction depth from the interval [1, n+1]. The behaviour of the
algorithm can be greatly influenced by the value of the induction depth it uses.
For example, choosing large k requires large unwinding of the transition relation
when SAT/SMT solver is used and the inductive checks become slower. On the
other hand preferring larger k can lead to faster exploration of the search space.
Moreover an obligation might be Fk-inductive, and thus successfully pushed,
but not Fk′

-inductive for k′ < k. We denote the strategy to choose the new
value of induction depth whenever Next-Level is applied as κ.
Obligation processing strategy. Several rules might be applicable given a
configuration with nonempty queue of obligations Q. However, once the obliga-
tion to be processed is chosen, there is no more freedom. The conditions of the
rules are mutually exclusive for a fixed obligation l ∈ Q. Which rule applies for
a particular obligation l is determined by its properties and the properties of
CEX (l). Therefore, the behaviour of the algorithm can be controlled through
the strategy determining the obligation to pick from the queue. We denote the
strategy to pick the next obligation from Q by ω.
Learning strategy The finite reachability engine computes bounded invariants
as certificates of unreachability. Theoretically, the certificate of unreachability
for a query 〈s, i〉 could be ¬s. However, this leads to terrible performance in



practice as it excludes only s and nothing else. Therefore, FiRE uses more so-
phisticated techniques to compute bounded invariants that are stronger and
exclude more unreachable states. FiRE of PD-KIND uses Craig interpolation
for computation of bounded invariants. However, Craig interpolant for a given
problem is in general not unique and there exist techniques for computing dif-
ferent interpolants in propositional logic and in theories of first-order logic. The
use of different interpolation algorithms leads to different bounded invariants
and this can have a huge influence on the performance of the whole algorithm
(see Sec. 6). We denote the strategy for computing the bounded invariants as σ.

Algorithm 1 PD-KIND in the parallel setting of IcE/FiRE

1: procedure Run(S, κ, ω, σ)
2: C = 〈F ,G, n, k,Q, nCTI 〉 ← 〈{P}, ∅, 0, 1, {P}, 1〉 . Initial configuration
3: while True do
4: if Q = ∅ then
5: if F= G then return SAFE . Terminate using rule Safe
6: else
7: Apply Next-Level on C with κ
8: continue
9: end if

10: end if
11: FiRE.SendReceive() . FiRE sends and receives bounded invariants
12: C ← IcE.Receive(C) . IcE receives bounded invariants
13: l← ω(Q) . Pick obligation to process
14: c← CEX (l)
15: switch 〈l, c〉 . Pick rule based on properties of l, c
16: case l is Fk-inductive
17: Apply Push-Lemma for l on C
18: IcE.Send(〈l, c, n+1〉) . IcE sends pushed bounded invariant

19: case c is reachable in [n+1, n+k] steps
20: return UNSAFE . Terminate using rule Unsafe

21: case ¬c is not Fk-inductive
22: Apply Add-Lemma with σ on C

23: case ¬l is reachable in [n+1, n+k] steps
24: Apply Bad-Lemma for l

25: case None of the above condition is met
26: Apply Strengthen-Lemma with σ on C for l

27: end while
28: end procedure

The run of a single instantiation of IcE/FiRE as PD-KIND in a parallel
setting with information sharing is presented in pseudocode as Algorithm 1.
The input is a triple S = 〈I, T, P 〉 representing the transition system and the
property together with the three strategies κ, ω, σ that determine the behaviour
of the algorithm at the previously identified non-deterministic steps.



Lemma 3. The parallel version of PD-KIND with information exchange is
correct. If it reports SAFE (UNSAFE), the system is safe (unsafe).

Proof. The correctness of exchanging the bounded invariants between reachabil-
ity engines has been discussed already in Sec. 4.3. The only new step IcE does is
incorporating an external lemma l from another PD-KIND instance, together
with a potential counter-example that it blocks. This is done only if the condition
of the abstract rule Add-Lemma is satisfied and thus the invariants ensuring
the correctness of SAFE answer are preserved. Moreover, the invariant from the
proof of Lemma 2 is preserved and thus also UNSAFE answer is correct. ut

6 Implementation and Experiments

Our implementation of the parallel PD-KIND algorithm is based on the open-
source model checker Sally [20] and uses the SMTS framework [26] for paral-
lelization and information exchange. We have extended Sally with API for send-
ing and receiving information. In our experiments Sally was using Yices [13]
for checking satisfiability and OpenSMT [17] for the interpolation queries.4

The benchmarks were taken from the transition systems category of CHC
COMP 20195, where the problem is encoded using the theory of linear real
arithmetic. Out of 244 benchmarks, 7 problematic ones were excluded due to
reasons such as the presence of a non-linear operation. All experiments were run
on a single multi-core machine with 16 Intel R© Xeon R© X5687 @ 3.6 GHz CPUs
and 180 GB of RAM. The resources were restricted to 1000 seconds of timeout
and 6GB of memory per one instance of Sally. This means that configurations
with more instances are effectively granted more memory and CPU time. This
choice is in line with our goal of improving the solver’s wall clock time.

All instances use the default strategy of Sally when they are choosing the
depth of induction (κ from Algorithm 1). The obligation processing strategy ω is
a priority queue based on a score assigned to obligations, randomized to diversify
the behaviour of different instances. The learning strategy σ is diversified pri-
marily by using different interpolation algorithms in OpenSMT and secondary
by using different random seed for the SMT search. Three different LRA inter-
polation algorithms were used: Farkas interpolation algorithm [28], dual Farkas,
and an interpolation algorithm based on decomposing Farkas interpolants [7].
We denote these as PF, DF and PD, respectively.

In the experiments we seek answers to the following questions:

1. How does the system compare to the state-of-the-art?
2. How important is the sharing of information between various instances?
3. How does the approach scale when the number of instances is increased?
4. How do different interpolation algorithms contribute to the overall perfor-

mance?

4 All benchmarks, tools and results are bundled together in an artifact available at
https://doi.org/10.5281/zenodo.3484097

5 https://github.com/chc-comp/chc-comp19-benchmarks/tree/master/lra-ts

https://doi.org/10.5281/zenodo.3484097
https://github.com/chc-comp/chc-comp19-benchmarks/tree/master/lra-ts
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Fig. 3: Best parallel configuration against the winner of LRA-TS category of
CHC COMP 2019

Comparison to the state-of-the-art. The main result of the experiments
is summarized in Fig. 3 that compares the performance of the winner of the
transition systems category of CHC COMP 2019 (sequential Sally using PD
interpolation algorithm in OpenSMT) with our parallel implementation with
nine instances sharing information between IcEs and between FiREs. The paral-
lel implementation achieves 4-fold speedup on a significant number of instances
and solves 224 instances compared to 197 instances solved by the sequential
version.

We also compared our parallel implementation to P3 [24], the parallel imple-
mentation of Spacer [22] that also allows sharing information between solver
instances. We also add the comparison with the sequential Spacer, the default
Horn clause engine in Z3 [29].6 The results are summarized in Fig. 4. Our frame-
work significantly outperforms Spacer on safe instances. Interestingly, Spacer
seems to fare better on unsafe instances.
Information sharing. Fig. 5 summarizes the performance of 4 configurations:
no information sharing (sno), sharing between FiREs only (sreach), sharing be-
tween IcEs only (sind), and all sharing enabled (sall). In these configurations
six instances were running in parallel (two instances for each interpolation algo-
rithm PF, DF and PD). For comparison, the figure includes results of sequential
versions with different interpolation algorithms. Note that the runtimes of the
parallel implementation were rounded to the whole seconds and this creates an
effect of ”stairs” for the low runtimes in cactus plots with logarithmic scale.
There is also a significant number of instances solved almost instantly and for
this reason the axes start at 1 second runtime and 50 instances solved.

A clear gap is visible between the best sequential version and the parallel ver-
sions indicating that the parallel approach yields a significant improvement even
without information sharing. Sharing information between FiREs is helpful, but

6 Results for Z3-4.8.5 with default settings.
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Fig. 4: Comparison of parallel Sally and parallel Spacer using 6 communicating
instances
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Fig. 5: The effect of sharing information

the effect is not that significant compared to sharing information between IcEs,
which is crucial for improving performance on many benchmarks. Configurations
with sharing reachability information disabled (p6-sally-sno, p6-sally-sind)
do not profit much from enabling it (p6-sally-sreach, p6-sally-sall). However,
some hard benchmarks could only be solved by allowing reachability information
to be shared. On the other hand, enabling the sharing of induction information
does boost the performance significantly. We conclude that the best performance
was achieved by enabling sharing information between both IcEs and FiREs.

Scalability. We compared the performance of one, two, six and nine instances
with all information sharing enabled. The results, summarized in Fig. 6, show
that adding more instances improves the performance, both decreasing the run-
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Fig. 6: Scalability experiments

time and solving more benchmarks with the configurations solving 197, 213, 221
and 224 instances, respectively.

The effect of interpolation. The large jump when moving from sequential
solving to two instances running in parallel can be in part contributed to different
interpolation algorithms. We investigate this further in Figure 7. We compared
configurations using six instances when the interpolation algorithm varies (p6-
sally-sall), when the interpolation algorithm is fixed to PF for all instance
(p6-sally-sall-PF), and when it is fixed to PD (p6-sally-sall-PD). We also
added a configuration of just two instances (one with PF, one with PD). The
results show that varying the interpolation algorithm is very important as the
performance of p2-sally-sall is comparable to that of p6-sally-sall-PD and
p6-sally-sall-PF while p6-sally-sall performs significantly better.

The experiments show that our parallel algorithm performs substantially bet-
ter than its sequential version. Its success can be contributed to more than one
factor: The use of different interpolation algorithms helps to solve more bench-
marks compared to a single interpolation algorithm used by all instances. Sharing
information between solver instances can significantly reduce the runtime and
thus solve more instances within the time limit. The major part of this can be
contributed to the sharing of induction information, but sharing reachability
information does help as well. The scalability experiments show continuing im-
provement up to nine instances. Additionally, our algorithm compares favorably
with the state-of-the-art parallel implementation of Spacer, outperforming it
significantly on the safe instances. Since Spacer is performing better on unsafe
instances, the integration of the two algorithms within the SMTS framework to
get the best of both tools is an interesting possibility for the future work.
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7 Conclusions

The IC3 algorithm [8] has arguably given a significant boost to symbolic model
checking as witnessed by the number of new algorithms it has inspired. An
early observation first made in [8] and later independently verified for example
in [10,24] states that these algorithms are particularly amenable for paralleliza-
tion. A recent pragmatic addition to the base algorithmic idea aims at obtain-
ing higher quality reachability lemmas by k-induction and naturally splits the
IC3 algorithm into two engines, one for induction and the other for computing
bounded reachability.

This idea changes the way a lemma sharing parallel portfolio can be imple-
mented for the class of algorithms, a question that was fundamental in IC3 from
the beginning. In this work we provide the IcE/FiRE architecture that addresses
this question by separating the two engines and their lemma storages and allow-
ing parallel running solvers to share lemmas among their respective engines. We
show experimentally that this approach provides a good speed-up in multi-core
environments, and that the solver surpasses in speed and number of instances
solved the current state-of-the-art on proving safety of transitions systems.

In future we plan to extend the presented idea in several ways. We will gener-
alize the approach to solving constrained Horn clauses. We plan to study closer
possible heuristics for sharing lemmas between the solvers, and to determine
under what conditions the lemmas can be shared between an induction engine
and a reachability engine. Aside from parallel portfolio, we would also like to
study how search space partitioning and approaches such as the parallelization
tree [19] could be applied in the context of the algorithm.
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