
Lattice-based SMT for Program Verification
Karine Even-Mendoza

King’s College London, UK
karine.even mendoza@kcl.ac.uk

Antti E. J. Hyvärinen
Università della Svizzera italiana, Switzerland

antti.hyvaerinen@usi.ch

Hana Chockler
King’s College London, UK

hana.chockler@kcl.ac.uk

Natasha Sharygina
Università della Svizzera italiana, Switzerland

natasha.sharygina@usi.ch

Abstract—We present a lattice-based satisfiability modulo the-
ory for verification of programs with library functions, for which
the mathematical libraries supporting these functions contain a
high number of equations and inequalities. Common strategies
for dealing with library functions include treating them as
uninterpreted functions or using the theories under which the
functions are fully defined. The full definition could in most cases
lead to instances that are too large to solve efficiently.

Our lightweight theory uses lattices for efficient representation
of library functions by a subset of guarded literals. These lattices
are constructed from equations and inequalities of properties of
the library functions. These subsets are found during the lattice
traversal. We generalise the method to a number of lattices for
functions whose values depend on each other in the program, and
we describe a simultaneous traversal algorithm of several lattices,
so that a combination of guarded literals from all lattices does
not lead to contradictory values of their variables.

We evaluate our approach on benchmarks taken from the
robotics community, and our experimental results demonstrate
that we are able to solve a number of instances that were
previously unsolvable by existing SMT solvers.

I. INTRODUCTION

The satisfiability modulo theories (SMT) [1] reasoning
framework is currently one of the most successful approaches
to verifying software in a scalable way. The approach is based
on modelling the software and its specifications in proposi-
tional logic, while expressing domain-specific knowledge with
first-order theories connected to the logic through equalities.
Successful verification of software relies on finding a model
that is expressive enough to capture software behaviour rel-
evant to correctness, while being sufficiently high-level to
prevent reasoning from becoming prohibitively expensive.

Finding a scalable way for verifying programs or systems
which use library functions as a main part of their appli-
cation (e.g., implementation of robots’ movements in the
Robot Operating System (ROS) [2]) is a non-trivial task: the
code may contain hundreds of interacting expressions of the
properties of the library functions, whose truth values depend
on each other. A straightforward solution would be to use
increasingly precise theories. However, this approach results in
prohibitively expensive computations (e.g., by adding details at
the bit-level to describe trigonometric functions, which would
be very expensive).

Trigonometric functions serve as a good illustration of the
problem outlined above, as many application domains, such
as robotics, planning [3], and simulations for physics and
engineering [4], rely on the computation of trigonometric
functions. Verification of software using trigonometric library
functions [5]–[10] either requires a large amount of numerical
calculations of polynomials along with irrational numbers,
or uses large look-up tables for the trigonometric functions
which tend to be less precise and consume memory [11]. The
former technique usually replaces the irrational expressions
with rational expressions with a defined error bound [5],
[6], [12]–[14] in order to bound or to evaluate trigonometric
expressions to some precision. A more precise approach relies
on Taylor series representation of trigonometric functions over
reals. However, this leads to complex computations, and the
resulting instances are too large to solve efficiently for all but
the smallest programs.

Finally, the solver implemented in HIFROG [15] supports
the addition of sets of equations and inequalities as user-
defined function summaries. We can, therefore, extract the
known properties of library functions from the external li-
braries and encode them as user-defined SMT summaries
which are passed to HIFROG, and further, to the SMT solver.
However, this approach is not scalable either, as we do not
know beforehand which properties are going to be relevant for
solving a particular instance. Hence, for library functions with
a large number of equations (such as trigonometric functions—
there are many equations describing properties of these func-
tions on some subdomains), the user-defined summaries will
render the instance too large to be solvable efficiently (or at
all).

In this paper, we present a novel approach to reasoning
about programs whose correctness depends on the values of
library functions. Our approach uses the concept of subset
lattices to construct an efficient representation of known
properties of these functions. Essentially, we order the set of
subsets of equations describing properties of library functions
in a lattice, where each element corresponds to a set of
properties that hold for some subdomain of the inputs. At every
iteration of the algorithm, we verify the program with only a
subset of equations that corresponds to the current element

1

in the lattice. If this subset is insufficient for the verification
(that is, does not provide enough information about the library
function), we refine it by traversing the lattice to a higher
element, containing a superset of the equations.

This lattice-based counter-example-guided abstraction re-
finement algorithm (LB-CEGAR) is based on the tradi-
tional counter-example-guided abstraction refinement (CE-
GAR) [16], [17], but replaces the refinement of the theory by
the refinement of the set of equations for the library function in
the program. Our approach is similar to the traditional CEGAR
approach in the sense that a SAT result may indicate a real
counterexample (in which case there are concrete values of
symbolic variables that show the existence of this execution),
or a spurious counterexample, where the satisfying assignment
provided by the solver is due to overapproximation in the
representation of the program. In contrary to the traditional
CEGAR, where an UNSAT result indicated that there are no
counterexamples in an abstraction of the program and hence
in the concrete program as well, in LB-CEGAR the UNSAT
result merely means that there are no counterexamples in the
current subdomain of the input to the library function. As we
describe in the paper, the lattice is constructed so that every
lattice frontier covers the whole domain of the input variables.
Hence, in case of an UNSAT result, the LB-CEGAR algorithm
attempts to construct a frontier of unsatisfiability. Such a
frontier would indicate that there are no counterexamples in
the current abstraction for each subdomain of the input, and
hence for the whole domain as well.

In our previous work, we described a simplified LB-CEGAR
algorithm for the case of one library function in the program
and for small lattices [18]. In this work, we extend LB-
CEGAR to the general case, where the program may contain
several library functions whose values can be interconnected
(for example, sinx and cosx). Furthermore, each function can
appear in the program multiple times, thus inducing several
instances of the lattice, which are traversed simultaneously. We
describe the generalised LB-CEGAR algorithm and analyse its
worst-case complexity and heuristics in Sec. IV.

Our results are based on the trigonometric functions being
treated as uninterpreted functions in the encoding of the prob-
lem to the SMT solver and the encoding of the mathematical
equations as user-defined function summaries in the semantics
of reals, an approach commonly followed in in modelling
software [15], [19]–[21]. We assume the correctness of these
equations (such as sin2 x+cos2 x = 1) over real numbers. An
alternative approach of verifying programs based on the IEEE
floating-point semantics is challenging due to the difficulties
stemming from the implementation of the trigonometric func-
tions in the underlying architecture. There are clear advantages
in the approach followed in the current paper of pinpointing
the subset of mathematical equations that are instrumental
for the correctness of the program under verification to the
challenge of verification over floating-point semantics. We
leave the exploration of this direction to the future work.

The following example illustrates the motivation for LB-
CEGAR on a small program with trigonometric functions.

1 # i n c l u d e <math . h>
2

3 do ub l e n o n l i n (do ub l e x) {
4 do ub l e x s i n = s i n (x) ;
5 do ub l e x cos = cos (x) ;
6 r e t u r n x s i n * x s i n + x cos * x cos ;
7 }
8

9 vo id main () {
10 do ub l e y = n ond e t () ;
11 do ub l e z = n o n l i n (y) ;
12 a s s e r t (z == 1) ;
13 }
14

Figure 1. A program with two different library functions.

Example 1: The program in Fig. 1 contains two library
function calls: sinx and cosx. The correctness of the program
follows immediately from the following trigonometric identity:

∀x ∈ R. sin2 x+ cos2 x = 1. (1)

Clearly, verifying this program with sinx and cosx treated
as uninterpreted functions (that is, having nondeterministic
values) would result in numerous spurious counterexamples.
LB-CEGAR overcomes this problem by representing some
salient properties of these functions as lattices of equations,
including, in particular, Eq. (1).

In this case, the elements of the lattices for sinx and for
cosx at each iteration of LB-CEGAR are not independent, as
Eq. (1) should hold for each combination of these elements.
Moreover, having a lattice only for one function would not
suffice for proving the correctness of this program, as then
we would have Eq. (1) only for one of these functions,
while leaving the other one as a non-deterministic variable.
This would lead to spurious counter-examples, stemming from
assigning illegal values to the non-deterministic variable. For
example, if cosx is left as a non-deterministic variable, it could
be assigned the value 2, hence falsifying the assertion.

We implemented the generalised LB-CEGAR algorithm in
the bounded model checker HIFROG [15] supporting a subset
of the C language, using the SMT solvers OPENSMT [22] and
Z3 [23], and evaluated the implementation on a large set of
benchmarks containing programs whose correctness depends
on the values of trigonometric functions. The experimental
results clearly demonstrate an advantage to LB-CEGAR over
other approaches.

The presentation is organized as follows. After preliminaries
in Sec. II, we present in Sec. III the key insight of lattices
for guarded literals that are the basic building blocks of our
abstraction. In Sec IV we describe the LB-CEGAR algorithm
that operates on the guarded literals. The implementation is
outlined in Sec. V and the experimental results in Sec. VI.
Due to lack of space, the proofs are omitted from this version
but are available in the full version of the paper at [24]. The
implementation, the set of benchmarks, and the experimental
results are available at [24]–[26]. In [24] we also provide
examples of lattice construction with different properties of
library functions as well as refinement with such lattices of a
small code example in C.

2

II. PRELIMINARIES

A. SMT-based bounded model checking

Let P be a loop-free program represented as a transition
system, and t a safety property, that is, a formula over
the variables of P . The bounded model-checking problem
amounts to determining whether all states of P , reachable
within a predefined bound, satisfy t. More specifically, the
task of a model-checker is to find a counterexample, that is, a
bounded execution of P that falsifies t, or to prove the absence
of such executions.

In the SMT-based bounded model-checking approach fol-
lowed in this paper, the model-checker encodes all bounded
executions of P as an SMT formula, conjoins it with the
negation of t, and invokes an SMT solver to check the
satisfiability of the resulting formula. If the formula is deemed
unsatisfiable, the program is safe, that is, P satisfies t. Oth-
erwise, a satisfying assignment found by the SMT solver is
used to build a concrete counter-example. Depending on the
theory used by the SMT solver, an abstract counterexample
can also be spurious, that is, not corresponding to any concrete
execution. This situation arises when the theory is too abstract,
and hence the resulting overapproximation of the behaviours
of the program is too coarse. In this case, the program is re-
verified with a more refined theory.

B. Function summaries

The tool HIFROG allows to incorporate function summaries
into the verification process [15]. These summaries can be
interpolants [27] from one of the previous iterations of model-
checking or user-defined summaries supplied by the user,
based on their external knowledge of the system. Some ex-
amples of user-defined summaries are available on HIFROG’s
webpage [28] and in the full version of this paper. We exploit
this functionality by providing HIFROG with the library of
user-defined summaries derived from external libraries for the
functions, whose values are critical for determining correctness
of the program, and we organise them in lattices as we explain
below. This allows us to verify programs in the most abstract
theory of equality logic with uninterpreted functions (EUF).

C. A subset lattice

For a given set X , the family of all subsets of X , partially
ordered by the inclusion operator, forms a subset lattice
SL(X). The u and t operators are defined on SL(X) as
intersection and union, respectively. The top element > is the
set X , and the bottom element ⊥ is the empty set ∅. We note
that SL(X) is a De-Morgan lattice [29], as meet and join
distribute over each other.

A meet-semilattice 〈L,u〉 of a lattice L is a partially ordered
set (poset) when the u operator is defined for any subset of its
elements (but not necessarily the t operator). A subposet of a
lattice is a subset of elements, which follow the same partial
order as in the poset. A chain of a lattice is a subposet of a
lattice where every two elements are ordered.

In this paper, we consider SL(X) and 〈SL(X),u〉, for X
being a finite set of guarded expressions, as defined in Sec. III.

III. LATTICES OF GUARDED LITERALS

In this section we describe the construction of lattices of
expressions for external functions.

A guarded literal is a Boolean expression describing some
property of the function in question, together with the guard
that defines a continuous subdomain of the inputs for which
this property holds. For example, the property expressing the
fact that for 0 < x < 2, the value of sinx is positive is
described by the guarded literal

(assume(0 < x < 2)) ∧ (sinx > 0),

where (0 < x < 2) is a guard (denoted by G) of the literal
(sinx > 0). Literals that hold for all x (such as, for example,
(sinx ≤ 1) are guarded with assume(true). A guard cannot
refer to a non-continuous domain. For example,

(assume((0 < x < 2) ∨ (7 < x < 8))) ∧ (sinx > 0)

is not a legal guarded literal in our framework.
Given a set of guarded literals F for a library function f ,

the subset lattice SL(F) consists of all subsets of these literals.
However, it is easy to see that some elements in SL(F) contain
literals with contradictory guards. For example, a lattice of
all subsets of sinx could contain the element (assume(0 <
x < 2)) ∧ (sinx > 0) and the element (assume(x = 0)) ∧
(sinx = 0), which do not intersect on any subdomain of x.
To reduce the size of the lattice and to avoid unnecessary
calls to the SMT solver, we reduce SL(F) to a meet semi-
lattice L = 〈SL(F),u〉 by removing all elements that have
contradictory guards (that is, the conjunction of their guards
is false).

Note that after the removal of contradictory elements, the
resulting set of subsets is no longer closed under union, but it is
still closed under intersection, hence the resulting set is a meet
semi-lattice. Note also that the resulting meet semi-lattice can
have a set of maximal elements instead of the single maximal
element. For brevity, in the rest of the paper we refer to the
meet semi-lattice of guarded literals for a function f simply
as a lattice.

A frontier of a lattice L is a set of elements X(L) such that
each chain from ⊥ to a maximal element in L intersects X(L)
in at least one element. The LB-CEGAR algorithm described
in the next section relies on the observation that the union
of guards of each frontier of the lattice is the whole domain
of the inputs. If this is not the case, we add elements to the
lattice to cover the missing subdomains. For the example of
sinx above, if we have only two guarded literals (assume(0 <
x < 2)) ∧ (sinx > 0) and (assume(x = 0)) ∧ (sinx = 0) in
our set, we add the guarded literals (assume(x < 0)) ∧ true
and (assume(x ≥ 2)) ∧ true to the set to cover the whole
domain of x (recall that the guards should refer to continuous
subdomains, hence we need to add two guarded literals).

Claim 1: If the union of guards of a given set of guarded
literals S covers the whole domain of the input, then for each
frontier X(LS) of the subset lattice LS of S, the union of
guards of X(LS) also covers the whole domain of the input.

3

And conversely, if the union of guards of a subset X(LS) of
the elements of LS covers the whole domain of the inputs,
then X(LS) is a frontier of LS .
Informally, the claim follows from the structure of the subset
lattice and the fact that the bottom element of LS covers the
whole domain (the reader is referred to the full version for the
formal proof of this claim).

The procedure described in this section is done at the
preprocessing stage, once for each library function, and the
resulting lattices can be used in verification of multiple pro-
grams.

IV. THE LATTICE-BASED COUNTEREXAMPLE GUIDED
ABSTRACTION REFINEMENT (LB-CEGAR) ALGORITHM

In this section we present the main contribution of the paper,
the LB-CEGAR algorithm. We start with an informal overview
and then present the formal description of the algorithm. We
proceed by discussing its worst-case complexity and then
present several heuristics that reduce the complexity for the
majority of the cases.

A. Overview of the LB-CEGAR algorithm

The inputs to the Lattice-based Counterexample Guided
Abstraction Refinement (LB-CEGAR) algorithm (Alg. 1) are
a bounded loop-free program P that includes a function f ,
and a safety property t. The algorithm follows the standard
procedure of translating P and the negation of t to a first-
order formula ϕ and invoking an SMT solver to determine
the satisfiability of ϕ. In contrast to the standard approach, in
LB-CEGAR the SMT solver has access, in addition to ϕ, to
the external lattice Lf of guarded literals for f constructed in
Sec. III. At each iteration LB-CEGAR adds the set of guarded
literals in the current element E of this lattice to ϕ before
sending ϕ to the SMT solver.

The refinement loop in LB-CEGAR, invoked when a sat-
isfying assignment does not correspond to a concrete coun-
terexample, amounts to the traversal of Lf as described below
in the procedure traverseSAT .

The algorithm terminates when it either finds a satisfying
assignment that corresponds to a concrete counterexample
(and hence a bug in P), reaches all maximal elements of
Lf without finding concrete counterexamples for any of the
satisfying assignments (that is, the current set of properties
of f encoded in Lf is insufficient to verify P), or finds a
frontier of Lf such that ϕ is unsatisfiable with each element
of the frontier separately. The last case implies that there are
no counterexamples in the overapproximation of P for the
whole domain of the inputs, and hence P satisfies t.

An iteration of LB-CEGAR with a program P , a safety
property t, and a current element e consisting of the set
of guarded literals S(e) of the lattice Lf results in one of
the following cases (for one library function f and a single
occurrence of f in the loop-free program P):
• An SMT solver finds a satisfying assignment for ϕ

with S(e), and there is a concrete counterexample corre-
sponding to this assignment. The algorithm terminates,

outputting the counterexample as an evidence of the
negative result of correctness of P .

• An SMT solver finds a satisfying assignment for ϕ with
S(e), but there is no concrete counterexample corre-
sponding to this assignment. The algorithm invokes a
refinement step that amounts to traversing Lf to an
element e′ that refines e, that is, S(e) ⊂ S(e′). If no
such element exists, then e is a maximal element of Lf ,
and the algorithm terminates with inconclusive results.

• An SMT solver returns the UNSAT result for ϕ with
S(e). In other words, there is no satisfying assignment to
ϕ in the subdomain of inputs induced by e. The refine-
ment step of LB-CEGAR is, then, to check satisfiability
of ϕ with elements of Lf that complement the subdomain
of e to the whole domain of the input (that is, with
elements of Lf that together with e form a frontier of
Lf).

• An SMT solver returns the UNSAT result for ϕ with
S(e), and e is a part of a frontier of Lf for which ϕ is
unsatisfiable. This result implies that there is no satisfying
assignment to ϕ over the whole domain of the inputs, and
therefore P is safe with respect to t.

If the function f appears in P several times, an instance of
Lf is created for each occurrence. Furthermore, if P contains
more than one library function for which we have a lattice
of guarded literals, all these lattices are incorporated in LB-
CEGAR. For programs with trigonometric functions, which
are the primary domain of application in this paper, it is often
the case that an equation includes several functions — see, for
example, the program in Ex. 1.

B. The main LB-CEGAR algorithm

We present here the pseudo-code for LB-CEGAR and
discuss the general case of several functions and several
occurrences of each function in the program. The input to
the algorithm is a loop-free program P , a safety property t,
and a set of lattices Lattices .

The sub-procedures and notations in Alg. 1 are defined as
follows.
• The sub-procedure checkSAT (x) determines the satisfi-

ability of an input formula x in a given SMT-LIB logic
via an SMT solver.

• The sub-procedure checkRealCE (P, t,CE) returns true
if CE can be concretised to a counterexample1, demon-
strating a behaviour of P that falsifies t.

• The set Lattices consists of all occurrences of lattices for
all library functions in P .

• We denote by Li
f a lattice for the i-th occurrence of f in

P , and by e the current element in the lattice traversal.
For an element e, we define literals as the conjunction
of guarded literals of e.

• The sub-procedure traverseUNSAT (Lattices) performs
the traversal of the lattice from the current element e

1A counterexample (conjoined with the model) is tested by using a theory
under which the library function is fully defined.

4

Algorithm 1: LB-CEGAR
Input : Program P , safety property t, and set Lattices
Output: 〈Safe〉, 〈Unsafe,CE〉, or 〈Unknown,⊥〉

1 ϕ← P ∧ ¬t
2 Query ← ϕ
3 〈result ,CE〉 ← checkSAT (Query)
4 if result is UNSAT or checkRealCE(ϕ,CE) then
5 go to Exit // No lattice-based refinement needed
6 end
7 χ← true
8 repeat
9 χ′ ← χ // Formula from the previous iteration

10 if result is UNSAT then
11 traverseUNSAT (Lattices)
12 end
13 if result is SAT then
14 traverseSAT (Lattices)
15 end
16 χ← literals(ϕ,Lattices)
17 // Solve again if there are new literals
18 if χ 6= χ′ then
19 Query ← ϕ ∧ χ
20 〈result ,CE〉 ← checkSAT (Query)
21 end
22 until (χ = χ′) or checkRealCE(Query,CE) or

termination(result ,Lattices);
23 Exit: // End of LB-CEGAR
24 if result is UNSAT then
25 return 〈Safe〉 // Safe
26 end
27 if checkRealCE(P, t,CE) then
28 return 〈Unsafe,CE〉 // Real counterexample
29 end
30 return 〈Unknown〉 // Inconclusive, further refinement needed

to the next element e′ if the result of model-checking
ϕ ∧ literals is UNSAT. The next element e′ in the
same lattice as e is a ‘sibling’ of e, that is, an element,
whose set of literals corresponds to a different subdomain
of the input. If there is already a frontier of elements
in each lattice such that model-checking ϕ ∧ literals
returns UNSAT for each element of these frontiers, the
procedure traverseUNSAT (Lattices) does not change the
current element e.

• The sub-procedure traverseSAT (Lattices) is invoked
when there is a satisfying assignment for ϕ ∧ literals ,
but the counterexample induced by the assignment is
spurious, that is, it does not correspond to a behaviour of
P falsifying t. The procedure traverses the lattice to an
element e′ that refines e, that is, S(e) ⊂ S(e′). If e is a
maximal element, the procedure traverseSAT (Lattices)
does not change the current element e.

• In both sub-procedures traverseUNSAT and
traverseSAT , the lattices are traversed either in an
arbitrary order or in an order determined by heuristics.
We describe such heuristics in Sec. V-C.

• The sub-procedure termination(result ,Lattices) checks
whether one of the three termination conditions holds:
(1) the current satisfying assignment induces a concrete
counterexamples, (2) there is an UNSAT frontier for
each lattice Li

f ∈ Lattices , or (3) there is a satisfying
assignment for each maximal element in each lattice in

Lattices that does not induce a concrete counterexample.

Finally, we address the complexity resulting from having
several functions in P , whose lattices refer to each other. This
is illustrated by Ex. 1, where the correctness of the program
depends on the guarded literal

(assume(true)) ∧ (sin2 x+ cos2 x) = 1.

In fact, this is quite common in programs with trigonometric
functions, as trigonometric identities often refer to several
functions in the same identity. The algorithm identifies library
functions used in the set Lattices and assigns the same variable
to all occurrences of the same function, hence connecting
between the lattices of different functions.

C. Correctness and complexity of LB-CEGAR

It is easy to see that LB-CEGAR terminates. The lattice
traversal visits every combination of elements of lattices in
Lattices at most once, and for each combination of elements
it invokes the model-checking procedure of a bounded loop-
free program P with respect to t, which terminates assuming
terminating SMT queries.

The number of possible combinations of elements in the
lattices is exponential in the number of lattices, hence leading
to the complexity result below.

Theorem 1: The worst-case time complexity of LB-CEGAR
is O(|L|n × MC (P, t)), where |L| is the bound on the size
of each lattice in the set Lattices , n is the number of lattices
in Lattices , and MC (P, t) is the time complexity of model-
checking P with respect to t using the guarded literals.

Moreover, the following theorem states that LB-CEGAR
produces a correct result.

Theorem 2: The following holds for any bounded loop-free
program P and a safety property t, assuming correctness of
the guarded literals in Lattices:

• If LB-CEGAR outputs Safe, the program P is correct
with respect to t.

• If LB-CEGAR outputs Unsafe with an accompanying
CE , the CE demonstrates an execution of P that falsifies
t.

• If LB-CEGAR outputs Unknown, the current theory
and the set of guarded literals are insufficient to produce
a conclusive result.

We observe that, while the worst-case complexity of LB-
CEGAR is exponential in the number of lattices, in practice
the algorithm is very efficient, as we show in Sec. VI. This
is partly due to the incrementality of the calls to the SMT
solver, as the formula ϕ representing P ∧ ¬t stays the same
for all iterations, and the next element e′ differs from the
current element e of the lattice only slightly. Another reason
for the significantly lower complexity in practice is that our
implementation of LB-CEGAR includes several heuristics,
which we describe in the next section. The heuristics do not
alter the correctness of the algorithm.

5

V. IMPLEMENTATION

The algorithms were implemented on top of the SMT-based
function summarisation bounded model checker HIFROG [15]
with OPENSMT [22] and Z3 [7], [23] solvers. The details
of our initial implementation are described in [18]. Here we
describe the extension of the implementation to support the
full LB-CEGAR algorithm.

Fig. 2 presents a high-level view of the implementation
of LB-CEGAR in HIFROG and a comparison between the
implementation as a flat (non-hierarchical) set of user-defined
summaries, our prototype implementation with one occurrence
of one function, and the current implementation of the general
algorithm.

A. Pre-processing stage

We constructed two lattices for sin and cos functions via
a set of BASH scripts (see [18]) for the evaluation of our
approach. The guarded literals were imported from the raw
data of Coq proof assistant [30] and Wikipedia [31], [32]
and translated to SMT summaries. The definitions of constants
(e.g., π from math.h) and trigonometric tables (values of the
trigonometric functions for x = c · π, for some c ∈ N) were
added to the set of guarded literals manually. The final set
consists of 80 guarded literals and was used to construct the
meet-semilattices for sinx and cosx functions. Textual files
of these meet-semilattices are available at [24], [26].

B. Implementation in HIFROG

The implementation of LB-CEGAR uploads only the set of
guarded literals in the current element of the lattice. If the
current element is insufficient for solving the formula (that is,
the satisfying assignments produced by the SMT solver do not
induce concrete counterexamples), the algorithm traverses the
lattice to a higher element, translated in the implementation
to adding and removing some subsets of guarded literals. It
is clear that the new formula only differs from the one in
the previous iteration by a subset of guarded literals. The
implementation exploits this fact by using the SMT solver
in an incremental mode.

We extended the support for incremental solving
in HIFROG, adding non-, semi-, and full-incremental
solving modes, to support different degrees of incrementality
(e.g., semi-incremental solving mode allows only push()
calls). With this support, the implementation only modifies
a single query from one iteration to the next, which is less
costly than re-writing the whole formula.

C. Heuristics

We implemented the following heuristics to improve the
complexity of lattice traversal in LB-CEGAR. While none of
these heuristics change the worst-case time complexity, our
experiments show that they are beneficial on programs in our
benchmark set.
• The choice of the successor in the sub-procedure
traverseSAT (Lattices) is done based on the current
spurious counterexample CE , similarly to the traditional

CEGAR. We identify the location in the code where
the abstract counterexample deviates from a concrete
execution and use this information to guide the lattice
traversal to the element that refines this particular location
(if such an element exists).

• The ‘frontier of unsatisfiability’, that is, a frontier of a
lattice that results in UNSAT for each element of this
frontier, is computed once per lattice and is fixed. While
in theory it is possible that the current frontier of a lattice
L1 results in UNSAT when combined with an element
e of a lattice L2, but not with an element e′ of L2, in
practice such cases are rare. There is an option to output
Unknown if the set of frontiers computed gradually
does not result in UNSAT, thus potentially increasing
the number of cases, where LB-CEGAR outputs an
inconclusive result. In our experiments, this heuristic does
not lead to an increase in the number of inconclusive
results.

• For lattices representing different occurrences of a func-
tion f in P which occur in a loop, we traverse these lat-
tices simultaneously. The motivation for the ‘coordinated’
traversal is that all loop iterations, except, perhaps, for the
last one, are similar, and hence there is a high probability
that the same set of guarded literals would fit all these
occurrences.

VI. EVALUATION

For the evaluation of LB-CEGAR, we constructed two
lattices for sin and cos functions with 40 and 38 guarded
literals, respectively. The validation test for these expressions
contains a set of 144 benchmarks in C with a total of 365
assert statements. The scripts for the lattice construction, the
benchmarks for the validation test, and the results of the
validation test are available at [24], [25].

The set of benchmarks contained a mix of our crafted
benchmarks, programs from the software verification compe-
tition SVCOMP [33], and HIFROG benchmarks [15], with a
total of 141 C programs with at least one library function
call, containing in total 194 calls for sin and 179 calls for
cos , with 279 claims (127 SAT and 152 UNSAT). In 42
benchmarks, the library function is called at least 4 times,
and in 8 benchmarks, the library function call is in a loop.
The crafted benchmarks either assert known properties of
trigonometric functions or contain a small part of code that is
typical to kinematic problems, mainly examining the ability
of verifying code with multiplication between two library
function calls; e.g., cosφ · sin θ.

To model a program with its property, we either used
the quantifier-free SMT theory for equality logic with un-
interpreted functions (EUF) with a semi-incremental solving
mode in the OPENSMT solver [22] or used the quantifier-
free SMT theories for linear arithmetics (LA) with EUF
with an incremental solving mode in the Z3 solver [23].
For the CEGAR-style check of counterexamples in the sub-
procedure checkRealCE in Sec. IV-B, we used the quantifier-
free SMT theory for non-linear real arithmetic (NRA).

6

Figure 2. LB-CEGAR for a program P with several library functions (c) in comparison with BMC with user-defined summaries (a) and BMC with the
lattice-based refinement initial approach (b).

The default parameters of the LB-CEGAR algorithm in-
clude the use of all the heuristics in Sec. V-C. In the evaluation,
we used the default parameters and thus used all of the
three heuristics; see [24] for more details regarding these
parameters.

The experiments were performed on a virtual machine (VM)
with Ubuntu 16.04 Linux system, single-core, 8GB RAM; the
VM runs on a machine with 4-Intel i7-6600U CPUs clocked
at 2.60GHz. The experimental results, the benchmarks, and
the source code, are available at [24], [26].

A. Evaluation of LB-CEGAR with Real arithmetics

Figure 3 presents the comparison of LB-CEGAR with
CBMC version 5.10 [34], HIFROG [15], and our previous
implementation [18] supporting one library function at a time.

The total number of solved instances is the blue bar and the
orange bar, for Safe and Unsafe instances respectively. The
total number (as a negative number) of unsolved instances is
the gray bar and the yellow bar, for SAT instances that are
classified as Unknown (or SAT without a counterexample),
and for the instances that timed out (TO) or were out-of-
memory (OM), with the time-out set to 4000s and out-of-
memory set to 3GB, respectively.

The four different colours of the bars are consistent across
all six charts. Each chart represents the total solved in-
stances for a particular tool or a variant of a tool. The
tools at the clockwise order are, LB-CEGAR (top-left),
CBMC [35] (top-right), HIFROG [15] LRA (middle-right),
EUF (bottom-right) and with user defined summaries (bottom-
left), and HIFROG [18] with a single lattice (middle-left). Note
that, HIFROG used either EUF or LRA (the quantifier-free

SMT theory for linear real arithmetic). All approaches with
summaries used EUF with LRA (UFLRA).

Verification with function summaries in HIFROG avoids
processing the single static assignment (SSA) expression of
the original function, and only uses SMT summaries which
for the experimental section here2, contained no computation
of the actual function nor of its Taylor series approximations,
at any stage. Hence, complicated benchmarks, which contain
library function calls in a loop or a non-linear expression, were
more likely to be successfully verified with summary-based
approaches than with classical approaches which usually re-
quire computation (up to some precision) of an approximation
of the function and ran out of resources eventually.

HIFROG with user-defined summaries used ∼ 80 equations
of trigonometric properties, loaded at once as unstructured data
and solved a total of 227 instances (HiFrog - User-Defined,
bottom-left, Fig. 3). HIFROG with a single lattice used ∼ 40
equations of trigonometric properties, and solved a total of
185 instances (Single-Lattice - LRA, middle-left, Fig. 3).

LB-CEGAR with two lattices, constructed from a set of ∼
80 equations of trigonometric properties (LB-CEGAR graph,
top-left, Fig. 3), outperformed both variants of HIFROG and
had the highest overall number of solved instances: over 260
instances.

Connecting lattices of different functions in LB-CEGAR
algorithm allowed our approach to verify the highest number
of Safe instances, on many on which other tools failed
(including HiFrog-User-Defined and Single-Lattice-LRA). In

2There is no limitation on using a summary with the actual definition of a
function with our method in general, as we have shown in [18] for Modulo
function. However, the generalised technique in this paper designed to perform
well, even without such a summary, as schematically shown in Fig. 2 (c).

7

-200

-150

-100

-50

0

50

100

150

200

#s
ol
ve
d

LB-CEGAR - UF-LRA

SAT UNSAT SAT-FALSE TO+OM

-200

-150

-100

-50

0

50

100

150

200

#s
ol
ve
d

Single-Lattice - UF-LRA

SAT UNSAT SAT-FALSE TO+OM

-200

-150

-100

-50

0

50

100

150

200

#s
ol
ve
d

HiFrog - User-Defined

SAT UNSAT SAT-FALSE TO+OM

-200

-150

-100

-50

0

50

100

150

200

#s
ol
ve
d

HiFrog - LRA

SAT UNSAT SAT-FALSE TO+OM

-200

-150

-100

-50

0

50

100

150

200

#s
ol
ve
d

HiFrog - EUF

SAT UNSAT SAT-FALSE TO+OM

-200

-150

-100

-50

0

50

100

150

200

#s
ol
ve
d

CBMC V. 5.10

SAT UNSAT SAT-FALSE TO+OM

Figure 3. Comparison of the Number (#) of Solved Claims with Different
Approaches and a Set of Trigonometric Benchmarks in C.

comparison with LB-CEGAR (with 261 solved instances, out
of 279), other tools that do not use summaries or insights
on trigonometric functions, managed to solve at most 136
instances (CBMC V. 5. 10, HiFrog-LRA, and HiFrog-EUF,
in Fig. 3, at top-right, bottom-middle, and bottom-right, re-
spectively), mainly because of the use of non-deterministic
variables to represent trigonometric functions.

B. Evaluation of LB-CEGAR with different parameters of
HIFROG

Table I presents a full comparison of our implementation
of the LB-CEGAR algorithm with other tools. The compar-
ison was performed using various parameters of HIFROG,
even-though LRA with EUF is the most suitable theory-
combination for trigonometric functions, based on our experi-
ence.

The physical files of SMT summaries
for LRA and EUF (UFLRA) were the same; HIFROG read
an SMT summary file differently according to the theory in
use. The SMT summaries for the quantifier-free SMT theory
for linear integer arithmetic (LIA) were different to prevent
any conversions to real arithmetic (e.g., to real token) in the

SMT query where all guards and literals were modelled via
LIA with EUF (UFLIA).

In Table I, the verification results of LB-CEGAR appear in
white and are compared to CBMC [35] and HIFROG [15],
[18] (grey and dark grey), with the best results underlined and
marked in light-yellow.

The evaluation of HIFROG in grey scale is with a single
lattice, and with and without user defined summaries, using:
EUF, LRA with EUF (UFLRA), LIA with EUF (UFLIA),
each of which is a different column in Table I (with the
theory being EUF, LRA or LIA). The symbol # stands for
the number of instances solved (first two lines) or unsolved
(last two lines). Unsolved instances are false-negative results
(FN-SAT), inconclusive (also marked as FN-SAT), or timeout
or out-of-memory (TO +OM).

The description of each column in Table I is as follows.

• The white columns in Table I (3 columns, LB-CEGAR
col.) contain the results the LB-CEGAR algorithm along
with the modifications presented in Sec. IV with different
sets of parameters (with the theory being EUF, LRA, or
LIA), against other tools in the gray scale columns.

• The gray scale columns in Table I (10 columns from the
end) contain the results of other tools: the lattice-based
refinement approach with a single lattice [18] in Lattice
Single col., HIFROG with a large set of user defined
summaries [15] in HiFrog UDS col., and HIFROG [15]
and CBMC version 5.10 [34] in the most right columns.

The variant of HIFROG with theory refinement is omitted from
the comparison, as its current implementation does not support
trigonometric functions.

For the lattice-based refinement approach for verifica-
tion of programs with multiple trigonometric functions,
the best setting was LRA with EUF (LB-CEGAR, LRA
col.), which had the highest overall number of solved in-
stances over 260 instances, and performed almost as well
as HIFROG without any summary (ran out of resources 4
times vs. 2 times HIFROG did). The other two configurations
of parameters that we tried with the lattice-based refine-
ment approach for programs with multiple library functions,
were EUF (LB-CEGAR, EUF col.) and LIA with EUF (LB-
CEGAR, LIA col.). While EUF performed poorly in gen-
eral, LIA with EUF has shown limited potential in solving
instances that required real arithmetics, which indicates the
possibility of applying this method for code with library
functions over significantly different input domains, that is,
code with both continuous and discontinuous functions.

The comparison with a single lattice [18] (Lattice Single,
LRA col.) used either a meet-semilattice for sin function or for
cos function per benchmark, which led to poor performance
when both lattices were required; however, perhaps unsurpris-
ingly, this did not result in poor performance when a single
lattice was sufficient to prove safety of a claim (59 instances,
Lattice Single, LRA col.). HIFROG with user-defined sum-
maries (HiFrog UDS, LRA col.) could not solve around 50
safe instances that required a wider context regarding other

8

Table I
COMPARISON OF LB-CEGAR IN HIFROG WITH DIFFERENT PARAMETERS FOR CBMC AND HIFROG. WE REPORT THE NUMBER OF SOLVED AND

UNSOLVED INSTANCES, WITH THE TIME-OUT (TO) SET TO 4, 000S AND MEMORY LIMITED TO 3GB (OM).

LB-CEGAR Lattice Single HiFrog UDS HiFrog CBMC
LRA LIA EUF LRA LIA EUF LRA LIA EUF LRA LIA EUF

#Solved UNSAT 134 42 8 59 13 6 100 24 9 2 3 1 9

SAT 127 126 126 126 125 126 127 126 126 127 127 127 127

#Failed
FN 14 104 136 87 133 139 48 122 136 148 147 149 136

TO+OM 4 7 9 7 8 8 4 7 8 2 2 2 7

library functions, for one or more expressions with a library
function call.

VII. RELATED WORK

The problem of verification of programs with transcen-
dental functions and, in particular, trigonometric functions is
addressed by several verification tools, such as iSAT3 [36]
via interval propagation by refining the computed interval
bounds, dReal [37] by also using interval propagation and
δ-satisfiability but with user-specified precision where δ is
associated with the numerical error, Coq interval [38] and
Gappa [39] via interval propagation with Taylor series, and
MathSAT5 [6], [12], [40] by using Taylor series with a partial
set of trigonometric properties and for hardware verifica-
tion [41]. In contrast to these approaches, our algorithm does
not require nonlinear arithmetic or a calculation of Taylor
series, which is computationally expensive for large programs.

Computationally inexpensive theories can be used to over-
approximate complex problems. This approach has been used
in solving equations on non-linear real arithmetic and transcen-
dental functions based on linear real arithmetic and equality
logic with uninterpreted functions [6], [12], [42], [43], as well
as on scaling up bit-vector solving [15], [44], [45]. Our work
can be seen as a generalisation of these approaches as we
support inclusion of lemmas from more descriptive logics to
increase the expressiveness of computationally lighter logics.

Lattices are a useful mathematical structure in understand-
ing the relationships between different abstractions and have
been widely applied in program solving with Craig interpola-
tion. [46] presents a semantic solver-independent framework
for systematically exploring interpolant lattices using the no-
tion of interpolation abstraction. A lattice-based system for
interpolation in propositional structures is presented in [47],
extended to consider size optimisation techniques in the con-
text of function summaries in [48], [49], and further extended
to partial variable assignments in [50]. Similar lattice-based
reasoning has also been extended to interpolation in first
order logic with other SMT theories [51], [52]. The approach
presented in this work differs from the above in that we do
not rely on interpolation and work in tight integration with the
model-checker.

Lattices and posets are used in abstract interpretation [53]
to model a sound approximation of the semantics of code,
where completeness and partial completeness [54]–[57] refer

to the absence of loss of precision during the approxima-
tion of the semantics of code. Giacobazzi et al. [56], [57]
present the notation of backward and forward completeness
and show the connection between iteratively computing the
backward (forward)-complete shell to the general CEGAR
framework [17]. The completeness of their algorithm depends
on the properties of the abstraction, while our algorithm has
no such requirements.

The idea of applying SMT solvers with abstract interpreta-
tion for program verification to deal with program properties
that are often difficult to model was presented in [58] and
generalised into an efficient framework with fix-point com-
pleteness in [59], [60]. For trigonometric functions where the
implementation is usually based on Taylor approximations,
the program properties and the properties of trigonometric
functions in mathematics differ substantially.

VIII. CONCLUSIONS AND FUTURE WORK

We presented a new algorithm LB-CEGAR that is used
for verification of programs with library functions, for which
a number of equations, some of which are instrumental for
verification of these programs, exist in external sources (the
mathematical library, Coq proof assistant, etc.). The main idea
of the algorithm is to organize the equations in subset lattices,
and to replace the traditional CEGAR refinement loop with
lattice traversal. The algorithm is general in the sense that it
allows several occurrences of the same library function and/or
several different library functions, some of which depend on
each other, in the same program. While the theoretical worst-
case complexity of LB-CEGAR is high due to an exponential
number of combinations of elements of different lattices, our
experimental results show that the algorithm is very efficient in
practice and outperforms state-of-the-art model-checking tools
on benchmarks with trigonometric functions.

We view the programs with trigonometric functions as the
primary domain of application of LB-CEGAR. In the future,
we plan to explore the domain of verification of programs
describing robots’ movements and kinematics in general.

ACKNOWLEDGEMENTS.

This work was partially supported by the Swiss National
Science Foundation (SNSF) grant 200020 166288.

9

REFERENCES

[1] D. Detlefs, G. Nelson, and J. B. Saxe, “Simplify: a theorem prover for
program checking,” J. ACM, vol. 52, no. 3, pp. 365–473, 2005.

[2] “ROS homepage,” Date Accessed May 01, 2019. [Online]. Available:
http://www.ros.org/

[3] J. Wittenburg, Kinematics: Theory and Applications. Springer, 2016.
[4] “Open Source Physics page,” Date Accessed May 01, 2019. [Online].

Available: http://www.compadre.org/osp/
[5] B. Akbarpour and L. C. Paulson, “Metitarski: An automatic theorem

prover for real-valued special functions,” J. Automat. Reason, vol. 44,
no. 3, pp. 175–205, 2010.

[6] A. Cimatti, A. Griggio, A. Irfan, M. Roveri, and R. Sebastiani, “Satis-
fiability modulo transcendental functions via incremental linearization,”
in CADE, ser. LNCS, vol. 10395. Springer, 2017, pp. 95–113.

[7] L. De Moura and G. O. Passmore, “Computation in real closed infinitesi-
mal and transcendental extensions of the rationals,” in CADE, ser. LNCS,
vol. 7898. Springer, 2013, pp. 178–192.

[8] W. Denman and C. Muñoz, “Automated real proving in pvs via meti-
tarski,” in FM, ser. LNCS, vol. 8442. Springer, 2014, pp. 194–199.

[9] N. Ge, E. Jenn, N. Breton, and Y. Fonteneau, “Integrated formal veri-
fication of safety-critical software,” Int J. Softw Tools Technol Transf.,
vol. 20, no. 4, pp. 423–440, 2018.

[10] P. Trojanek and K. Eder, “Verification and testing of mobile robot
navigation algorithms: A case study in spark,” in IROS. IEEE, 2014,
pp. 1489–1494.

[11] R. Kirner, M. Grössing, and P. P. Puschner, “Comparing WCET and
resource demands of trigonometric functions implemented as iterative
calculations vs. table-lookup,” in WCET, ser. OASICS. IBFI, Schloss
Dagstuhl, Germany, 2006.

[12] A. Cimatti, A. Griggio, A. Irfan, M. Roveri, and R. Sebastiani, “Incre-
mental linearization for satisfiability and verification modulo nonlinear
arithmetic and transcendental functions,” ACM Trans. Comput. Logic,
vol. 19, no. 3, pp. 19:1–19:52, 2018.

[13] M. Daumas, D. Lester, and C. Muñoz, “Verified real number calcula-
tions: A library for interval arithmetic,” IEEE Trans. Comput., vol. 58,
no. 2, pp. 226–237, 2009.

[14] G. Melquiond and C. Munoz, “Guaranteed proofs using interval arith-
metic,” in ARITH. IEEE, 2005, pp. 188–195.

[15] L. Alt, S. Asadi, H. Chockler, K. Even Mendoza, G. Fedyukovich,
A. E. J. Hyvärinen, and N. Sharygina, “HiFrog: SMT-based function
summarization for software verification,” in TACAS, ser. LNCS, vol.
10206. Springer, 2017, pp. 207–213.

[16] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith,
“Counterexample-guided abstraction refinement,” in CAV, ser. LNCS,
vol. 1855. Springer, 2000, pp. 154–169.

[17] ——, “Counterexample-guided abstraction refinement for symbolic
model checking,” J. ACM, vol. 50, no. 5, pp. 752–794, 2003.

[18] K. Even-Mendoza, S. Asadi, A. E. J. Hyvärinen, H. Chockler, and
N. Sharygina, “Lattice-based refinement in bounded model checking,”
in VSTTE, ser. LNCS, vol. 11294. Springer, 2018, pp. 50–68.

[19] A. Armando, J. Mantovani, and L. Platania, “Bounded model checking
of software using smt solvers instead of sat solvers,” in SPIN, ser. LNCS,
vol. 3925. Springer, 2006, pp. 146–162.

[20] T. Kahsai, P. Rümmer, H. Sanchez, and M. Schäf, “Jayhorn: A frame-
work for verifying java programs,” in CAV, ser. LNCS, vol. 9779.
Springer, 2016, pp. 352–358.

[21] D. Brizhinev and R. Goré, “A case study in formal verification of a java
program,” arXiv preprint arXiv:1809.03162, 2018.

[22] A. E. J. Hyvärinen, M. Marescotti, L. Alt, and N. Sharygina,
“OpenSMT2: An SMT solver for multi-core and cloud computing,” in
SAT, ser. LNCS, vol. 9710. Springer, 2016, pp. 547–553.

[23] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in TACAS,
ser. LNCS, vol. 4963. Springer, 2008, pp. 337–340.

[24] “LB-CEGAR page,” 2019. [Online]. Available: http://verify.inf.usi.ch/
content/lattice-refinement/

[25] “Git repository: LB-CEGAR evaluation and additional info.” 2019.
[Online]. Available: https://github.com/karineek/latticeref/

[26] “Git repository of HiFrog,” Date Accessed May 07, 2019. [Online].
Available: https://scm.ti-edu.ch/projects/hifrog/

[27] W. Craig, “Three uses of the Herbrand-Gentzen theorem in relating
model theory and proof theory,” in J. Symb. Log., 1957, pp. 269–285.

[28] “HiFrog - tool usage page,” 2017. [Online]. Available: http:
//verify.inf.usi.ch/hifrog/tool-usage/

[29] G. Birkhoff, Lattice Theory, 3rd ed. AMS, 1967.
[30] coq.inria.fr, “The Coq proof assistant,” Date Accessed May 01, 2019.

[Online]. Available: https://coq.inria.fr/
[31] “List of trigonometric identities, from Wikipedia, the free encyclopedia,”

Date Accessed May 01, 2019. [Online]. Available: https://en.wikipedia.
org/wiki/List of trigonometric identities/

[32] “Trigonometric tables, from Wikipedia, the free encyclopedia,” Date
Accessed May 01, 2019. [Online]. Available: https://en.wikipedia.org/
wiki/Trigonometric tables/

[33] 2018. [Online]. Available: https://sv-comp.sosy-lab.org/2018/
[34] Date Accessed May 01, 2019. [Online]. Available: http://www.cprover.

org/cbmc/
[35] E. Clarke, D. Kroening, and F. Lerda, “A tool for checking ANSI-C

programs,” in TACAS, ser. LNCS, vol. 2988. Springer, 2004, pp. 168–
176.

[36] M. Fränzle, C. Herde, T. Teige, S. Ratschan, and T. Schubert, “Efficient
solving of large non-linear arithmetic constraint systems with complex
boolean structure,” J. Satisf. Boolean Model. Comput., vol. 1, pp. 209–
236, 2007.

[37] S. Gao, S. Kong, and E. M. Clarke, “dreal: An smt solver for nonlinear
theories over the reals,” in CADE, ser. LNAI, vol. 7898. Springer, 2013,
pp. 208–214.

[38] G. Melquiond, “Floating-point arithmetic in the coq system,” Inf. Com-
put., vol. 216, pp. 14 – 23, 2012, Special Issue: 8th Conference on Real
Numbers and Computers.

[39] F. de Dinechin, C. Lauter, and G. Melquiond, “Certifying the floating-
point implementation of an elementary function using gappa,” IEEE
Trans. Comput., vol. 60, no. 2, pp. 242–253, 2011.

[40] A. Cimatti, A. Griggio, B. J. Schaafsma, and R. Sebastiani, “The
mathsat5 smt solver,” in TACAS, ser. LNCS, vol. 7795. Springer, 2013,
pp. 93–107.

[41] J. Harrison, “Formal verification of floating point trigonometric func-
tions,” in FMCAD, ser. LNCS, vol. 1954. Springer, 2000, pp. 217–233.

[42] A. Cimatti, A. Griggio, A. Irfan, M. Roveri, and R. Sebastiani, “Invariant
checking of NRA transition systems via incremental reduction to LRA
with EUF,” in TACAS, ser. LNCS, vol. 10205. Springer, 2017, pp.
58–75.

[43] T. Kutsuna, Y. Ishii, and A. Yamamoto, “Abstraction and refinement of
mathematical functions toward smt-based test-case generation,” Int J.
Softw Tools Technol Transf., vol. 18, no. 1, pp. 109–120, 2016.

[44] Y.-S. Ho, P. Chauhan, P. Roy, A. Mishchenko, and R. Brayton, “Efficient
uninterpreted function abstraction and refinement for word-level model
checking,” in FMCAD. ACM, 2016, pp. 65–72.

[45] A. E. J. Hyvärinen, S. Asadi, K. Even-Mendoza, G. Fedyukovich,
H. Chockler, and N. Sharygina, “Theory refinement for program verifi-
cation,” in SAT, ser. LNCS, vol. 10491. Springer, 2017, pp. 347–363.

[46] P. Rummer and P. Subotic, “Exploring interpolants,” in FMCAD. IEEE,
2013, pp. 69–76.

[47] V. D’Silva, M. Purandare, G. Weissenbacher, and D. Kroening, “Inter-
polant strength,” in VMCAI, ser. LNCS, vol. 5944. Springer, 2010, pp.
129–145.

[48] L. Alt, G. Fedyukovich, A. E. J. Hyvärinen, and N. Sharygina, “A Proof-
Sensitive Approach for Small Propositional Interpolants,” in VSTTE, ser.
LNCS, vol. 9593. Springer, 2015, pp. 1–18.

[49] S. F. Rollini, L. Alt, G. Fedyukovich, A. E. J. Hyvärinen, and N. Shary-
gina, “PeRIPLO: A framework for producing effective interpolants
in SAT-based software verification,” in LPAR, ser. LNCS, vol. 8312.
Springer, 2013, pp. 683–693.

[50] P. Jancı́k, L. Alt, G. Fedyukovich, A. E. J. Hyvärinen, J. Kofron, and
N. Sharygina, “PVAIR: Partial Variable Assignment InterpolatoR,” in
FASE, ser. LNCS, vol. 9633. Springer, 2016, pp. 419–434.

[51] L. Alt, A. E. J. Hyvärinen, and N. Sharygina, “LRA interpolants from
no man’s land,” in HVC, ser. LNCS, vol. 10629. Springer, 2017, pp.
195–210.

[52] L. Alt, A. E. J. Hyvärinen, S. Asadi, and N. Sharygina, “Duality-based
interpolation for quantifier-free equalities and uninterpreted functions,”
in FMCAD. IEEE, 2017, pp. 39–46.

[53] P. Cousot and R. Cousot, “Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of
fixpoints,” in POPL. ACM, 1977, pp. 238–252.

[54] P. Cousot, “Partial completeness of abstract fixpoint checking,” in SARA,
ser. LNAI, vol. 1864. Springer, 2000, pp. 1–25.

[55] P. Cousot and R. Cousot, “Systematic design of program analysis
frameworks,” in POPL. ACM, 1979, pp. 269–282.

10

[56] R. Giacobazzi and E. Quintarelli, “Incompleteness, counterexamples,
and refinements in abstract model-checking,” in SAS, ser. LNCS, vol.
2126. Springer, 2001, pp. 356–373.

[57] R. Giacobazzi, F. Ranzato, and F. Scozzari, “Making abstract interpre-
tations complete,” J. ACM, vol. 47, no. 2, pp. 361–416, 2000.

[58] P. Cousot, R. Cousot, and L. Mauborgne, “Theories, solvers and static
analysis by abstract interpretation,” J. ACM, vol. 59, no. 6, p. 31, 2012.

[59] V. D’Silva, L. Haller, and D. Kroening, “Abstract satisfaction,” in POPL.
ACM, 2014, pp. 139–150.

[60] L. Haller, “Abstract satisfaction,” Ph.D. dissertation, Uni. Oxford, 2013.

11

