
Noname manuscript No.
(will be inserted by the editor)

Using Linear Algebra in Decomposition of Farkas Interpolants

Martin Blicha · Antti E. J. Hyvärinen · Jan Kofroň · Natasha Sharygina
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Abstract The use of propositional logic and systems

of linear inequalities over reals is a common means

to model software for formal verification. Craig inter-

polants constitute a central building block in this set-

ting for over-approximating reachable states, e.g., as

candidates for inductive loop invariants. Interpolants

for a linear system can be efficiently computed from

a Simplex refutation by applying the Farkas’ lemma.

However, these interpolants do not always suit the ver-

ification task—in the worst case they can even prevent

the verification algorithm from converging. This work

introduces the decomposed interpolants, a fundamental

extension of the Farkas interpolants, obtained by identi-

fying and separating independent components from the

interpolant structure, using methods from linear alge-

bra. We also present an efficient polynomial algorithm
to compute decomposed interpolants and analyze its

properties. We experimentally show that the use of de-

composed interpolants in model checking results in im-

mediate convergence on instances where state-of-the-

art approaches diverge. Moreover, since being based on
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the efficient Simplex method, the approach is very com-

petitive in general.
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1 Introduction

The goal of software verification is to prove specified

system properties. To perform verification using auto-

mated tools, first, the system needs to be transformed

to a representation more suitable for rigorous analysis

than source or machine code. One of such suitable rep-

resentations is propositional logic together with a sys-

tem of linear inequalities. It allows for employing tech-

niques and tools from the area of logic, such as SAT

and SMT solvers [7,15] and Craig interpolation [12].

In this paper, we focus on proving software proper-

ties that are known as safety properties [29]. In par-

ticular, we aim at proving facts about parts of the

programs and generalizing them. Such generalizations

serve as a basis for inductive invariants—formulas rep-

resenting loops in the program, which make the verifi-

cation difficult—for guiding the search for a correctness

proof in approaches such as IC3 [9] and k-induction [40],

both known to scale to the verification of highly com-

plex systems.

Finding good proofs and generalizing them is hard.

A widely used approach, Satisfiability Modulo Theories

(SMT) [7,15], models a system with fragments of first-

order logic. Solvers for SMT combine a resolution-based

variant of the DPLL-algorithm [13,14,41] for proposi-

tional logic with decision procedures for first-order the-

ories. The SMT-LIB Initiative [6] offers currently 55

This paper extends material previously published in [8]
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different first-order fracctions callled SMT-LIB logics.

What is common to these logics is that their solving re-

quires typically only a handful of algorithms. Arguably,

the two most important algorithms are a congruence

closure algorithm for deciding quantifier-free equality

with uninterpreted functions [32], and a Simplex-based

procedure for linear arithmetic over real or rational

numbers [18].

Generalizing proofs to inductive invariants is com-

monly done by Craig interpolation [12]. Here, the sys-

tem of formulas is split into two parts, say, A and B,

resulting in an interpolation problem (A,B). The proof

of unsatisfiability for A ∧ B is used to extract an in-

terpolant I, a formula that is defined over the common

symbols of A andB, is implied by A, and is unsatisfiable

with B. We perceive the interpolant as a generalization

of A with respect to B. Several interpolants can be com-

puted for a given interpolation problem, and not all of

them are useful for proving safety. This phenomenon

gives rise to employing a portfolio [22] of interpolation

algorithms that is then applied in the hopes of aiding

to find the safety proof with the help of different inter-

polants.

The approaches to interpolation based on Farkas’

lemma construct a linear-real-arithmetic (LRA) inter-

polant by summing all inequalities appearing in A into

a single inequality. We call the resulting interpolant the

Farkas interpolant. While a single inequality is desirable

in some cases, it prevents IC3-style algorithms from

converging in other ones [37]. We show how methods

from linear algebra can be applied on a Farkas inter-

polant to obtain decomposed interpolants that do not

consist of a single inequality and guarantee the con-

vergence of the model-checking algorithm for some of

the cases where Farkas interpolants fail. A major ad-

vantage of decomposed interpolants is that they can

still be computed from Farkas coefficients produced by

Simplex-based decision procedures, allowing us to re-

use the highly tuned implementations present in many

state-of-the-art SMT solvers.

Intuitively, while computing the decomposed inter-

polants, we do not directly sum the inequalities in A,

but, instead, we split the sum into sub-sums. The result

is an interpolant that is a conjunction of often more

than one component of the Farkas interpolant. This

allows us not only to solve the convergence problem

observed in some model checking examples, but also

to gain more control over the strength of LRA inter-

polants. In summary, the contributions of this paper

are:

1. a new Farkas-lemma-based interpolation algorithm

for LRA conflicts, which guarantees to decompose a

Farkas interpolant to more than one inequalities if

such decomposition exists;

2. establishing properties regarding logical strength of

interpolants produced by our algorithm with respect

to the original Farkas interpolants,

3. implementation of our new interpolation algorithm

in OpenSMT, our SMT solver, and integration of

our approach with the model checker sally [26],

4. a set of extensive experiments on a large set of mod-

el-checking benchmarks where we evaluate (1) the

effect of replacing traditional interpolation engine

with our interpolation algorithm, and (2) the perfor-

mance of portfolio of interpolation techniques avail-

able in OpenSMT and MathSAT and the contribu-

tion of decomposition techniques to the performance

of each portfolio.

This article is an extended version of a conference

publication that appeared in [8]. With respect to the

aforementioned points, the contribution of this paper

over [8] include:

– Our previous algorithm, presented in [8], relied on

a heuristic and did not provide a guarantee to dis-

cover a decomposition if one exists. The algorithm

presented in this paper provides this guarantee.

– We present complexity analysis of the proposed al-

gorithm.

– We present new results of the experiments reflecting

the use of the new version of the algorithm and the

progress of the SMT solvers used.

– We provide a detailed comparison with a related

approach [11].

The structure of the paper is as follows. In Sec. 2 we
motivate the investigation of decomposed interpolants

on a concrete model-checking problem where our ap-

proach guarantees immediate convergence but Farkas

interpolation diverges. In Sec. 3 we review the related

work. In Sec. 4 we define the notation used in the pa-

per, and in Sec. 5 and 6 we detail our main theoretical

contribution. We provide experimental results in Sec. 7,

and finally conclude in Sec. 8.

2 Motivation

To motivate our work, consider the following piece of

code:

x = 0 ;

y = 0 ;

while (∗ ) {
x = x + y ;

y = y + 1 ;

}
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assert ( x >= 0 ) ;

In this code, the ‘∗’ character represents non-determin-

istic choice (e.g., user input); thus, the body of the while

loop can be executed any number of times. The assert

statement captures the property of the program that

variable ‘x’ should be always non-negative after exiting

the while loop.

This code can be modeled as a transition system

S = (I, T,Err) given in Eq. (1); here, I and Err are

predicates that capture the initial and error states, re-

spectively, and T is the transition relation. The symbols

x, y are real variables, and x
′
, y
′
are their next-state ver-

sions.
1

S =


I := (x = 0) ∧ (y = 0),

T := (x
′

= x+ y) ∧ (y
′

= y + 1),

Err := (x < 0)

(1)

The aforementioned example is one variant from a fam-

ily of similar transition systems that are known not

to converge in straightforward implementations of IC3-

based algorithms using LRA interpolation. To prove the

safety of the transition system (I, T,Err) we search for

a safe inductive invariant, i.e., a predicate R that satis-

fies (1) I(X)→ R(X), (2) R(X) ∧ T (X,X
′
)→ R(X

′
),

and (3) R(X) ∧ Err(X)→ ⊥.

We demonstrate the problem that occurs in model

checking when using Farkas interpolants on a simplified

run of a model checker for our example. After checking

that the initial state satisfies the property P := x ≥ 0

(the negation of Err), the inductiveness of P is checked.

The inductive check is reduced to a satisfiability check

of a formula representing the question whether it is pos-

sible to reach a ¬P -state (a state where ¬P holds) by

one step from any P -state:

x ≥ 0 ∧ x′ = x+ y ∧ y′ = y + 1 ∧ x′ < 0.

This formula is satisfiable and a generalized counter-

example to induction (CTI) is extracted. In our case,

the CTI is x+ y < 0.
2

This means that if we make one

step from a P -state that additionally satisfies x+y < 0

we end up in a ¬P -state. Therefore, we have to check

if this CTI is consistent with the initial states. This is

again encoded as a satisfiability check of a formula

x = 0 ∧ y = 0 ∧ x+ y < 0.

This formula is unsatisfiable, and we can extract an

interpolant to obtain a generalized reason why this CTI

is not consistent with the initial states (not reachable in

1
This example was first brought to our attention by Prof.

Arie Gurfinkel. A similar example appears in [10,37].
2

The exact procedure for obtaining the CTI is not impor-
tant for the current discussion.

0 steps in our system). The interpolant is computed for

the partitioning (x = 0 ∧ y = 0, x+ y < 0). The Farkas

interpolant for this partitioning is x + y ≥ 0 and we

denote is as L1. Interpolation properties guarantee that

L1 is valid in all initial states. Moreover, P is inductive

relative to L1, formally

x ≥ 0∧ x+ y ≥ 0∧ x′ = x+ y ∧ y′ = y+ 1 =⇒ x
′ ≥ 0.

This means that by making one step from a P -state

that is also an L1-state we always end up in a P -state

again. However, now we need to show that L1 holds in

all reachable states. We check if L1 is inductive (even

relative to P ). Similarly as before, we encode this as a

satisfiability check of a formula

x+ y ≥ 0∧x ≥ 0∧x′ = x+ y∧ y′ = y+ 1∧x′+ y
′
< 0.

Again, this formula is satisfiable and a generalized CTI

is x+2y < −1. This CTI is refuted as inconsistent with

the initial states similarly to the first one. The formula

x = 0 ∧ y = 0 ∧ x+ 2y < −1

is unsatisfiable and Farkas interpolant generalizing the

refutation is L2 := x+2y ≥ 0. Similarly as before, it can

be easily checked that L1 is inductive relative to L2, but

L2 is not inductive (not even relative to P and L1). The

CTI is x+3y < −1, it is refuted by a Farkas interpolant

L3 := x + 3y ≥ 0. L2 is now inductive relative to L3

but L3 is not inductive, etc. The model checker diverges,

since for Ln a CTI x+ny < −1 is discovered and a new

obligation to show inductiveness of Ln+1 is generated.

However, let us return to the first interpolation query

(x = 0 ∧ y = 0, x+ y < 0). Farkas interpolation, which

always computes an interpolant in a form of a single

inequality, is not the only option. It is possible to com-

pute an interpolant that is a conjunction of inequalities.

In our case L := x ≥ 0 ∧ y ≥ 0 is also an interpolant.

This interpolant L is stronger than the Farkas inter-

polant, the property P is inductive relative to L, and,

most importantly, L is inductive:

(x ≥ 0 ∧ y ≥ 0) ∧ x′ = x+ y ∧
∧ y′ = y + 1 =⇒ (x

′ ≥ 0 ∧ y′ ≥ 0)

is a valid formula. Actually, P follows from L, so L rep-

resents the inductive strengthening of P that witnesses

the safety of our system.

3 Related work

The possible weakness of Farkas interpolants for use

in model checking was recognized in [37]. The authors
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demonstrate that Farkas interpolation does not sat-

isfy the condition needed for proving convergence of

a model-checking algorithm pd-kind [26]. Indeed, the

model checker sally [26], which implements pd-kind,

diverges on our example from Sec. 2 if Farkas inter-

polation is used in its underlying interpolation engine.

To resolve this problem [37] introduces a new interpo-

lation procedure that guarantees the convergence of a

special sequence of interpolation problems often occur-

ring in model checking problems. However, this interpo-

lation algorithm is based on a decision procedure called

conflict resolution [28], which is not as efficient as the

Simplex-based decision procedure used by most state-

of-the-art SMT solvers. In contrast, we show how the

original Simplex-based decision procedure using Farkas

coefficients can be modified to produce interpolants not

restricted to the single-inequality form, while addition-

ally obtaining strength guarantees with respect to the

original Farkas interpolants.

The reasoning engine Spacer [27] is also known to

be affected by this weakness of Farkas interpolants. The

verification framework SeaHorn [20], which relies on

Spacer, uses additional invariants obtained from ab-

stract interpretation to avoid the divergence.

The interpolation in linear real arithmetic (LRA)

itself has received a significant amount of attention re-

cently. The work on LRA interpolation dates back to [33].

A compact set of rules for deriving LRA interpolants

from the proof of unsatisfiability in an inference sys-

tem was presented in [31]. The interpolants in these

works were the Farkas interpolants. Current methods

usually compute Farkas interpolants from explanations

of unsatisfiability extracted directly from the Simplex-

based decision procedure inside the SMT solver [18].

Recently in [4], we presented a way of computing an

infinite family of interpolants between a primal and a

dual interpolant with variable strength. However, those

interpolants are still restricted to single inequalities.

The first discussion on how to obtain interpolants

in form of conjunction of inequalities from Farkas coef-

ficients is present in [11]. However, their approach is

based on a simple heuristic which does not discover

the possibility for decompositions in some cases where

our approach finds the decomposition easily. Moreover,

their focus was on the interpolation techniques them-

selves, and they do not discuss the applications of de-

composed interpolants. We provide a detailed compar-

ison with our approach in Sec. 6.3

Other work on LRA interpolants include e.g. [1,36,

38]. Both [1] and [38] focus on producing simple over-

all interpolants by attempting to reuse (partial) inter-

polants from pure LRA conflicts. Our focus is not on

the overall interpolant, but on a single LRA conflict.

However, in the context of interpolants from proofs pro-

duced by SMT solvers, our approach also has a poten-

tial for re-using components of interpolants for LRA

conflicts across the whole proof. Beside interpolation

algorithms for LRA conflicts, there exist a large body

of work on propositional interpolation [2,16,21,25].

4 Preliminaries

We work in the domain of Satisfiability Modulo The-

ories (SMT) [7,15], where satisfiability of formulas is

determined with respect to some background theory.

In particular, we are concerned with the lazy approach

to SMT, that combines a SAT solver dealing with the

propositional structure of a formula and a theory solver

for checking consistency of a conjunction of theory lit-

erals. The proof of unsatisfiability in this approach is

basically a propositional proof that incorporates theory

lemmas learned by the theory solver and propagated

to the SAT solver. The proof-based interpolation al-

gorithm then combines any propositional-proof-based

interpolation algorithm with theory interpolator. The-

ory interpolator provides an interpolant for each theory

conflict—an unsatisfiable conjunction of theory literals.

Linear arithmetic and linear algebra. We use the letters

x, y, z to denote variables and c, k to denote constants.

Vector of n variables is denoted by x = (x1, . . . , xn)
ᵀ

where n is usually known from context. x[i] denotes the

element of x at position i, i.e. x[i] = xi. The vector of

all zeroes is denoted as 0 and ei denotes the unit vector

with ei[i] = 1 and ei[j] = 0 for j 6= i. For two vectors

x = (x1, . . . , xn)
ᵀ

and y = (y1, . . . , yn)
ᵀ

we say that
x ≤ y iff xi ≤ yi for each i ∈ {1, . . . , n}. Q denotes the

set of rational numbers, Qn
the n-dimensional vector

space of rational numbers and Qm×n
the set of rational

matrices with m rows and n columns. A transpose of

matrix M is denoted as M
ᵀ
. A kernel (or nullspace) of a

matrix M is the vector space ker(M) = {x |Mx = 0}.
A matrix is said to be in Row Echelon Form (REF)

if all non-zero rows are above all rows containing only

zeros and the leading coefficient (first non-zero value)

of each row is always strictly to the right of the leading

coefficient of the row above. A matrix is said to be in

Reduced Row Echelon Form (RREF) if it is in REF,

the leading entry of each non-zero row is 1 and each

column containing the leading entry of some row has

zeros everywhere else. REF of a matrix can be obtained

by Gaussian elimination, while RREF can be obtained

by Gauss-Jordan elimination.

We adopt the notation of matrix product for linear

arithmetic. For a linear term l = c1x1 + · · ·+ cnxn, we

write c
ᵀ
x to denote l. Without loss of generality we as-
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sume that all linear inequalities are of the form c
ᵀ
x ./ c

with ./∈ {≤, <}. By linear system over variables x we

mean a finite set of linear inequalities S = {Ci | 1 ≤
i ≤ m}, where each Ci is a linear inequality over x.

Note that from the logical perspective, each Ci is an

atom in the language of the theory of linear arithmetic,

thus system S can be expressed as a formula
∧m

i=1 Ci

and we use these representations interchangeably. A lin-

ear system is satisfiable if there exists an evaluation of

variables that satisfies all inequalities; otherwise, it is

unsatisfiable. This is the same as the (un)satisfiability

of the formula representing the system.

We extend the matrix notation also to the whole lin-

ear system. For the sake of simplicity we use ≤ instead

of ./, even if the system contains a mix of strict and

non-strict inequalities. The only important difference is

that a (weighted) sum of a linear system (as defined be-

low) results in a strict inequality, instead of a non-strict

one, when at least one strict inequality is present in the

sum with a non-zero coefficient. The theory, proofs and

algorithm remain valid also in the presence of strict

inequalities. We write Cx ≤ c to denote the linear sys-

tem S where C denotes the matrix of all coefficients

of the system, x are the variables and c is the vector

of the right sides of the inequalities. With the matrix

notation, we can easily express the sum of (multiples)

of inequalities. Given a system of inequalities Cx ≤ c

and a vector of “weights” (multiples) of the inequalities

k ≥ 0, the inequality that is the (weighted) sum of the

system can be expressed as k
ᵀ
Cx ≤ k

ᵀ
c.

Craig interpolation. Given two formulas A(x,y) and

B(y, z) such that A ∧ B is unsatisfiable, a Craig in-

terpolant [12] is a formula I(y) such that A =⇒ I and

I =⇒ ¬B.

The pair of formulas (A,B) is also referred to as an

interpolation problem. In linear arithmetic, the interpo-

lation problem is a linear system S partitioned into two

parts: A and B.

One way to compute a solution to an interpola-

tion problem in linear arithmetic, used in many mod-

ern SMT solvers, is based on Farkas’ lemma [19,39].

Farkas’ lemma states that for an unsatisfiable system

of linear inequalities S ≡ Cx ≤ c there exist Farkas

coefficients k ≥ 0 such that k
ᵀ
Cx ≤ k

ᵀ
c ≡ 0 ≤ −1. In

other words, the weighted sum of the system given by

the Farkas coefficients is a contradictory inequality. If

a strict inequality is part of the sum, the result might

also be 0 < 0.

The idea behind the interpolation algorithm based

on Farkas coefficients is simple. Intuitively, given the

partition of the linear system into A and B, we com-

pute only the weighted sum of A. It is not hard to

see that this sum is an interpolant. It follows from A

because a weighted sum of a linear system with non-

negative weights is always implied by the system. It is

inconsistent with B because its sum with the weighted

sum of B (using Farkas coefficients) is a contradictory

inequality by Farkas lemma. Finally, it cannot contain

any A-local variables, as can be seen from the following

reasoning: All variables are eliminated in the weighted

sum of the whole system. Since A-local variables are by

definition absent in B, they must be eliminated already

in the weighted sum of A.

More formally, for an unsatisfiable linear system

S := Cx ≤ c over n variables, where C ∈ Qm×n
, c ∈

Qm
, and its partition to A := CAx ≤ cA and B :=

CBx ≤ cB, where CA ∈ Qk×n
, CB ∈ Ql×n

, cA ∈ Qk
,

cB ∈ Ql
and k + l = m, there exist Farkas coefficients

k
ᵀ

= (k
ᵀ
A k

ᵀ
B) such that

(k
ᵀ
A k

ᵀ
B)

(
CA

CB

)
= 0, (k

ᵀ
A k

ᵀ
B)

(
cA

cB

)
= −1,

and the Farkas interpolant for (A,B) is the inequality

I
F

:= k
ᵀ
ACAx ≤ k

ᵀ
AcA. (2)

5 Decomposed Interpolants

In this section, we present our new approach to comput-

ing interpolants in linear arithmetic based on Farkas co-

efficients. The definition of Farkas interpolant of Eq. (2)

corresponds to the weighted sum of A-part of the unsat-

isfiable linear system. This sum can be decomposed into

j sums by decomposing the vector kA into j vectors

kA =

j∑
i=1

kA,i (3)

such that 0 ≤ kA,i ≤ kA for all i, thus obtaining j

inequalities

Ii := k
ᵀ
A,iCAx ≤ k

ᵀ
A,icA (4)

If kA,i are such that the left-hand side of the inequal-

ities Ii contains only shared variables, the decomposi-

tion has an interesting application in interpolation, as

illustrated below.

Definition 1 (decomposed interpolants) Given an

interpolation instance (A,B), if there exists a sum of

the form Eq. (3) such that the left side of Eq. (4) con-

tains only shared variables for all 1 ≤ i ≤ j, then the

set of inequalities S = {I1, . . . , Ij} is a decomposition.

In that case the formula
∧j

i=1 Ii is a decomposed inter-

polant (DI) of size j for (A,B).

The decomposed interpolants are proper interpolants,

as stated in the following theorem.
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Theorem 1 Let (A,B) be an interpolation problem in

linear arithmetic. If S = {I1, . . . , Ik} is a decomposi-

tion, then I
DI

= I1 ∧ . . . ∧ Ik is an interpolant for

(A,B).

Proof Let I
DI

= I1 ∧ . . . ∧ Ik. First, A =⇒ I
DI

holds

since for all Ii, A =⇒ Ii. This is immediate from the

fact that A is a system of linear inequalities CAx ≤
cA, Ii = (k

ᵀ
A,iCAx ≤ k

ᵀ
A,icA) and 0 ≤ kA,i. Second,

I
DI ∧ B =⇒ ⊥ since I

DI
implies Farkas interpolant

I
F

. This holds because kA =
∑

i kA,i and 0 ≤ kA,i.

Third, I
DI

contains only the shared variables by the

definition of decomposition (Definition 1). Therefore,

I
DI

is an interpolant. ut

Each interpolation instance has a DI of size one, a triv-

ial decomposition, corresponding to the Farkas inter-

polant of Eq. (2). However, interpolation problems in

general can admit bigger decompositions. In the fol-

lowing we give a concrete example of an instance with

decomposition of size two.

Example 1 Let (A,B) be an interpolation problem in

linear arithmetic with A = (x1 + x2 ≤ 0) ∧ (x1 + x3 ≤
0) ∧ (−x1 ≤ 0) and B = (−x2 − x3 ≤ −1). The linear

systems corresponding to A and B are

CA =

 1 1 0

1 0 1

−1 0 0

 , cA =

0

0

0


CB =

(
0 −1 −1

)
, cB =

(
−1
)
.

Farkas coefficients are

k
ᵀ
A =

(
1 1 2

)
and k

ᵀ
B =

(
1
)
,

while Farkas interpolant for (A,B) is the inequality

I
F

:= x2 + x3 ≤ 0. However, if we decompose kA into

k
ᵀ
A,1 =

(
1 0 1

)
and k

ᵀ
A,2 =

(
0 1 1

)
,

we obtain the decomposition {x2 ≤ 0, x3 ≤ 0} corre-

sponding to the decomposed interpolant I
DI

:= x2 ≤
0 ∧ x3 ≤ 0 of size two.

5.1 Strength-Based Ordering of Decompositions

Decomposition of Farkas coefficients for a single inter-

polation problem is in general not unique. However, we

can provide some structure to the space of possible in-

terpolants by ordering interpolants with respect to their

logical strength. To achieve this, we define the coarse-

ness of a decomposition based on its ability to partition

the terms of the interpolant into finer sums, and then

prove that coarseness provides us with a way of mea-

suring the interpolant strength.

Definition 2 Let D1, D2 denote two decompositions

of the same interpolation problem of size m, n, respec-

tively, where n < m. Let (q1, . . . ,qm) denote the de-

composition of Farkas coefficients corresponding to D1

and let (r1, . . . , rn) denote the decomposition of Farkas

coefficients corresponding to D2. We say that decompo-

sition D1 is finer than D2 (or equivalently D2 is coarser

than D1) and denote this as D1 ≺ D2 when there ex-

ists a partition P = {p1, . . . , pn} of the set {q1, . . . ,qm}
such that for each i with 1 ≤ i ≤ n, ri =

∑
q∈pi q.

Interpolants of decompositions ordered by their coarse-

ness can be ordered by logical strength, as stated by

the following lemma:

Lemma 1 Assume D1, D2 are two decompositions of

the same interpolation problem such that D1 ≺ D2. Let

I
D1 , I

D2 be the decomposed interpolants corresponding

to D1, D2. Then I
D1 implies I

D2 .

Proof Informally, the implication follows from the fact

that each linear inequality of I
D2 is a sum of some in-

equalities in I
D1 .

Formally, let Ii denote the i-th inequality in I
D2 .

Then Ii = (r
ᵀ
i CAx ≤ r

ᵀ
i cA). Since D1 ≺ D2, there

is a set {Ii1 , . . . , Iij} ⊆ D1 such that for each k with

1 ≤ k ≤ j, Iik = (q
ᵀ
ik
CAx ≤ q

ᵀ
ik

cA) and ri =
∑j

k=1 qik
.

Since qik
≥ 0, it holds that Ii1 ∧ · · · ∧ Iij =⇒ Ii.

This means that I
D1 implies every conjunct of I

D2 . ut

Note that the trivial, single-element decomposition

corresponding to Farkas interpolant is the greatest ele-

ment of this decomposition ordering. Also, for any de-

composition of size more than one, replacing any num-

ber of elements by their sum yields a coarser decompo-

sition.

Finally we emphasize that it is difficult to argue

about the suitability of a decomposition for a partic-

ular purpose based solely on strength. For example, a

user may opt for a a coarser decomposition because

summing up some of the elements of a decomposition

may result in eliminating a shared variable from the

decomposition.

5.2 Strength of the Dual Interpolants

Given an interpolation problem (A,B) and an inter-

polation procedure Itp we denote the interpolant com-

puted by Itp for (A,B) as Itp(A,B). Then Itp
′

denotes

the dual interpolation procedure, which works as fol-

lows: Itp
′
(A,B) = ¬Itp(B,A). The well-known dual-

ity theorem for interpolation states that Itp
′

is correct

interpolation procedure. This can be shown by veri-

fying that the three interpolation conditions hold for

Itp
′
(A,B), given that they hold for Itp(B,A).
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Let us denote the interpolation procedure based on

Farkas’ lemma as ItpF and the interpolation procedure

computing decomposed interpolants as ItpDI . The rela-

tion between ItpF and its dual Itp
′
F has been established

in [4], namely that ItpF (A,B) =⇒ Itp
′
F (A,B). We

have shown in Lemma 1 that a decomposed interpolant

always implies Farkas interpolant computed from the

same Farkas coefficients. Formally, ItpDI (A,B) =⇒
ItpF (A,B).

Similar result can be established for the dual inter-

polation procedures: As ItpDI (B,A) =⇒ ItpF (B,A),

it follows that ¬ItpF (B,A) =⇒ ¬ItpDI (B,A) and

consequently Itp
′
F (A,B) =⇒ Itp

′
DI (A,B).

Combining the results on logical strength together

we obtain a chain of implications:

ItpDI (A,B) =⇒ ItpF (A,B)

=⇒ Itp
′
F (A,B)

=⇒ Itp
′
DI (A,B).

Note that while both ItpF and Itp
′
F produce interpolants

which are a single inequality and interpolants produced

by ItpDI are conjunctions of inequalities, interpolants

produced by Itp
′
DI are disjunctions of inequalities.

In the following section, we describe the details of

the ItpDI interpolation procedure.

6 Finding Decompositions

In this section we present our approach for finding de-

compositions for linear arithmetic interpolation prob-

lems given their Farkas coefficients.

We focus on the task of finding decomposition of

k
ᵀ
ACAx. Recall that CA ∈ Ql×n

and x is a vector of

variables of length n. Without loss of generality assume

that there are no B-local variables since columns of

CA corresponding to B-local variables would contain

all zeroes by definition in any case.

Furthermore, without loss of generality, assume the

variables in the inequalities of A are ordered such that

all A-local variables are before the shared ones. Then

let us write

CA =
(
L S

)
, x

ᵀ
=
(
xL

ᵀ
xS

ᵀ)
(5)

with xL the vector of A-local variables of size p, xS the

vector of shared variables of size q, n = p+ q, L ∈ Ql×p

and S ∈ Ql×q
. We know that k

ᵀ
AL = 0 and the goal

is to find kA,i such that
∑

i kA,i = kA and for each i

0 ≤ kA,i ≤ kA and k
ᵀ
A,iL = 0.

In the following we will consider two cases for com-

puting the decompositions. We first study a common

special case where the system A contains rows with

no local variables, and give a linear-time algorithm for

computing the decompositions. We then move to the

general case where the rows of A contain local vari-

ables, and provide a decomposition algorithm based on

computing a vector basis for a null space of a matrix

obtained from A.

6.1 Trivial Elements

First, consider a situation where there is a linear in-

equality with no local variables. This means there is

a row j in CA (denoted as CAj) such that all entries

in columns corresponding to local variables are 0, i.e.,

Lj = 0
ᵀ
. Then {I1, I2} for kA,1 = kA[j] × ej and

kA,2 = kA − kA,1 is a decomposition. Intuitively, any

linear inequality that contains only shared variables can

form a stand-alone element of a decomposition. When

looking for finest decomposition, we do this iteratively

for all inequalities with no local variables. In the next

part we show how to look for a non-trivial decomposi-

tion when dealing with local variables.

6.2 Decomposing in the Presence of Local Variables

For this section, assume that L has no zero rows (we

have shown above how to deal with such rows). We are

going to search for a non-trivial decomposition starting

with the following observation:

Observation k
ᵀ
AL = 0. Equivalently, there are no A-

local variables in the Farkas interpolant. It follows that

L
ᵀ
kA = 0 and kA is in the kernel of L

ᵀ
.

Let us denote by K = ker(L
ᵀ
) the kernel of L

ᵀ
.

Theorem 2 Let v1, . . . ,vn be n vectors from K such

that ∃α1, . . . , αn with αivi ≥ 0 for all i and kA =∑n
i=1 αivi. Then {w1, . . . ,wn} for wi = αivi is a de-

composition of kA and {I1, . . . , In} for Ii := wiCAx ≤
cA is a decomposition.

Proof The theorem follows from the definition of de-

composition (Def. 1). From the assumptions of the theo-

rem we immediately obtain kA =
∑n

i=1 wi and wi ≥ 0.

Moreover, wi ∈ K, since vi ∈ K and wi = αivi. As a

consequence, L
ᵀ
wi = 0 and it follows that there are no

A-local variables in wi
ᵀ
CAx. ut

Note that Theorem 2 permits redundant components of

a decomposition. Consider vectors w1,w2,w3 ∈ K that

are part of a decomposition in the sense of Theorem 2

and that w3 = w1 +w2. Then I1∧ I2 =⇒ I3 and I3 is

a redundant conjunct in the corresponding decomposed

interpolant.
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input : matrix M , vector v such that v ∈ ker(M)
and v > 0

output: {w1, . . . , wn}, a decomposition of v, such
that wi ∈ ker(M),wi ≥ 0 and

∑
wi = v

1 M ← RREF(M)

2 n← Nullity(M)

3 if n = 1 then return {v}
4 (b1, . . . ,bn)← KernelBasis(M)

5 (α1, . . . , αn)← Coordinates(v, (b1, . . . ,bn))
6 assert αk > 0 for each k = 1, . . . , n
7 while ∃i, j such that bij < 0 do

8 bi ← bi +
−bij

vj
v

9 C ← 1 +
−bij

αi
vj

10 (α1, . . . , αn)← (
α1

C
, . . . ,

αn
C

)

11 assert αi > 0 for each i = 1, . . . , n

12 assert v =
∑n
i=1 αibi

13 end
14 assert bi ≥ 0 for each i = 1, . . . , n
15 return {α1b1, . . . , αnbn}

Algorithm 1: Algorithm for decomposition of

Farkas coefficients

Good candidates that satisfy most of the assump-

tions of Theorem 2 (and avoid redundancies) are bases

of the vector space K. If B = {b1, . . . ,bn} is a ba-

sis of K such that kA =
∑n

i=1 αibi with αibi ≥ 0 for

all i, then {α1b1, . . . , αnbn} is a decomposition. Our

solution for computing the decomposition of Farkas co-

efficients kA is described in Algorithm 1. It is based on

the above idea of computing bases of ker(L
ᵀ
). We de-

scribe the algorithm in detail, show its correctness and

discuss its complexity.

The algorithm runs on the matrix M = L
ᵀ

and vec-

tor v = kA. At the beginning the Reduced Row Ech-

elon Form (RREF) of the matrix is computed (recall

definition of RREF from Sec. 4). Importantly, transfor-

mation of a matrix to RREF preserves its kernel. The

dimension of the kernel, known as nullity, can now be ef-

ficiently computed using Rank-Nullity Theorem, which

states that the nullity of a matrix is equal to the number

of its columns minus its rank. For a matrix in RREF,

the rank is simply the number of non-zero rows.

We already know that there is a non-zero vector in

the kernel, therefore the nullity of the matrix is at least

one. If it is exactly one (line 3) then no non-trivial de-

composition of the vector exists. Intuitively, this means

that the Farkas coefficients represent the unique way

(up to positive scalar multiples) of summing up the in-

equalities of A-part to eliminate the A-local variables.

However, if the nullity is greater than one, it is pos-

sible to compute a decomposition of size equal to the

nullity.

Initial basis computation. First, a basis of the kernel

of the matrix in RREF is computed by a standard al-

gorithm (see, e.g., [5]). This algorithm ensures that the

coordinates of v, with respect to the basis it computes,

are positive (lines 5, 6). Since this is an important prop-

erty, we include the description of the algorithm with

the proof. Given a matrix M in RREF with m columns,

each column is denoted as either pivot or non-pivot. A

pivot column contains the first non-zero entry for a par-

ticular row, non-pivot column does not. We say that a

non-pivot column is free. The number of free columns is

exactly the nullity of the matrix, i.e., n, and the number

of pivot columns is m − n. Due to the need to iterate

over the pivot and free columns separately, we intro-

duce additional notation: we use f ∈ {1, . . . , n} to iter-

ate over the free columns, p ∈ {1, . . . ,m−n} to iterate

over the pivot columns, and we use mapping functions

F : {1, . . . , n} → {1, . . . ,m} and P : {1, . . . ,m − n} →
{1, . . . ,m} to get the original column indices in M .

Now, for each f ∈ {1, . . . , n} denote as bf the solu-

tion obtained by solving the system Mx = 0 where all

variables corresponding to free columns are set to 0, ex-

cept for xF (f) which is set to 1. Note that this uniquely

determines the value of pivot variables since M is in

RREF; thus

xP (p) =

n∑
f=1

−MpF (f)xF (f),∀p ∈ {1, . . . ,m− n} (6)

Lemma 2 B = {bf | f ∈ {1, . . . , n}} is a basis of

ker(M). Moreover, ∀v ∈ ker(M) : v =
∑n

f=1 vF (f)bf .

Proof Linear independence: For each f ∈ {1, . . . , n},
bf has 1 at position F (f) while all other elements of B
have 0 at position F (f). Consequently bf cannot be ex-

pressed as a linear combination of other elements of B.

Generators: We show that each vector v ∈ ker(M)

can be written as a linear combination of elements of B.

More precisely, we show that v =
∑n

f=1 vF (f)bf .

(a) For each f ∈ {1, . . . , n} : vF (f) =
∑n

f̂=1 vF (f̂)bf̂F (f)

as bfF (f) = 1 and bf̂F (f)
= 0 for f̂ 6= f .

(b) Fix a pivot index p ∈ {1, . . . ,m − n}. To see that

vP (p) =
∑n

f=1 vF (f)bfP (p), note that v and all ele-

ments of B are solutions to the system Mx = 0, so

they satisfy Eq. (6). Instantiating Eq. (6) with bf

for f ∈ {1, . . . , n} we get

bfP (p) =

n∑
f̂=1

−MpF (f̂)bfF (f̂) = −MpF (f) (7)

since bfF (f̂) = 1 when f̂ = f and 0 otherwise. Now,

vP (p) =
∑n

f=1 vF (f)bfP (p) is obtained by instanti-

ating Eq. (6) with v and then replacing −MpF (f)

by bfP (p) using Eq. (7).
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Combining (a) and (b), we have shown that v can be

expressed as a linear combination of B, which together

with the linear independence of B concludes the proof.

ut

A direct consequence of Lemma 2 is that the co-

ordinates of v ∈ ker(M) with respect to basis B, i.e.,

the coefficients of elements of B in the linear combina-

tion expressing v, are positive if v > 0. These coor-

dinates are denoted as α1, . . . , αn in Algorithm 1 and

we have just shown that using this standard algorithm

for the computation of a kernel’s basis the coordinates

are guaranteed to be positive (line 6). However, the

elements of the basis B are not guaranteed to be non-

negative vectors.

Ensuring non-negativity of the basis. The second part

of the algorithm, the loop on lines 7-13, modifies the

elements of the basis. It gradually makes all elements

non-negative, while at the same time it keeps the coor-

dinates of vector v, corresponding to the current basis,

positive. Given an element of the basis bi such that its

j-th element is negative, the algorithm replaces the el-

ement bi with a new element b
′
i := bi +

−bij

vj
v. After

replacing bi with b
′
i, the resulting set of vectors is still

a basis of ker(M).

Lemma 3 The set of vectors B′ = (B \ {bi})∪ {b
′
i} is

a basis of ker(M).

Proof We show that bi can be expressed as a linear

combination of vectors from B′. This is sufficient to

show that B′ consists of linearly independent vectors

and that it generates ker(M). Let us denote the con-

stant
−bij

vj
as K and note that K > 0 since vj > 0 and

bij < 0. We first express b
′
i as

b
′
i = bi +Kv = bi +K

n∑
f=1

αfbf

= bi(1 +Kαi) +K
∑
f 6=i

αfbf

and now bi can be expressed as a linear combination of

elements of B′:

bi(1 +Kαi) = b
′
i −K

∑
f 6=i

αfbf

bi =
b
′
i +
∑

f 6=i−Kαfbf

1 +Kαi

ut

After this replacement, (at least) one negative value

has been successfully eliminated: As K > 0 and v > 0,

it follows that b
′
i > bi and b

′
ij = 0.

As the last step, we show that the new coordinates

of v (with respect to the new basis) are still positive.

Lemma 4 Let α
′

denote the coordinates of v with re-

spect to the new basis B′. Then α
′
> 0.

Proof First, consider the result of linear combination of

the new basis B′ with the old coefficients α:

α1b1 + . . .+ αib
′
i + . . .+ αnbn =

n∑
f=1

αfbf + αiKv =

= v + αiKv = v(1 + αiK)

Now, set C := 1+αiK and note that C > 1 since K > 0

and αi > 0. It follows that

v =
α1

C
b1 + . . .+

αi

C
b
′
i + . . .+

αn

C
bn

and that α
′

= α
C is the vector of coordinates of v with

respect to the new basis B′. Since α > 0 and C > 0, it

follows that α
′
> 0 as required. ut

We have shown that the loop on lines 7-13 preserves the

invariant that the coordinates of v with respect to the

current basis are all positive (lines 11,12) and that each

iteration decreases the number of negative values of the

basis vectors. As a result, Algorithm 1 terminates and

returns a decomposition of the input vector v of size

equal to the nullity of the input matrix M .

We first simulate the run of the algorithm on an ex-

ample, then discuss its complexity and finally compare

it to other approaches for computing interpolants as a

conjunction of inequalities.

Example 2 Consider an unsatisfiable system of inequal-

ities A ∧ B where A = {x1 + x2 ≤ 0,−x1 + x3 ≤ 0,

x1 + x4 ≤ 0,−x1 + x5 ≤ 0} and B = {−x2 − x3 − x4 −
x5 ≤ −1}. The vector of Farkas coefficients witnessing

the unsatisfiability of A ∧B is k =
(
1 1 1 1 1

)ᵀ
and its

restriction to A-part is kA =
(
1 1 1 1

)ᵀ
. The only A-

local variable is x1, so the matrix of A-local coefficients

is L
ᵀ

=
(
1 −1 1 −1

)
. We simulate the run of Algo-

rithm 1 on kA and L
ᵀ
: Since L

ᵀ
is already in RREF,

nothing changes on line 1. Now, the rank of L
ᵀ

is 1 and

it has 4 columns, thus its nullity is 3 and we can com-

pute a decomposition of kA of size 3. The first column

of L
ᵀ

is pivot while the other three columns are free.

The computation of the initial basis of ker(L
ᵀ
) (line 4)

yields three vectors:

b1 =


1

1

0

0

 , b2 =


−1

0

1

0

 , b3 =


1

0

0

1

 .
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The coordinates of kA with respect to this basis is

α =
(
1 1 1

)ᵀ
. As b21 < 0 we enter the loop on line 7

where the new vector b
′
2 is computed as b

′
2 = b2 +

kA =
(
0 1 2 1

)ᵀ
. Then, the coordinates are divided

by a constant C = 2 to obtain the new coordinates

α =
(
1/2 1/2 1/2

)ᵀ
. Since there are no more negative

elements in the vectors of the basis, the decomposition

kA = 1/2 ∗
(
1 1 0 0

)
+ 1/2 ∗

(
0 1 2 1

)
+ 1/2 ∗

(
1 0 0 1

)
is returned. This decomposition results in the decom-

posed interpolant

I
Dec

= (x2+x3 ≤ 0)∧(x3+2x4+x5 ≤ 0)∧(x2+x5 ≤ 0).

Complexity of Algorithm 1. Considering the matrix of

A-local coefficients L for m inequalities and l A-local

variables, the algorithm runs on matrix M = L
ᵀ

with

m columns and l rows. When transformation of M to

RREF is done by Gauss-Jordan elimination, it needs to

perform O(m
2
l) arithmetic operations. After the trans-

formation the number of (non-zero) rows is r, which is

the rank of M and we know that r ≤ l. With n de-

noting the nullity of M , Rank-Nullity Theorem implies

that r+n = m and consequently that n < m. The com-

plexity of the computation of an initial basis is O(nm)

since we are computing n basis vectors, each of size m.

Determining the value for every element of each basis

vector is immediate: it is 0 or 1 for positions corre-

sponding to the free columns and it is a negated coeffi-

cient from RREF(M) for positions corresponding to the

pivot columns, see Eq. (7). Finally, one iteration of the

loop that ensures non-negativity of the basis needs just

O(m) arithmetic operations and the termination can

be ensured after O(n) iteration. To see this, note that

a basis vector bi can be made non-negative in one itera-

tion when the index j is used that maximizes
−bij

vj
. The

whole loop thus requires O(nm) arithmetic operations.

The complexity of the algorithm is thus dominated by

the first part—computing RREF of the input matrix.

6.3 Comparison with other approaches

Given an unsatisfiable system of inequalities (A,B),

Cimatti et al. [11] recognized two extreme points in the

spectrum of possible interpolants. On one side there is

the Farkas interpolant in the form of single inequal-

ity obtained as a weighted sum of inequalities from A

with weights given by Farkas coefficients. On the other

side it is possible to employ quantifier elimination to

compute the strongest possible interpolant for (A,B)

which will result in conjunction of inequalities (if possi-

ble). If all A-local variables are existentially quantified

in A and eliminated, then this is guaranteed to yield an

interpolant. However, as Cimatti et al. note, quantifier

elimination is potentially a very expensive operation.
3

Therefore, they propose modifications to the procedure

computing the interpolant from the proof of unsatisfia-

bility. The observation they make is that the only pur-

pose of the summation of inequalities when traversing

the proof is to eliminate A-local variables. If the leaves

of the proof do not contain A-local variables, no sum-

mation is needed and the conjunction of the inequalities

in the leaves is already an interpolant. This corresponds

to our notion of trivial elements of the decomposition.

Based on this observation they proposed a modifica-

tion to the proof-based algorithm that performs only

the summations that are necessary for eliminating A-

local variables.

Example 3 Consider the unsatisfiable system of inequal-

ities from Example 2. The following is a possible proof

of unsatisfiability according to the description of [11]:

0 ≤ −1

1×(−x2 − x3 − x4 − x5 ≤ −1)x2 + x3 + x4 + x5 ≤ 0

1×(−x1 + x5 ≤ 0)x1 + x2 + x3 + x4 ≤ 0

1×(x1 + x4 ≤ 0)x2 + x3 ≤ 0

1×(−x1 + x3 ≤ 0)1×(x1 + x2 ≤ 0)

The computation of Farkas interpolant as described by

Eq. (2) can be simulated by replacing the leaves from

B with 0 ≤ 0. The resulting Farkas interpolant is

I
F

= x2 + x3 + x4 + x5 ≤ 0.

Applying the modification from [11] avoids one unnec-

essary sum and results in an interpolant

I
M

= (x2 + x3 ≤ 0) ∧ (x4 + x5 ≤ 0).
4

As seen in Example 2, our approach yields interpolant

with three conjuncts

I
Dec

= (x2+x3 ≤ 0)∧(x3+2x4+x5 ≤ 0)∧(x2+x5 ≤ 0).

Finally, existentially quantifying x1 in A and eliminat-

ing this quantifier yields interpolant with four conjuncts

I
QE

=(x2 + x3 ≤ 0) ∧ (x2 + x5 ≤ 0)

∧ (x3 + x4 ≤ 0) ∧ (x4 + x5 ≤ 0).

3
Even when restricted to conjunction of inequalities, as is

our case. For example, in Fourier-Motzkin procedure elimi-
nating one variable can increase the number of inequalities

from m to m
2
/4 in the worst case. Thus, eliminating n vari-

ables increases the number of inequalities to 4(m
4

)
2
n

in the
worst case.
4

This is indeed the interpolant computed by Math-
SAT 5.6.0
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Note that I
QE

is the strongest and I
F

is the weakest

interpolant in this quadruple, while I
M

and I
Dec

are

incomparable in terms of logical strength. However, the

advantage of our algorithm is that even though its result

depends on the order of the inequalities (the order of

columns of L
ᵀ
), it guarantees to find a decomposition of

size 3 in our example. If the first and third inequalities

are switched, the decomposed interpolant computed by

Algorithm 1 is

I
Dec

′

= (x4+x3 ≤ 0)∧(x3+2x2+x5 ≤ 0)∧(x4+x5 ≤ 0)

while if the first and second inequalities are switched,

the computed interpolant is

I
Dec

′′

= (x2+x4+2x5 ≤ 0)∧(x3+x4 ≤ 0)∧(x3+x2 ≤ 0).

On the other hand, the approach of [11] is, in some

sense, even more sensitive to the order of the input in-

equalities (the shape of the proof) since the order can

influence the size of the decomposition. If the second

and the third inequalities are switched, then their ap-

proach does not detect the opportunity for decomposi-

tion and returns the Farkas interpolant I
F

. Our algo-

rithm in this situation returns an interpolant equivalent

to I
Dec

.

7 Experiments

We have implemented the computation of decomposed

interpolants and their duals using Algorithm 1 in our

SMT solver OpenSMT [23], which already provided

a variety of interpolation algorithms for propositional

logic [24,34], theory of uninterpreted functions [3] and

theory of linear real arithmetic [4].

We evaluated the effect of decomposed interpolants

in a model-checking scenario using the model checker

sally [26] with Yices [17] for satisfiability queries and

OpenSMT for interpolation queries
5
. We experimented

with four LRA interpolation algorithms: the original in-

terpolation algorithms based on Farkas’ lemma, (i) ItpF

and (ii) Itp
′
F , and the interpolation algorithm comput-

ing decomposed interpolants, (iii) ItpDI and (iv) Itp
′
DI .

OpenSMT computes interpolants from the proof of

unsatisfiability. In this approach the interpolants com-

puted for LRA conflicts are combined based on interpo-

lation rules for propositional logic and the structure of

the proof. In our experiments we fixed the propositional

part of the interpolation algorithm to use McMillan’s

5
Detailed description of the set-up and specifica-

tions of the experiments, together with all the re-
sults, can be found at http://verify.inf.usi.ch/content/

decomposed-interpolants

interpolation rules [30]. We split our analysis of the ex-

periments into two parts. In Sec. 7.1 we analyze the

performance of the model checker using different LRA

interpolation algorithms. We focus specifically on a de-

tailed comparison of ItpF and ItpDI , i.e., the default

algorithm and our proposed algorithm. In Sec. 7.2 we

analyze the performance of a portfolio of interpolation

algorithms and measure the contribution of our pro-

posed algorithm. For comparison, we run also a version

of sally using MathSAT as the interpolation engine

and compare to the contribution of the decomposing

algorithm proposed in [11].

The experiments were run on a large set of bench-

marks consisting of several problem sets related to fault-

tolerant algorithms (azadmanesh, approxagree, om,

hacms, misc, ttesynchro, ttastartup,unifapprox),

software model checking (cav12, ctigar), simple con-

current programs (conc), and a lock-free hash table

(lfht). A benchmark suite of kind model checker is

also included (lustre). Each benchmark is a transi-

tion system with formulas characterizing initial states,

a transition relation and a property that should hold.

sally can finish with two possible answers (or run out

of resources with no answer): valid means the property

holds and an invariant implying the property has been

found; invalid means the property does not hold and a

counterexample leading to a state where the property

does not hold has been found. In the plots, we denote

the answers as + and ◦, respectively. The benchmarks

were run on Linux machines with the Intel E5-2650 v3

processor (2.3 GHz) and 64GB of memory. Each bench-

mark was restricted to 600 seconds of running time and

to 4GB of memory.

7.1 Comparing individual configurations

Table 1 presents the results of the model checker’s runs

using different interpolation algorithms. The results are

summarized by category with the name of the category

and the number of corresponding benchmarks in the

first column. The two columns per interpolation algo-

rithm show the number of benchmarks solved success-

fully (validated/invalidated) within the resource limits

and the total running time for the solved benchmarks.

The results suggest that ItpF interpolation algo-

rithm achieves the best result overall. However, there

are certain cases where ItpDI is faring better, for exam-

ple the lfht category. Before we present a more thor-

ough comparison between these two algorithms we note

that the configuration using Itp
′
DI , which computes the

weakest interpolants, performs very poorly compared

to the others. Closer inspection revealed that it did not

http://verify.inf.usi.ch/content/decomposed-interpolants
http://verify.inf.usi.ch/content/decomposed-interpolants
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Table 1: Performance of sally using different interpolation algorithms of OpenSMT

ItpF Itp
′
F ItpDI Itp

′
DI

Problem set solved (V/I)
∑

time(s) solved (V/I)
∑

time(s) solved (V/I)
∑

time(s) solved (V/I)
∑

time(s)

approxagree (9) 9 (8/1) 127 9 (8/1) 138 9 (8/1) 106 9 (8/1) 126
azadmanesh (20) 20 (17/3) 418 20 (17/3) 639 20 (17/3) 422 20 (17/3) 1202
cav12 (99) 68 (48/20) 2,097 67 (48/19) 2,580 66 (48/18) 1441 66 (47/19) 2446
conc (6) 3 (3/0) 20 3 (3/0) 22 5 (5/0) 313 3 (3/0) 21
ctigar (110) 74 (54/20) 3,066 70 (50/20) 1,919 71 (51/20) 3,077 58 (39/19) 1701
hacms (5) 2 (2/0) 332 2 (1/1) 251 1 (1/0) 5 1 (1/0) 5
lfht (27) 17 (17/0) 319 18 (18/0) 448 22 (22/0) 2784 16 (16/0) 26
lustre (790) 773 (437/336) 3,530 769 (436/333) 3,180 766 (433/333) 3,990 741 (416/325) 2021
misc (10) 8 (7/1) 154 8 (7/1) 127 9 (7/2) 57 9 (7/2) 888
om (9) 9 (7/2) 6 9 (7/2) 4 9 (7/2) 6 9 (7/2) 4
ttastartup (3) 2 (1/1) 325 1 (1/0) 7 1 (1/0) 11 1 (1/0) 15
ttesynchro (6) 6 (3/3) 10 6 (3/3) 11 6 (3/3) 13 6 (3/3) 13
unifapprox (11) 11 (8/3) 71 11 (8/3) 64 11 (8/3) 71 11 (8/3) 448
Total (1105) 1002 (612/390) 10,475 993 (607/386) 9,390 996 (611/385) 12,296 950 (573/377) 8,916

solve any benchmarks not solvable by other configura-

tions. It did solve a few benchmarks faster than others,

but the improvement was negligible. On the other hand,

the overall drop in performance is large. We conclude

that computing very weak interpolants is a bad strategy

in this model-checking scenario.

10−2 10−1 100 101 102 103

ItpF

10−2

10−1

100

101

102

103

Itp
D
I

validated
invalidated

Fig. 1: Evaluation of the decomposed interpolants in

model checking scenario: comparison of performance

of sally using OpenSMT with different interpolation

procedures, ItpF and ItpDI .

As mentioned before, the results summarized in Ta-

ble 1 suggest that ItpF performs better than ItpDI over-

all. However, a closer look reveals that the situation is

more complicated. Figure 1 illustrates a direct compar-

ison between these two algorithms. Each point repre-

sents one benchmark, x-axis corresponds to the run-

time (in seconds) of sally using ItpF as the interpo-

lation algorithm in OpenSMT, and y-axis corresponds

to the runtime of sally using ItpDI . The direct com-

parison clearly shows that in many cases the use of de-

composed interpolants outperforms the original proce-

dure, sometimes by an order of magnitude. Even though

ItpDI solved 6 benchmarks less than ItpF , it still man-

aged to solve 12 benchmarks that ItpF was not able to

solve within the resource limits. Moreover, on a com-

mon set of non-trivial (runtime at least 10 seconds)

solved benchmarks it improved the performance by more

than 10% on 45 benchmarks (out of 116 such bench-

marks).

During the evaluation, we realized that a small change

in the SMT solver sometimes had a huge effect on the

performance of the model checker. It made previously

unsolved instance easily solvable or the other way around.

To confirm that using ItpDI is indeed better than us-

ing ItpF for particular benchmarks, we ran an addi-

tional set of experiments. For each of the 12 bench-

marks solved by ItpDI but not solved by ItpF we ran

the model checker 100 times, each time with a different

random seed for the interpolating solver. The results

are summarized in Table 2. For each of the two config-

urations the table reports how many runs (out of 100)

of the model checker finished successfully within the

resource limits, and the average time of the success-

ful runs. This experiment demonstrates that there are

indeed benchmarks where the decomposition is neces-

sary, while using the original Farkas algorithm leads to

divergence. In other cases, the use of decomposed in-

terpolants leads to a higher chance of successful result

and/or better runtime of the model checker. Note that

these benchmarks were picked deliberately to confirm

that ItpDI performs better on them than ItpF , based

on our experiments on the whole benchmark set.
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Table 2: Aggregated results from 100 runs of the model

checker on selected benchmarks

ItpF ItpDI

benchmark solved avg. time solved avg. time

fib benc safe v1 0 - 100 46.5
fib benc safe v2 0 - 100 0.01
dillig01.c 0 - 100 0.1
dillig03.c 0 - 100 0.1
lifnat.c 17 510 29 471
lfht 2 mini cleaned.prop1 21 362 57 344
lfht 2 mini lemma5c 18 257 69 293
lfht 2 mini lemma5e 0 - 30 347
lfht 2 mini lemma5f 1 188 39 363
lfht 2 mini lemma5g 22 284 47 311
DRAGON 12 e2 1618 e2 138 99 25 100 19
mvs with timeouts3 73 251 98 64

Table 3: Interpolation statistics – pwd stands for “Num-

ber of problems with at least one decomposition”.

The numbers in parentheses denote “Decompositions

with trivial and with non-trivial elements” (trivial/non-

trivial).

ItpDI

Problem set pwd
#non-triv.
LRA itps

#decomp. itps

approxagree (9) 1 (1/1) 7 7 (4/3)
azadmanesh (20) 0 (0/0) 1,818 0 (0/0)
cav12 (99) 40 (30/29) 707,414 6,464 (747/5,719)

conc (6) 3 (3/3) 39,135 25,603
(4,030
/21,033)

ctigar (110) 70 (58/69) 4,064,827 1,106,642
(61,371
/1,049,904)

hacms (5) 5 (5/5) 424,532 32,331
(3,628
/28,703)

lfht (27) 14 (14/14) 786,837 126,568
(5,464
/121,104)

lustre (790)
327
(96/299)

2,916,829 2,001,503
(9,115
/2,001,058)

misc (10) 8 (7/8) 59,266 12,054
(2,363
/10,024)

om (9) 6 (6/0) 974 380 (380/0)
ttastartup (3) 3 (2/3) 117,303 12,165 (240/11,925)
ttesynchro (6) 4 (4/4) 90 90 (90/69)
unifapprox (11) 1 (1/0) 1 1 (1/0)

For the final aspect of the direct comparison of ItpF

and ItpDI we collected statistics from the runs of sally

with ItpDI about how often ItpDI manages to decom-

pose the vector of Farkas coefficients, thus returning

a different interpolant than ItpF would. These results

are summarized in Table 3. The column pwd reports

the number of benchmarks with at least a single de-

composition (any; with at least one trivial element;

with at least one non-trivial element). The next col-

umn (“#non-triv. LRA itps”) reports the total number

of interpolation problems for theory conflict, excluding

those without even theoretical possibility for decompo-

sition. There is no possibility for decomposition if all

inequalities are from one part of the problem (resulting

in trivial interpolants, either > or ⊥) or there is only

a single inequality in the A-part (trivially yielding an

interpolant equal to that inequality). The last column

reports the number of successfully decomposed inter-

polants (with at least one trivial element; with at least

one non-trivial element). Note that it can happen that a

successful decomposition contains both trivial and non-

trivial elements. We see that at least one decomposition

was possible in only less than half of all the benchmarks.

This explains why there are many points on the diag-

onal in Fig. 1. On the other hand, it shows that the

test for the possibility of decomposition is cheap and

does not represent a significant overhead. Another con-

clusion we can draw is that when the structure of the

benchmark enables decomposition, it can often be dis-

covered in many theory conflicts that appear during the

solving.

7.2 Analysis of the portfolio

In this part we present yet another way to measure the

contribution of the decomposed interpolants: the con-

tribution to the virtual best configuration. We consider

a virtual portfolio consisting of configurations of sally

using different interpolation algorithms of OpenSMT.

In addition, we also consider a separate virtual portfolio

of configurations of sally using MathSAT. The result

of a virtual portfolio on a benchmark is the best re-

sult achieved by any of the configurations of the portfo-

lio. As noted before, the configuration using Itp
′
DI per-

formed quite poorly on our benchmarks. Since Math-

SAT can compute Farkas interpolants and its duals,

and restricted form of decomposed interpolants but not

its dual, we also exclude Itp
′
DI from the portfolio of

OpenSMT’s configurations, with minimal impact on

the performance. We denote the heuristic for comput-

ing decompositions described in [11] and available in

MathSAT as ItpM . We use the number of solved in-

stances and PAR-2 score as a metric of measuring the

performance. PAR-2 score is computed as the sum of

runtime on solved instances plus two times the time-

out for each unsolved instance. Finally, for each con-

figuration we compute the number of uniquely solved

instances (not solved by any other configuration in the

portfolio) and regret, i.e., how much would the PAR-2

score of the portfolio worsen, if that particular config-

uration was excluded from the portfolio. The results

are summarised in Table 4. Note that OpenSMT and

MathSAT portfolios are considered separately.

OpenSMT configuration portfolio is able to solve

1,017 benchmarks with PAR-2 score 116,117. Math-

SAT configuration portfolio is able to solve 1,018 bench-
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Table 4: Contribution of the configurations to their re-

spective portfolios.

config.
#uniq.
solved

PAR-2 regret

O
p
e
n
S
M
T ItpF 4 4046 3.5%

Itp
′
F 3 4586 3.9%

ItpDI 10 10245 8.8%

M
a
t
h
S
A
T ItpF 0 260 0.2%

Itp
′
F 3 3594 3.3%

ItpM 6 7754 7%

marks with PAR-2 score 110,356. We hypothesize that

the better performance of MathSAT can be at least

partially attributed to the fact that it supports inter-

polation in combination with incremental solving while

OpenSMT does not. In both portfolios, the ability to

compute decomposed interpolants (even in restricted

form) significantly improves the performance of the port-

folio. We also see that the contribution of our algorithm

based on methods from linear algebra to OpenSMT

portfolio is slightly larger than the contribution of the

heuristic ItpM to the MathSAT portfolio. Addition-

ally, our algorithm solves more instances uniquely within

its portfolio. Interestingly, the contribution of the con-

figuration computing Farkas interpolants is non-trivial

in OpenSMT, but almost non-existent in MathSAT.

Our hypothesis is that ItpM , compared to ItpDI , decom-

poses less often and the decompositions are of smaller

size (e.g., in the situation from Example 3). This would

mean that the interpolants from ItpM are more often

similar (or even identical) to Farkas interpolants, which

would make the MathSAT portfolio less diverse than

the OpenSMT portfolio.

8 Conclusion

In this paper, we have presented a new interpolation

algorithm for linear real arithmetic that generalizes the

interpolation algorithm based on Farkas’ lemma used

in modern SMT solvers. We showed that the algorithm

is able to compute interpolants in the form of a con-

junction of inequalities that are logically stronger than

the single inequality returned by the original approach.

This is useful in the IC3-style model-checking algorithms

where Farkas interpolants have been shown to be a

source of incompleteness. In our experiments, we have

demonstrated that the opportunity to decompose Farkas

interpolants occurs frequently in practice and that the

decomposition often leads to (i) lower solving time and,

in some cases, to (ii) solving a problem not solvable by

the previous approach.

As the next steps, we plan to investigate how to au-

tomatically determine what kind of interpolant would

be more useful for the current interpolation query in

IC3-style model-checking algorithms. We also plan to

investigate other uses of interpolation in model check-

ing where stronger (or weaker) interpolants are desir-

able [35].
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vanović for providing the benchmarks and for the help

with integrating OpenSMT into sally. This work was

supported by the Czech Science Foundation project 20-

07487S and by the Swiss National Science Foundation

(SNSF) grant 200021 185031.

References

1. Albarghouthi, A., McMillan, K.L.: Beautiful inter-
polants. In: N. Sharygina, H. Veith (eds.) CAV 2013,
LNCS, vol. 8044, pp. 313–329. Springer, Heidelberg
(2013)

2. Alt, L., Fedyukovich, G., Hyvärinen, A.E.J., Sharygina,
N.: A proof-sensitive approach for small propositional in-
terpolants. In: A. Gurfinkel, S.A. Seshia (eds.) VSTTE
2015, LNCS, vol. 9593, pp. 1–18. Springer, Cham (2016)

3. Alt, L., Hyvärinen, A.E.J., Asadi, S., Sharygina, N.:
Duality-based interpolation for quantifier-free equalities
and uninterpreted functions. In: D. Stewart, G. Weis-
senbacher (eds.) FMCAD 2017, pp. 39–46. IEEE (2017)

4. Alt, L., Hyvärinen, A.E.J., Sharygina, N.: LRA inter-
polants from no man’s land. In: O. Strichman, R. Tzoref-
Brill (eds.) HVC 2017, LNCS, vol. 10629, pp. 195–210.
Springer, Cham (2017)

5. Andrilli, S., Hecker, D.: Elementary Linear Algebra, 5
edn. Academic Press (2016)

6. Barrett, C., de Moura, L.M., Ranise, S., Stump, A.,
Tinelli, C.: The SMT-LIB initiative and the rise of SMT.
In: S. Barner, I.G. Harris, D. Kroening, O. Raz (eds.)
HVC 2010, LNCS, vol. 6504, p. 3. Springer, Heidelberg
(2011)

7. Barrett, C., Sebastiani, R., Seshia, S., Tinelli, C.: Satisfia-
bility modulo theories, Frontiers in Artificial Intelligence
and Applications, vol. 185, 1 edn., pp. 825–885 (2009)

8. Blicha, M., Hyvärinen, A.E.J., Kofroň, J., Sharygina,
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