
Formal Methods in System Design manuscript No.
(will be inserted by the editor)

Exploiting Partial Variable Assignment in
Interpolation-based Model Checking

Pavel Janč́ık1 · Jan Kofroň1 ·
Leonardo Alt2 · Grigory Fedyukovich2 ·
Antti E. J. Hyvärinen2 ·
Natasha Sharygina2 ·

Received: date / Accepted: date

Abstract Craig interpolation has been successfully employed in symbolic program
verification as a means of abstraction for sets of program states. In this article, we
present the Partial Variable Assignment Interpolation System, an extension of the
Labeled Interpolation System, enriched by partial variable assignments. It allows
for both generation of smaller interpolants as well as for their faster computation.
We present proofs of important properties of the interpolation system as well as a
set of experiments proving its usefulness.

Keywords Craig interpolant, refutation, heuristics, reduction, variable assign-
ment

1 Introduction

Craig interpolants are heavily applied in symbolic model checking techniques, typ-
ically used as a means of abstraction. The basic idea of using interpolants in these
settings is to over-approximate the reachable set of states, while not intersect-
ing with the undesired (faulty) states. The main benefit of not representing a set
of states precisely is usually a much simpler representation of the corresponding
over-approximation than of the set itself. The techniques employing interpolation
differ in the way the interpolants are utilized as well as in additional properties the
interpolants have to satisfy, e.g., the path-interpolation [31], the state-transition-
interpolation [2], and the tree-interpolation property [22]. These properties are
essential for the safety of the corresponding approaches. The size and the logical
strength of interpolants are other important attributes [5,19], which are orthogo-
nal to the aforementioned ones. In this work, we present a technique to reduce the
size of interpolants while preserving the ability to control their logical strength.

This work was partially supported by the Czech Science Foundation project number 18-17403S.

1Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic
E-mail: jancik@d3s.mff.cuni.cz, jan.kofron@d3s.mff.cuni.cz
2University of Lugano, Lugano, Switzerland
E-mail: antti.hyvarinen@gmail.com, natasha.sharygina@usi.ch

2 P. Janč́ık et al.

When verifying properties of a program, a possible approach is to transform
it to an Abstract Reachability Graph (ARG) [1] and consequently to encode this
representation as a (propositional) formula. The formula expressing the desired
property (e.g., the argument of an assert statement in a programming language)
is negated and conjoined with the formula representing the program. Satisfiability
of the conjunction is checked; finding a satisfying assignment of the formula then
corresponds to reaching an error state (a state satisfying negation of the property),
while unsatisfiability proves validity of the property. To improve efficiency of this
process, over-approximation of sets of states in the form of Craig interpolants can
be used. Here, each node in ARG is connected with an (over)-approximation of
reachable program states at that node; the over-approximation needs to be strong
enough to block all the traces via a given node to the faulty states, given they are
not actually reachable in the program.

In many cases, the techniques permit computing interpolants under some as-

sumptions; these can be expressed in the form of variable assignments. The as-
signment then represents an additional assumption, which serves to exclude from
consideration a set of paths. To give an example, consider the code in Fig. 1 and
the corresponding ARG in Fig. 2. If it is clear from the context that i > j, we
can exclude node 4 from consideration by setting the corresponding variable to
False. This way, also the over-approximation (interpolant) can be more precise,
i.e., focused to this particular sub-problem. We call it then a focused interpolant.

Focused interpolants can be used also in cases when parallel computational
resources are available; then no additional assumptions are needed to exploit the
benefits of partial variable assignments. Here, we can used a partial variable as-
signment to make a case split at conditional branches, where assigning true to
the statement condition corresponds to the case when the then branch is exe-
cuted, while assigning false corresponds to the else branch. This way, the program
can be split into two (or more, depending on the number of assigned variables)
sub-programs, each one referring to a particular situation of the condition valid-
ity. Parallel computation of focused interpolants can save the overall time of the
verification, as our preliminary experiments suggest.

Craig interpolation [6] is a process for computing over-approximations of propo-
sitional formulas that has proven useful in both program verification and automatic
abstraction refinement [15]. For an unsatisfiable formula A∧B, formula I is called
Craig interpolant if and only if (1) A ⇒ I, (2) B ∧ I ⇒ ⊥, and (3) I contains
only variables common to both A and B. The idea of applying Craig interpola-
tion in model checking is to reduce the over-approximation process into finding
a compact interpolant I such that I is satisfied by all models of the part being
over-approximated (the reachable states up to a given state forming the A part of
the input formula), but still entails the properties of interest with respect to the
rest of the formula (unreachability of the faulty states—the rest of states).

In this article, we describe Partial Variable Assignment Interpolants (PVAI)—a
generalization of Craig interpolants—which, in addition to the standard division
of an unsatisfiable formula (the interpolation problem) into the A and B parts, is
parametrized by a partial variable assignment (PVA)—an assumption. PVAI have
been originally introduced in [13] and their experimental evaluation was provided
in [12] describing the tool support. This article, in addition to those papers, (i)
provides proofs of various PVAI properties important to program verification, and

Exploiting Partial Variable Assignment in Interpolation-based Model Checking 3

1: int max(int i, int j) {
2: if (i > j)
3: return i;
4: else
5: return j;
6: }

// The main function
7: assert(max(random(), 0) >= 0);

Fig. 1 Motivating example

2

1

3 4

5

6

τ12 ≡ j = 0

τ23 ≡ i > j τ24 ≡ ¬(i > j)

τ35 ≡ result = i τ45 ≡ result = j

τ56 ≡ ¬(result >= 0)

Fig. 2 Abstract reachablity graph

(ii) generalizes the main theorem guaranteeing the path interpolation property of
the interpolants generated by the proposed approach.

A PVA defines the sub-problem on which a PVAI is focused. A sub-problem
is obtained from the interpolation problem by removing the clauses (constraints)
satisfied by the assignment. Due to this specialization, (1) the interpolants for
the sub-problem can be of smaller size, compared to Craig interpolants computed
for the interpolation problem. Moreover, since the satisfied constraints (those not
occurring in the sub-problem) need not to be considered by interpolation, (2) it
is possible to restrict the variables occurring in an interpolant to those relevant
to the sub-problem, i.e. those shared between the A and B parts of the sub-
problem, and (3) computing the interpolant can potentially be more efficient,
since the computation can exploit the variable assignment, too, by pruning a whole
refutation sub-tree.

We also present a framework of Labeled Partial Assignment Interpolation Systems

(LPAIS)—a generalization of LIS [7], which computes PVAIs for propositional
logic. We define the notion of logical strength for LPAISs and show how intro-
ducing a partial order over LPAISs allows to systematically compare the strength
of the computed interpolants (a feature intuitively relevant to verification since it
affects the precision of the over-approximations realized by interpolants [19]). We
also show how LPAISs can be used to generate collections of interpolants, which
feature the path interpolation property. We evaluated the approach to demon-
strate how the assignments (and in particular LPAIS) can be used to reduce the
size of interpolants.

1.1 Applications of Craig interpolants

Craig interpolants are usually used in verification to over-approximate the states
reachable at the ARG nodes at the boundary between nodes corresponding to the
A and B parts. As an example, consider Fig. 2 again. Here, the A part can be
formed by, e.g., formulas corresponding to the transitions up to nodes 3 and 4,
while the B part by formulas corresponding to the transitions starting at nodes
3 and 4 up to node 6. Let us assume that we want to compute an interpolant
for node 3. Depending on the ARG structure, the boundary may or may not in-
clude just the considered node (3 in our example), but also many additional ones
(4). Moreover, these additional nodes can introduce shared variables that are out
of scope at the considered node, that is, they do not exist at the program point
corresponding to the considered node (3). Such variables can occur in the Craig

4 P. Janč́ık et al.

interpolant and need to be subsequently eliminated. Based on the way the ARG is
encoded into a formula, a variable assignment can be used to block paths via par-
ticular (out-of-scope) ARG nodes. This can be achieved by creating an assignment
blocking all paths within the ARG that do not pass a particular node; such paths
in ARG cannot influence the reachable states at that node. The assignment is then
used as an assumption under which the interpolant (i.e., an over-approximation of
reachable states) is computed. This process and the way assignments are generated
is described in more details in Sect. 2.

A very similar idea can be applied to function summaries (e.g., FunFrog [25]).
A function summary is a formula over input and output variables of the function
such that the formula holds if the summarized function for a given input values
returns the specified output. Function summaries in FunFrog are computed as
follows: first, the BMC formula that encodes all possible (bounded) executions of
the program is created. The BMC formula is passed to a SAT (or SMT) solver; if
the formula is unsatisfiable, the program is safe (w.r.t. considered assertions) and
function summaries are computed as Craig interpolants from the resolution proof
of unsatisfiability. To compute the summary for the function f , the BMC formula
is partitioned such that the body of summarized function f and the bodies of
all functions (resp. their representation in the BMC formula) called from within f

belong to the A partition. The rest of the BMC formula belongs to the B partition.
Again, based on the way the BMC formula is created, the assignment can be used
to eliminate all the traces that do not call the summarized function and added to
assumptions when the summary is computed.

Other techniques to reduce the size of interpolants and the size of refutations
from which the interpolants are computed utilize inefficiencies in interpolant for-
mulae and in the resolution proofs, respectively. In contrast to them, our technique
exploits another type of inefficiency—it depends on inefficiencies of a particular
technique resp. in the encoding the technique uses. On one hand, the sensitivity to
encoding implies that our technique cannot be used in general (in contrast to other
reduction techniques); we require the assumptions (i.e., variable assignment) that
need to be created in a technique-dependent way. On the other hand, since the ori-
gin of the reduction is orthogonal to other reduction techniques, these techniques
complement each other, so it is beneficial to use them together.

2 Motivation

In this section, we illustrate a possible application of PVAI, which originally moti-
vated our work; nonetheless, the proposed PVAIs are not limited to this context.
As an example, consider the source code in Fig. 1 and the corresponding ARG in
Fig. 2. Node i is associated with location i in the program. We say that a variable
is in-scope in a node if there is a path through the node where the variable is used
both before and after the node. In our example, node 1 is the initial node, while
node 6 represents an error location. The edge constraints τij encode the semantics
of the corresponding program statements. Note that τ12 originates from the call
to the max function in main, at line 6. Further, in node 3, parameter i is the only
in-scope variable; similarly in node 4, parameter j is the only in-scope variable.

In the context of software verification, an important question is whether an
error location is actually reachable from the initial location of a program—this is

Exploiting Partial Variable Assignment in Interpolation-based Model Checking 5

µ1 ≡ (n1 ⇒ n2) ∧ ((n1 ∧ n2)⇒ τ12)
µ2 ≡ (n2 ⇒ (n3 ∨ n4)) ∧ ((n2 ∧ n3)⇒ τ23)

∧ ((n2 ∧ n4)⇒ τ24)
µ3 ≡ (n3 ⇒ n5) ∧ ((n3 ∧ n5)⇒ τ35)
µ4 ≡ (n4 ⇒ n5) ∧ ((n4 ∧ n5)⇒ τ45)
µ5 ≡ (n5 ⇒ n6) ∧ ((n5 ∧ n6)⇒ τ56)

Cond ≡ n1 ∧ µ1 ∧ µ2 ∧ µ3 ∧ µ4 ∧ µ5

Fig. 3 The Cond formula

π3 ≡ n3 ∧ n4

A3 ≡ n1

∧(n1 ⇒ n2) ∧ ((n1 ∧ n2)⇒ j = 0)
∧ ((n2 ∧ n3)⇒ i > j)

B3 ≡ (n3 ⇒ n5)
∧ ((n3 ∧ n5)⇒ result = i)
∧(n5 ⇒ n6)
∧ ((n5 ∧ n6)⇒ ¬(result >= 0))

Fig. 4 The A and B parts of the sub-
problem for node 3

known as the reachability problem. The question can be answered by computing,
for each node i, the set of states reachable at i via paths in the program ARG [3,
16]. Typically, it is enough to compute an over-approximation of these states, i.e. a
node interpolant. To compute it, the ARG is converted into a propositional formula
(Cond), which represents all execution paths in the ARG. An auxiliary structure-

encoding Boolean variable ni is introduced for each node i in the ARG; for each i

(except for the error node), a node formula µi is created, which encodes the labels
on the outgoing edges (Fig. 3).

For illustration, we describe the meaning of µ2. The first conjunct n2 ⇒ (n3 ∨
n4) expresses that after reaching node 2, a path has to proceed to a successor node
(3 or 4). The second conjunct (n2 ∧ n3) ⇒ τ23 guarantees that if a path goes via
the edge 2 → 3, the semantics of the edge is preserved (i.e., the constraint τ23 is
satisfied). Similarly, the third conjunct enforces the semantics of the edge 2→ 4.

The Cond formula is satisfiable if and only if a feasible path exists that leads
from node 1 to node 6 in the ARG. Suppose now that Cond is unsatisfiable; then
a node interpolant for each node i can be computed. First, the ARG needs to be
partitioned into A and B—so that A corresponds to the antecedents of i, B to
all the other nodes in the ARG—and then a Craig interpolant I is generated as
an over-approximation of the states reachable at i. For instance, in the case of
node 3, A would be set to n1 ∧ µ1 ∧ µ2 and B to µ3 ∧ µ4 ∧ µ5. However, employing
standard Craig interpolation in this manner to compute a node interpolant I is
not sufficient; out-of-scope variables might in fact belong to both A and B, they
could therefore appear in I, and should be consequently eliminated. Variable j, in
particular, could appear in the interpolant for node 3. Even though out-of-scope
variables can be eliminated by resorting to quantification followed by a quantifier-
elimination phase, this phase is a well-known bottleneck in verification [28].

Computing node interpolants using PVAIs effectively solves the problem of
out-of-scope program variables. Assume that a node interpolant is to be computed
for a node k; a suitable PVA assigns False to all the structure-encoding variables
corresponding to the nodes not lying on the paths through k. By setting a variable
nj to False, the paths via node j are blocked; moreover, the whole node formula µj
is satisfied and thus µj is not a part of the sub-problem for node k. On the other
hand, the PVA can assign nk to True to express that each considered path has to
pass through k (the node for which the interpolant is computed). In particular, to
compute an interpolant for node 3, consider Fig. 4; we assign n3 to True and n4 to
False to block the path through node 4 (π3); the rest of variables remain unassigned.
This assignment satisfies (and thus removes) n2 ⇒ (n3 ∨ n4), (n2 ∧ n4)⇒ τ24 and

6 P. Janč́ık et al.

µ4 (Fig. 3) from the sub-problem (see Fig. 4). In the A part, the sub-problem for
node 3 contains the edge labels (and consequently the program state variables)
related to the path from node 1 to node 3, and in the B part, information related
to the path from node 3 to node 6. The program state variables shared by the A
and B parts of the sub-problem are the in-scope variables, which are exactly those
that may appear in PVA interpolants.

3 Preliminaries

This section fixes the notation that we will use throughout the paper related to
propositional logic, resolution, and interpolation.

A literal is a Boolean variable x or its negation x. We identify the double
negation x with x. A clause is a finite set of literals {l1, . . . , ln} interpreted as a
disjunction l1∨ . . .∨ ln. The empty clause is denoted by ⊥. Given two clauses Θ,Θ′,
we write Θ,Θ′ to denote the clause Θ ∪ Θ′, and for convenience write also Θ, l to
denote the clause Θ∪{l} for a literal l. In the following, we consider propositional
formulas in Conjunctive Normal Form (CNF), i.e., as conjunctions (or equivalently
sets) of clauses.

We use var(l) to denote the variable of a literal l and var(A) for the variables
occurring in the set of clauses A. For a finite set X of variables, a partial variable

assignment (PVA) is a set of literals π ⊆ {x, x | x ∈ X} such that for no x ∈ X
both x ∈ π and x ∈ π. For a literal l, we say that l is assigned True or > if l ∈ π
and False or ⊥ if l ∈ π. When convenient, we interpret the variable assignment
as a conjunction of literals. We will often use PVAs as assumptions over a set of
clauses C, writing π |= C, to represent the set of models of C restricted to those
satisfying π.

Definition 1 (Clauses under assignment) Let A be a set of clauses and π a PVA
over var(A). We define the sets of

satisfied clauses Aπ = {Θ | Θ ∈ A and π |= Θ} and
non-satisfied clauses ACπ = {Θ | Θ ∈ A and π 6|= Θ}.

Satisfied clauses contain at least one literal assigned to > under π, while for
non-satisfied clauses, every literal is either unassigned or falsified.

Example 1 Let Φ = (l1 ∨ l3) ∧ (l̄2 ∨ l̄6) ∧ (l̄4 ∨ l̄5) ∧ (l̄2 ∨ l4) ∧ (l̄1 ∨ l2), and
π = l2. Given the assignment, Φ can be split into Φπ = (l2 ∨ l6) ∧ (l2 ∨ l4) and
ΦCπ = (l1 ∨ l3) ∧ (l4 ∨ l5) ∧ (l1 ∨ l2).

For a set of literals ρ, we write ¬ρ = {l | l ∈ ρ} for the set consisting of the
negations of the literals of ρ. Given a formula F , a PVA π, and a clause C ∈ F
such that C ∩ π = ∅, we define the unit propagation operator UPC (π) as

UPC (π) =


{l} if C \ ¬π = {l}
∅ if |C \ ¬π| ≥ 2, and
{x, x | x ∈ var(F ∧ π)} if C ⊆ ¬π

The unit propagation closure U is the smallest set of literals over var(F ∧π) that
is closed under UPC (U) for all C ∈ F . The simplification of F over π, denoted

Exploiting Partial Variable Assignment in Interpolation-based Model Checking 7

by F [π], is the set of clauses obtained from F by first removing from each clause
C ∈ F the literals l such that l ∈ U , and then removing all clauses C ∈ F such
that U ∩ C is nonempty.

Let Θ, x and Θ′, x be clauses. The resolvent clause Res(Θ, x,Θ′, x, x) = Θ,Θ′

is the result of applying resolution on the antecedent clauses Θ, x and Θ′, x and
the pivot x. We adopt the definition of a resolution derivation from [7]: a resolution

derivation R for a CNF formula Φ is a tuple (V,E, cl, piv, s), where V is a set
of vertices in the derivation, E ⊂ V × V is a set of edges forming a full binary
DAG (i.e., all the vertices except for the leaves have the in-degree 2). The sink
vertex s has the out-degree 0. Each vertex v ∈ V is associated with a vertex-clause
specified by the function cl(v). Each vertex clause of a leaf vertex v corresponds
to a clause from input formula Φ (i.e., cl(v) ∈ Φ). Each inner vertex v represents a
resolvent of its antecedent vertex-clauses (specified by cl) using the pivot piv(v);
formally, for each inner vertex v there exist edges (v1, v), (v2, v) ∈ E such that
cl(v) = Res(cl(v1), cl(v2), piv(v)). A refutation is a resolution derivation such that
cl(s) = ⊥.

Since the refutations take the set of clauses as input, the input formula is first
converted into a conjunction of clauses. Therefore, in the following we use the
terms formula and set of clauses interchangeably.

Given an unsatisfiable formula F partitioned into two disjoint parts A,B, a
Craig interpolant [6] is a formula I such that A ⇒ I, (2) B ∧ I ⇒ ⊥, and (3)
var(I) ⊆ var(A) ∩ var(B). An interpolant can be computed from a refutation R of
F using the labeled interpolation system (LIS) [7]. The system is parametrized by
a labeling function L that assigns a label (color) from the set {a, b, ab} to each
variable occurrence (x,C) of the clauses C in the refutation R. A variable is called
shared if it occurs both in A and in B; and local otherwise. Given an occurrence
(x,C) of R, L(x,C) = a if x is local to A and L(x,C) = b if x is local to B. The
color of shared variables can be chosen freely for different L. The occurrences in the
resolvents are labeled according to the labels in the antecedent clauses. If a variable
appears in antecedents with different labels, the label for the new occurrence is ab,
and otherwise the label will be the same as in both the antecedents. LIS computes
an interpolant by annotating each clause of R with a partial interpolant starting
with the leaves such that the partial interpolant for a leaf clause C is

I(C) =

{∨
{l | l ∈ C and L(var(l), C) = b} if C ∈ A, and∧
{¬l | l ∈ C and L(var(l), C) = a} if C ∈ B,

(1)

and for resolvent clause C with pivot p and antecedents C+ and C−, where p ∈ C+

and p ∈ C− is

I(C) =


I(C+) ∨ I(C−) if L(p, C+) = L(p, C−) = a,
I(C+) ∧ I(C−) if L(p, C+) = L(p, C−) = b, and
(I(C+) ∨ p) ∧ (I(C−) ∨ ¬p) otherwise.

(2)

We build the labeled partial variable interpolation system based on LIS, using an
additional parameter in the form of a partial variable assignment, in Sec. 5, where
we will give the proof of correctness of the new system as a generalization of the
correctness of LIS.

8 P. Janč́ık et al.

⊥

l1 l1

l1 ∨ l6 l1 ∨ l2 l1 ∨ l2

l1 ∨ l6 l1 ∨ l2 l2 ∨ l6 l2 ∨ l4 l1 ∨ l4

l1 ∨ l3 l3 ∨ l6 l1 ∨ l5 l4 ∨ l5

Fig. 5 Resolution refutation; the clauses from
A-part and B-part are in dashed and full boxes,
respectively.

∧

∧ ∧

∧ [>] ∧

∧ [l1 ∨ l2] [>] [>] ∧

[>] [l3 ∨ l6] [l1 ∨ l5] [>]

Fig. 6 Derivation of McMillan’s inter-
polant (l1 ∨ l2) ∧ (l3 ∨ l6) ∧ (l1 ∨ l5).

Example 2 Fig. 5 shows a refutation for formula Φ = A∧B where A = (l1 ∨ l2)∧
(l̄1 ∨ l5) ∧ (l̄3 ∨ l6), and B as given in Ex. 1. Fig. 6 shows how LIS with the
labeling function that labels all occurrences of shared variables as b can be used
to construct the interpolant I1 = (l1 ∨ l2) ∧ (l3 ∨ l6) ∧ (l1 ∨ l5) (after constant
propagation) from the refutation in Fig. 5. The interpolants computed with this
labeling function are called McMillan’s interpolants. Note that for convenience, we
write the partial interpolant associated to a particular node of the refutation into
brackets. Formula I2 ≡

(
l1 ∨

(
(l6 ∨ l3) ∧ (l6 ∨ l2)

))
∧ (l1 ∨ l5) is another interpolant

that can be computed by LIS from the refutation; Fig. 9 shows the labels used to
compute I2 (minimal labeling).

Many applications naturally require several interpolants that are computed
from a given formula by partitioning the formula differently. Often the result-
ing interpolants are furthermore required to satisfy certain interdependencies. In
particular, an interpolant sequence for the unsatisfiable formula A1 ∧ . . . ∧ An is a
tuple of formulas (I0, . . . , In), where I0 = >, and for i ≥ 1, Ii is an interpolant
for partitioning (A1 ∧ . . . ∧ Ai, Ai+1 ∧ . . . ∧ An). If for all i, Ii ∧ Ai ⇒ Ii+1, then
(I0, I1, . . . , In) satisfies the path interpolation (PI) property. It can be shown that
the path interpolation property holds for any LIS [10], including the well-known
McMillan’s and Pudlák’s systems, whenever the interpolant sequence is computed
from the same refutation.

4 Partial Variable Assignment Interpolants

In this section, we formally define Partial Variable Assignment Interpolation, which,
in addition to the division of an unsatisfiable formula into A and B parts, re-
quires specification of a PVA π defining the sub-problem. Given a verification
problem represented by a formula F ≡ A ∧ B, a sub-problem w.r.t. assignment
π is represented by formula FCπ ≡ ACπ ∧ BCπ ; i.e., a sub-problem consists only of
the unsatisfied part of the original formula. In other words, the choice of the as-
signment defines to which part of the verification problem to focus. Looking on
the motivation example, various assignments can be used to define sub-problems
considering e.g., a single ARG path, or all paths via an arbitrary ARG node or all
paths via an ARG edge.

Exploiting Partial Variable Assignment in Interpolation-based Model Checking 9

Definition 2 (Partial Variable Assignment Interpolant) Let R be a refutation
of formula A∧B and π be a partial variable assignment over var(A∧B). A partial

variable assignment interpolant (PVAI) is a formula I such that:

(D2.1) π |= A⇒ I, or equivalently π |= ACπ ⇒ I

(D2.2) π |= B ∧ I ⇒ ⊥, or equivalently π |= BCπ ∧ ¬I ⇒ ⊥
(D2.3) var(I) ⊆ var(ACπ) ∩ var(BCπ)
(D2.4) var(I) ∩ var(π) = ∅

Since for any set of clauses X, π |= (X ⇔ XC
π), D2.1 and D2.2 can be equiva-

lently rewritten as π |= ACπ ⇒ I and π |= BCπ ∧I ⇒ ⊥, respectively. Rules D2.3 and
D2.4 restrict the variables that may appear in PVAI to the ones shared by the A
and B parts of the sub-problem.

In other words, PVAI is a Craig interpolant for the sub-problem, i.e., a single
PVAI can be computed using standard interpolation techniques (given a refutation
proof of the sub-problem). The above definitions are beneficial to us, since they
permit us to reason about interpolants for different sub-problems (i.e., different
input formula). Thanks to this property, it is possible to show various properties
of PV A (such as the path interpolation property) among interpolants for various
sub-problems. This is a unique property, since in other works, only the interpolants
computed from same input formula (i.e., verification sub-problem) are considered.

Note that a PVAI cannot be obtained from a standard Craig interpolant of
the verification problem AB by simplification (I[π]); the sub-problem needs to be
created (and its refutation proof constructed). The reason is that, in addition to
assigned variables (disallowed by D2.4), rule D2.3 also excludes also all unassigned
(out-of-scope) variables that occur in satisfied clauses only, which can still appear
in I[π].

Example 3 Craig and PVA interpolants differ in the variables that can occur in the
interpolant. The shared variables between A and B (i.e., those that can appear in
a Craig interpolant) are l1, l2, l3, l5, and l6. Since PVAI considers (for the shared
variables) only non-satisfied parts of A resp. B (i.e., ACπ and BCπ), fewer variables
are shared; in our example, assuming π ≡ l2, only l1, l3, and l5 can appear in a
PVA interpolant, which are those that can appear in a Craig interpolant for the
sub-problem.

Given an assignment (π ≡ l2) and a Craig interpolant, an alternative way to
reduce the interpolant size is to assign the values inside the interpolant formula and
propagate the Boolean constants. In this case, the interpolants from the example
above result in I1[π] ≡ l1∧(l3∨l6)∧(l1∨l5) and I2[π] ≡ (l1∨ [(l6∨l3)∧l6])∧(l1∨l5).
None of them is a PVA interpolant since each one contains variable l6. Both of them
can be further simplified (i.e., equivalently rewritten) as Is1 [π] ≡ l1 ∧ l5 ∧ (l3 ∨ l6)
resp. Is2 [π] ≡ l1 ∨ (l3 ∧ l6) ∧ (l1 ∨ l5). In general, such a transformation requires a
complex analysis and sometimes the out-of-scope variables can be eliminated from
the interpolant by this technique. However, as shown above, variable l6 cannot be
eliminated from the interpolants by these transformations.

The aforementioned techniques can be used to reduce the size of the formula,
but it cannot guarantee producing interpolants without the variables appearing
just in satisfied clauses, since the information is not present in the interpolant
formula.

10 P. Janč́ık et al.

SAT/SMT calls are resource demanding. A refutation is independent of PVAs;
this important fact allows us to call the solver only once on the overall problem
Φ, and, later, to compute various PVAs (representing relevant sub-problems) for
which the PVAI can be efficiently computed. This follows the idea of having a
refutation and several partitionings, for which several (related) interpolants are
computed.

Although Craig interpolation has many applications in program verification,
verification tools often require interpolant sequences with specific properties [10].
The PVAI for all the sub-problems are computed from the same refutation, thus
they are related to each other. The existence of a single refutation permits the ap-
plication of a standard proving technique in the area of interpolation—structural
induction over a refutation—to show various properties of PVA interpolant se-
quences. All the techniques where interpolants for different sub-problems are com-
puted using different refutations (e.g., applying a solver directly on each sub-
problem, or incremental solving with assumptions) do not, per se, guarantee any
properties of their sequences. The price to pay is an additional assumption in the
form of a partial assignment.

To be complete, there are several ways to generate PVAs, which can be di-
vided into four groups: (1) shrinking the input formula based on the assignment,
(2) shrinking (cutting) the refutation proof based on the assignment, (3) quan-
tification (such as in the UFO tool [3]), i.e., use Craig interpolants, apply the as-
signment onto the interpolant, and quantify out remaining out-of-scope variables,
and (4) our PVA approach. The first two options do not guarantee the path inter-
polation property between related interpolants1, while the third approach works
also for higher-level theories (not just for propositional logic), but the interpolants
are quantified formulae. Our approach generates quantifier-free interpolants inter-
related by the path interpolation property.

5 Labeled Partial Assignment Interpolation System

In this section, we present the framework of Labeled Partial Assignment Interpolation

Systems, a generalization of LISs [7], which computes PVAIs for propositional
logic, and prove its soundness. Next, in order to prove the path interpolation
property, we introduce the concept of logical strength on LPAISs, which allows
one to systematically compare the strength of the generated interpolants.

In order to define LPAISs, first we have to extend the definitions of labeling
functions and locality from LISs to take variable assignments into account. Note
that if no variable is assigned, LPAISs are equivalent to LISs.

A labeling function assigns labels to literals in a refutation; the labeling drives
the computation of an interpolant from the refutation and determines its strength
(Fig. 7). Note that in the following, if not stated otherwise, we assume just a single
refutation being re-used for computing many interpolants.

1 Our intuition leads us to the conclusion that the path interpolation property cannot be
guaranteed in a general case of different assignments, but we have no counterexample demon-
strating it.

Exploiting Partial Variable Assignment in Interpolation-based Model Checking 11

ab

d

a b

⊥

Fig. 7 Lattice of labels (t)

5.1 Definitions

Definition 3 (Labeling function) Let L = (S,v,u,t) be the lattice in Fig. 7,
where S = {⊥, a, b, ab, d} and ⊥ is the least element, and let R = (V,E, cl, piv, s) be
a refutation over a set of literals Lit. Function LabR,L : V×Lit→ S is called labeling

function for refutation R iff ∀v ∈ V and ∀l ∈ Lit, LabR,L satisfies the following
conditions:

(D3.1) LabR,L(v, l) = ⊥ if and only if l /∈ cl(v), and
(D3.2) LabR,L(v, l) = LabR,L(v1, l) t LabR,L(v2, l), where v1, v2 are the an-

tecedent vertices.

From condition D3.2 it follows that the labeling function is fully determined
once the labels in the leaves have been specified. We omit subscripts R and L if
clear from the context.

Naming conventions. Let us assume a pair of sets of clauses (A,B) and a PVA π.
The clause sets are split into four groups, the non-satisfied clauses ACπ and BCπ ,
which specify the sub-problem and are taken into account during interpolation,
and the satisfied clauses Aπ and Bπ, which are disregarded.

We distinguish among the following kinds of variables, depending on the stan-
dard notions of locality and sharedness, as well as on where the variables appear
in the four groups of clauses. We say that a variable k is unassigned if k 6∈ var(π).
An unassigned variable k is:

ACπ -local if k ∈ var(ACπ) and k 6∈ var(BCπ)

BCπ -local if k 6∈ var(ACπ) and k ∈ var(BCπ)

ACπB
C
π -shared if k ∈ var(ACπ) and k ∈ var(BCπ)

ACπB
C
π -clean if k 6∈ var(ACπ) and k 6∈ var(BCπ)

The properties above are independent of the occurrence of k in var(Aπ) and
var(Bπ). The “clean” variables occur only in the satisfied clauses, thus are out-of-
scope and cannot appear in PVA interpolants.

Definition 4 We say that variable k is McMillan-labeled if, whenever k is ACπB
C
π -

shared or ACπB
C
π -clean, it is labeled b.

Note that the labels of the other variables are not limited to b. If all variables
are McMillan-labeled, LIS reduces to McMillan’s interpolation system [7], which
yields the strongest interpolant that LISs (and LPAISs) can produce from a given
refutation.

12 P. Janč́ık et al.

⊥
l b
1 l̄ b

1

l b
1 ∨ l̄

a
6 l̄ b

1 ∨ l
b
2 l̄ b

1 ∨ l̄
d+

2

l b
1 ∨ l

a
6 l b

1 ∨ l
b
2 l̄ d+

2 ∨ l̄ a
6 l̄ d+

2 ∨ l b
4

l̄ b
1 ∨ l̄

b
4

l b
1 ∨ l

b
3 l̄ b

3 ∨ l
a
6 l̄ b

1 ∨ l
b
5 l̄ b

4 ∨ l̄
b
5

Fig. 8 McMillan’s labeling for (A,B, π), where π ≡ l2.

⊥
l ab
1 l̄ ab

1

l a
1 ∨ l̄

b
6 l̄ b

1 ∨ l
b
2 l̄ a

1 ∨ l̄
b
2

l b
1 ∨ l

a
6

l a
1 ∨ l

a
2 l̄ b

2 ∨ l̄
b
6 l̄ b

2 ∨ l
b
4 l̄ a

1 ∨ l̄
b
4

l b
1 ∨ l

b
3

l̄ a
3 ∨ l

a
6 l̄ a

1 ∨ l
a
5 l̄ b

4 ∨ l̄
b
5

Fig. 9 Minimal labeling for (A,B) and empty assignment.

Definition 5 Variable k is labeled consistently if all occurrences of k in a refutation
have the same label:
∀x, x′ ∈ V, l ∈ cl(x), l′ ∈ cl(x′) : var(l) = var(l′)⇒ Lab(v, l) = Lab(v′, l′).

Example 4 Fig. 8 shows how a labeling function assigns labels to literals; the la-
bel of a literal is shown in superscript. Again, we assume π ≡ l2. We choose the
strongest possible labeling (which for an empty assignment would produce McMil-
lan’s interpolant I1); in particular ACπB

C
π -shared and ACπB

C
π -clean variables are

labeled b. Note that variable l6 is ACπ -local and thus has to be labeled a, the
ACπB

C
π -shared variables are l1, l3, and l5, no variable is ACπB

C
π -clean, and variable

l4 is BCπ -local. Fig. 9 shows another example of labeling; note the clauses l1 and
l1 illustrating how the labels are merged from the labels in antecedents.

Not all labeling functions can be used to generate interpolants; in LPAIS, inter-
polants are computed if a locality preserving labeling is used.

Definition 6 Let R be a refutation of formula A ∧ B and π be a PVA. Labeling
function Lab for refutation R is locality preserving iff ∀v ∈ V,∀l ∈ cl(v) all the
following locality constraints are satisfied:

Exploiting Partial Variable Assignment in Interpolation-based Model Checking 13

(D6.1) Lab(v, l) = d⇔ l ∈ π
(D6.2) l /∈ π and ACπ -local ⇒ Lab(v, l) = a

(D6.3) l /∈ π and BCπ -local ⇒ Lab(v, l) = b

(D6.4) l /∈ π and ACπB
C
π -clean ⇒ it is consistently labeled a or b.

Locality constraints provide freedom in labeling ACπB
C
π -shared and ACπB

C
π -clean

variables; the choice of labels directly affects the strength of the computed inter-
polants. The label of ACπB

C
π -shared variables can be set freely to a, b, or ab. The

same holds for falsified literals; their labels are irrelevant since they are removed
by the assignment filter (defined below).

D6.2 and D6.3 are equivalent to the locality requirements of LIS, where A-local
and B-local variables must be labeled a and b, respectively. D6.1 concerns the
satisfied literals. Label d is used in the interpolation process to identify resolutions
with an assigned pivot and parts of the refutation that are not relevant to the
sub-problem. D6.4 is specific to PVAI and deals with variables that occur in the
satisfied clauses only. The requirement guarantees that such variables do not occur
in the interpolant, because Res-ab (see Tab. 1) cannot be applied. Further, note
that for the empty assignment, the locality constraints reduce to those of LISs,
since D6.1 and D6.4 do not apply to any literal.

Filters. For a clause Θ, a labeling function Lab, a refutation vertex v ∈ V, and
a label c, we define the match filter |, which preserves only the literals with the
specified label, as follows:

Θ|c,v,Lab = {l ∈ Θ | c = Lab(v, l)}

Similarly, we define the upward filter �, which preserves the literals with labels
greater than c (Fig. 7), as:

Θ�c,v,Lab= {l ∈ Θ | c v Lab(v, l)}

The subscripts Lab, v are omitted if clear from the context. Given a partial
assignment π and a clause Θ, we also define the assignment filter, which removes
all the assigned literals (satisfied and falsified ones), as follows:.

Θ[π] = {l ∈ Θ | var(l) 6∈ var(π))}

Moreover, in our notation, we assume that filters have a higher precedence
than negation. E.g., ¬Θ[π]�a can be equivalently rewritten as ¬((Θ[π])�a).

Interpolation system. An interpolation system is a procedure for computing an
interpolant given a refutation. It assigns a partial vertex-interpolant to each vertex
of the refutation, yielding the final interpolant at the sink vertex.

Definition 7 Let R be a refutation of A ∧ B, π be a PVA, and Lab be a corre-
sponding locality preserving labeling function. Then, Tab. 1 defines the Labeled

Partial Assignment Interpolation System LpaItp(Lab, R,A,B, π).

LPAIS produces interpolants in the following way: First, the vertex-interpolants
for leaves of the refutation are computed using the rules in the upper part of Tab. 1
(Hypothesis rules). Depending on the occurrence of the vertex-clause Θ in the A

14 P. Janč́ık et al.

Leaf v: Θ, [I]

I =

 Θ[π]|b,v,Lab if Θ ∈ ACπ Hyp-ACπ
¬Θ[π]|a,v,Lab if Θ ∈ BCπ Hyp-BCπ
> if Θ ∈ Aπ ∪Bπ Hyp-Aπ , Hyp-Bπ

Inner vertex v:
v1 : p,Θ1, [I1] v2 : p̄, Θ2, [I2]

Θ1, Θ2, [I]

I =


I1 ∨ I2 if Lab(v1, p) t Lab(v2, p) = a Res-a
I1 ∧ I2 if Lab(v1, p) t Lab(v2, p) = b Res-b
(I1 ∨ p) ∧ (I2 ∨ p) if Lab(v1, p) t Lab(v2, p) = ab Res-ab
I2 if Lab(v1, p) = d Res-d
I1 if Lab(v2, p) = d Res-d

Table 1 Hypothesis and resolution rules for Labeled Partial Variable Assignment Interpola-
tion System

or B sets, the corresponding rule describes the transformation of the vertex-clause
into a partial vertex-interpolant. Later, going down through the refutation from
the leaves to the sink, the vertex-interpolants for inner vertices are computed using
the resolution rules in the lower part of Tab. 1. The labels assigned to the pivots
determine how vertex-interpolants of both antecedents are combined. This process
ends at the sink vertex where the PVAI is derived. The interpolants are computed
in time linear to the size of the refutation.

The main difference compared to LISs are the additional d rules. For instance,
consider the last rule Lab(v2, p) = d in Tab. 1. In contrast to the original LIS rules,
the partial vertex-interpolant is simpler, because it does not contain I2, omitted
due to the variable assignment. Generally, these rules cut out the satisfied sub-
tree of the refutation. Usually, the later in the refutation the assigned variable is
resolved, the larger sub-tree is pruned and the smaller the resulting interpolant is.

The differences between LPAISs and LISs are motivated by the way variable
assignments work. The new d rules can be seen as a specialization of the ab res-
olution rule if PVA π is assumed. A similar relationship holds for the hypothesis
rules in the leaves of a refutation. These rules are equivalent to LIS hypothesis
rules if applied on a clause under the assumed assignment. The changes we intro-
duce w.r.t. LISs are of two kinds: (i) those in LPAIS rules force specialization of
the interpolant on a sub-problem, and (ii) the changes in the locality constraints
remove unassigned out-of-scope variables from the interpolant.

Example 5 Figs. 10 and 11 show the rules that apply to a vertex; the labels are
taken from Figs. 8 resp. 9. Fig. 12 shows how LPAIS produces interpolant Iπ ≡
l1∨ l3 for our example using labeling of Fig. 10. Note the dotted arrows at vertices
corresponding to Res-d resolutions; they highlight the antecedents whose partial
vertex-interpolants are ignored and their sub-trees do not contribute to the final
PVA interpolant. Also note that the PVA interpolant Iπ is smaller compared to
both I1[π] and I2[π] from examples above.

5.2 Correctness

Theorem 1 (Correctness) Let R be a refutation of A∧B, π be a PVA, and Lab be

a locality preserving labeling function. Then, LpaItp(Lab, R,A,B, π) generates a partial

variable assignment interpolant at the sink vertex s.

Exploiting Partial Variable Assignment in Interpolation-based Model Checking 15

⊥
Res-b

l b
1

Res-a
l̄ b
1

Res-d

l b
1 ∨ l̄

a
6

Res-d

l̄ b
1 ∨ l

b
2

Hyp-BCπ
l̄ b
1 ∨ l̄

d
2

Res-b

l b
1 ∨ l

a
6

Res-b

l b
1 ∨ l

b
2

Hyp-ACπ
l̄ d
2 ∨ l̄

a
6

Hyp-Bπ

l̄ d
2 ∨ l

b
4

Hyp-Bπ

l̄ b
1 ∨ l̄

b
4

Res-b

l b
1 ∨ l

b
3

Hyp-BCπ
l̄ b
3 ∨ l

a
6

Hyp-ACπ
l̄ b
1 ∨ l

b
5

Hyp-ACπ
l̄ b
4 ∨ l̄

b
5

Hyp-BCπ

Fig. 10 Rules applied at refutation vertices if McMillan’s labeling of Fig. 8 is used.

⊥
Res-ab

l ab
1

Res-ab
l̄ ab
1

Res-b

l a
1 ∨ l̄

b
6

Res-ab

l̄ b
1 ∨ l

b
2

Hyp-BCπ
l̄ a
1 ∨ l̄

b
2

Res-b

l b
1 ∨ l

a
6

Res-ab
l a
1 ∨ l

a
2

Hyp-ACπ
l̄ b
2 ∨ l̄

b
6

Hyp-BCπ
l̄ b
2 ∨ l

b
4

Hyp-BCπ
l̄ a
1 ∨ l̄

b
4

Res-ab

l b
1 ∨ l

b
3

Hyp-BCπ
l̄ a
3 ∨ l

a
6

Hyp-ACπ
l̄ a
1 ∨ l

a
5

Hyp-ACπ
l̄ b
4 ∨ l̄

b
5

Hyp-BCπ

Fig. 11 Rules applied at refutation vertices if minimal labeling of Fig. 9 is used.

Proof (Theorem 1—Correctness). In the proof, we follow the proof idea of LIS.
By structural induction, we show that for each vertex v of a resolution proof the
following invariants hold:

(T1.Inv1) π |= A ∧ ¬Θ�a,v,Lab⇒ I

(T1.Inv2) π |= B ∧ ¬Θ�b,v,Lab⇒ ¬I
(T1.Inv3) var(I) ⊆ var(ACπ) ∩ var(BCπ)

where I is the partial interpolant of vertex v and cl(v) = Θ.
These invariants are equivalent to the PVAI constraints for the sink node

(where the ¬Θ = >). We omit the labeling function Lab from subscripts (since
it is unique in the proof) and the vertex if clear.

Base cases. The base cases apply to the leaf vertices of the proof where the hy-
potheses operations are applied.

Hyp-ACπ : Θ ∈ ACπ so I = Θ[π]|b

16 P. Janč́ık et al.

(T1.Inv1) π |= A ∧ ¬Θ�a⇒ Θ[π]|b holds because A ⇒ Θ and Θ ⇔ (Θ�a ∨Θ|b), so
Θ ∧¬Θ�a⇒ Θ|b. Moreover, it holds that π |= Θ|b ⇔ Θ[π]|b because the clause Θ
(thus even Θ|b) is not satisfied by the partial assignment π, so all the assigned
literals (i.e., those removed by the filter [π]) evaluate to ⊥.

(T1.Inv2) π |= B ∧ ¬Θ�b⇒ ¬Θ[π]|b holds because ¬Θ�b⇒ ¬Θ|b. Moreover, it holds
that π |= ¬Θ|b ⇔ Θ[π]|b; the reason is the same as above, all the assigned
literals evaluate to ⊥.

(T1.Inv3) var(Θ[π]|b) ⊆ var(ACπ) ∩ var(BCπ). Label b implies that such variables are
ACπB

C
π -shared. Otherwise, the locality-preserving requirement D6.2 is violated.

Moreover, the assignment filter is applied, so the partial vertex-interpolant
does not contain any assigned variable.

Hyp-BCπ : Θ ∈ BCπ so I = ¬Θ[π]|a. The situation is symmetric to Hyp-ACπ case.

(T1.Inv1) π |= A ∧ ¬Θ�a⇒ ¬Θ|a holds because ¬Θ�a⇒ ¬Θ|a. Moreover, π |= Θ|a ⇔
Θ[π]|a, because all the assigned literals in the clause Θ evaluate to ⊥ under
the assignment π.

(T1.Inv2) π |= B ∧ ¬Θ�b⇒ Θ|a holds because B ⇒ Θ and Θ ⇔ (Θ�b ∨Θ|a) so
Θ ∧ ¬Θ�b⇒ Θ|a. Moreover, as shown above, π |= Θ|a ⇔ Θ[π]|a.

(T1.Inv3) var(¬Θ[π]|a) ⊆ var(ACπ) ∩ var(BCπ). The label a implies that these vari-
ables are ACπB

C
π -shared. Otherwise, the locality preserving requirements D6.3

is violated. Moreover, the assignment filter is applied, so the partial vertex-
interpolant does not contain any assigned variable.

Hyp-Aπ, Hyp-Bπ: Θ ∈ Aπ ∪Bπ so I = >.

(T1.Inv1) π |= A ∧ ¬Θ�a⇒ > holds trivially.
(T1.Inv2) π |= B ∧ ¬Θ�b⇒ ⊥.

We show that the antecedents of the implication are unsatisfied. The reason
is that ¬Θ�b evaluates (is equivalent) to ⊥ under assignment π.
From Θ ∈ Aπ (resp. Θ ∈ Bπ) it follows that exists literal l ∈ Θ such that π |= l;
the literal l makes the clause Θ satisfied under π. The label of l is d (locality
of labeling function—D6.1) so the literal is preserved by the upward-filter �b.
Thus π |= ¬Θ�b⇔ ⊥.

∧

∨ [I3]

[I4] [>] ∧

∧ [l1] [>] [>] ∧

[>] [l3] [l1 ∨ l5] [>]

I3 ≡ >
I4 ≡ l1

Fig. 12 PVA interpolant Iπ ≡ l1 ∨ l3, when using labeling of Fig. 10.

Exploiting Partial Variable Assignment in Interpolation-based Model Checking 17

(T1.Inv3) var(>) ⊆ var(A) ∩ var(B) holds trivially.
ut

Before the proof of Theorem 1 continues (i.e., moves from leaves to inner ver-
tices), we introduce auxiliary lemmas. The first one introduces upward-filter for
pivot variables. The second lemma connects the antecedents of the invariant im-
plications of the current vertex and the antecedent vertices.

Lemma 1 (Introducing upward-filters) Let p be a variable, v be a vertex, and c

be a label (c ∈ L). It holds:

|= p⇒ ¬p�c,v and |= p⇒ ¬p�c,v

Proof (Lemma 1). The upward-filter �c,v can either preserve the literal p or filter
it out. In the first case, the filter evaluates to ¬p, which is equivalent to p and the
implication |= p⇒ p holds trivially. In the second case, the filter evaluates to the
empty clause, i.e., ⊥ and the implication |= p⇒ ¬⊥ holds trivially.

The same reasoning applies to the second formula.
ut

Lemma 2 (Filters in antecedent vertices) Let R ≡ (V,E, cl, piv, s) be a resolution

proof and LabR,L be a labeling function for proof R. Let v ∈ V be inner vertex of the

proof with vertex clause cl(v) = Θ1, Θ2. Let vertices v1 and v2 be the antecedents of

vertex v and their vertex clauses be cl(v1) = p,Θ1 resp. cl(v2) = p,Θ2. Let c be a label

(c ∈ L). Then the following holds:

¬p�c,v1 ∧¬Θ1, Θ2�c,v⇒ ¬p,Θ1�c,v1 and

¬p�c,v2 ∧¬Θ1, Θ2�c,v⇒ ¬p,Θ2�c,v2

Proof (Lemma 2). The upward-filter � preserves all the literals whose label equals
to or is greater than the given label (e.g., �a preserves literals with labels a, ab,
d). From the definition of labeling function (in particular from the conditions
D3.1 and D3.2) it follows that ∀l ∈ Θ1, Θ2 : Lab(v1, l) v Lab(v, l). So, the literals
preserved by the upward filter in the vertex v1 (excluding the pivot) are also
preserved by the upward filter in the successor vertex v. Thus, it follows that
Θ1, Θ2�c,v1⇒ Θ1, Θ2�c,v, which can be equivalently rewritten into contrapositive
implication ¬Θ1, Θ2�c,v⇒ ¬Θ1, Θ2�c,v1⇒ ¬Θ1�c,v1 .

The implication ¬p�c,v1 ∧¬Θ1, Θ2�c,v⇒ ¬p,Θ1�c,v1 holds, because the same filter
is applied onto literal p (it is either filtered out or preserved by both filters).

The same reasoning applies to the second formula.
ut

Proof (Theorem 1—Correctness—cont.).

Induction hypothesis. Now, we will focus on the inductive step. Let v be an inner
vertex of the proof and let variable p be the pivot of the resolution at vertex v (i.e.,
p = piv(v)). Let vertex v1 be the antecedent of v with the vertex-clause containing
the pivot positively (i.e., cl(v1) = p,Θ1) and let vertex v2 be the antecedent of v

18 P. Janč́ık et al.

having negated pivot in its vertex-clause (i.e., cl(v2) = p,Θ2). From the induction
hypothesis, we know that for the antecedent vertices, the following invariants hold:

π |= A ∧ ¬p,Θ1�a,v1⇒ I1 and π |= B ∧ ¬p,Θ1�b,v1⇒ ¬I1 and
π |= A ∧ ¬p,Θ2�a,v2⇒ I2 and π |= B ∧ ¬p,Θ2�b,v2⇒ ¬I2

(IH)

For each type of the resolution, we establish the induction invariants for vertex v.

Res-a: Lab(v1, p) t Lab(v2, p) = a so I = I1 ∨ I2.
In this case, pivot variable p has label a in both antecedents v1 and v2.

(T1.Inv1) It follows that:

π |= p ∧A ∧ ¬Θ1, Θ2�a,v
(L1)
⇒ ¬p�a,v1 ∧A ∧ ¬Θ1, Θ2�a,v

(L2)
⇒

⇒ A ∧ ¬p,Θ1�a,v1
(IH)
⇒ I1

π |= p ∧A ∧ ¬Θ1, Θ2�a,v
(L1)
⇒ ¬p�a,v2 ∧A ∧ ¬Θ1, Θ2�a,v

(L2)
⇒

⇒ A ∧ ¬p,Θ2�a,v2
(IH)
⇒ I2

The first implication is application of Lemma 1. The second implication is
application of Lemma 2 and the last one is the induction hypothesis.
From the previous implications, it directly follows that:

π |= A ∧ ¬Θ1, Θ2�a,v⇔ (p ∨ p) ∧A ∧ ¬Θ1, Θ2�a,v⇒ (I1 ∨ I2)

The first equivalence is a simple logical consequence of p∨ p⇔ >. The second
implication follows from the two equations above.

(T1.Inv2) Because the label of the pivot in the antecedents is a, it follows that
¬p�b,v1⇔ ¬p�b,v2⇔ >. Thus, Lemma 2 can be applied directly without any
additional assumptions:

π |= B ∧ ¬Θ1, Θ2�b,v⇔ ¬p�b,v1 ∧B ∧ ¬Θ1, Θ2�b,v
(L2)
⇒ (1)

⇒ B ∧ ¬p,Θ1�b,v1
(IH)
⇒ ¬I1

π |= B ∧ ¬Θ1, Θ2�b,v⇔ ¬p�b,v2 ∧B ∧ ¬Θ1, Θ2�b,v
(L2)
⇒ (2)

⇒ B ∧ ¬p,Θ2�b,v2
(IH)
⇒ ¬I2

π |= B ∧ ¬Θ1, Θ2�b,v⇒ (¬I1 ∧ ¬I2)⇔ ¬(I2 ∨ I2)

The first implication follows from the equations (1) and (2). The second equiv-
alence factors out the negation.

(T1.Inv3) The third requirement (shared variables only) holds trivially. No new
variable is added into the partial vertex-interpolant.

Exploiting Partial Variable Assignment in Interpolation-based Model Checking 19

Res-b: Lab(v1, p) t Lab(v2, p) = b so I = I1 ∧ I2.
The proof is symmetric to the Res-a case. In this case the pivot variable has the
label b in both antecedents v1 and v2.

(T1.Inv1) The label of the pivot in the antecedents is b so it holds:
¬p�a,v1⇔ ¬p�a,v2⇔ >.

π |= A ∧ ¬Θ1, Θ2�a,v⇔ ¬p�a,v1 ∧A ∧ ¬Θ1, Θ2�a,v
(L2)
⇒

⇒ A ∧ ¬p,Θ1�a,v1
(IH)
⇒ I1

π |= A ∧ ¬Θ1, Θ2�a,v⇔ ¬p�a,v2 ∧A ∧ ¬Θ1, Θ2�a,v
(L2)
⇒

⇒ A ∧ ¬p,Θ2�a,v2
(IH)
⇒ I2

These equations directly yield the result:

π |= A ∧ ¬Θ1, Θ2�a,v⇒ (I1 ∧ I2)

(T1.Inv2) It follows that:

π |= p ∧B ∧ ¬Θ1, Θ2�b,v
(L1)
⇒ ¬p�b,v1 ∧B ∧ ¬Θ1, Θ2�b,v

(L2)
⇒

⇒ B ∧ ¬p,Θ1�b,v1
(IH)
⇒ ¬I1

π |= p ∧B ∧ ¬Θ1, Θ2�b,v
(L1)
⇒ ¬p�b,v2 ∧B ∧ ¬Θ1, Θ2�b,v

(L2)
⇒

⇒ B ∧ ¬p,Θ2�b,v2
(IH)
⇒ ¬I2

From the previous implications, it directly follows that:

π |= B ∧ ¬Θ1, Θ2�b,v⇔ (p ∨ p) ∧B ∧ ¬Θ1, Θ2�b,v⇒
⇒ (¬I1 ∨ ¬I2)⇔ ¬(I1 ∧ I2)

The first equivalence is a simple logical consequence of p∨ p⇔ >. The second
implication follows from the two equations above, while the last equivalence
factors out the negation.

Res-ab: Lab(v1, p) t Lab(v2, p) = ab, so I = (p ∨ I1) ∧ (p ∨ I2).

(T1.Inv1) It follows that:

π |= A ∧ ¬Θ1, Θ2�a,v⇒ p ∨ (p ∧A ∧ ¬Θ1, Θ2�a,v)
(L1)
⇒

⇒ p ∨ (¬p�a,v1 ∧A ∧ ¬Θ1, Θ2�a,v)
(L2)
⇒

⇒ p ∨ (A ∧ ¬p,Θ1�a,v1)
(IH)
⇒ (p ∨ I1)

π |= A ∧ ¬Θ1, Θ2�a,v⇒ p ∨ (p ∧A ∧ ¬Θ1, Θ2�a,v)
(L1)
⇒

⇒ p ∨ (¬p�a,v2 ∧A ∧ ¬Θ1, Θ2�a,v)
(L2)
⇒

⇒ p ∨ (A ∧ ¬p,Θ2�a,v2)
(IH)
⇒ (p ∨ I2)

20 P. Janč́ık et al.

The first implication is a logical consequence of p ∨ p ⇔ >. The second im-
plication is application of Lemma 1. The third implication is application of
Lemma 2 and the last one is the induction hypothesis. From the implications
above, it directly follows that:

π |= A ∧ ¬Θ1, Θ2�a,v)⇒ (p ∨ I1) ∧ (p ∨ I2)

(T1.Inv2) Similarly to the previous case:

π |= p ∧B ∧ ¬Θ1, Θ2�b,v
(L1)
⇒ p ∧ (¬p�b,v1 ∧B ∧ ¬Θ1, Θ2�b,v)

(L2)
⇒

⇒ p ∧ (B ∧ ¬p,Θ1�b,v1)
(IH)
⇒

⇒ p ∧ (¬I1)⇔ ¬(p ∨ I1)

π |= p ∧B ∧ ¬Θ1, Θ2�b,v
(L1)
⇒ p ∧ (¬p�b,v2 ∧B ∧ ¬Θ1, Θ2�b,v)

(L2)
⇒

⇒ p ∧ (B ∧ ¬p,Θ2�b,v2)
(IH)
⇒

⇒ p ∧ (¬I2)⇔ ¬(p ∨ I2)

In the first implication, the conjunct p is duplicated and then, Lemma 1 is
applied. The last implication is simple logical equality.

π |= B ∧ ¬Θ1, Θ2�b,v⇔ (p ∨ p) ∧B ∧ ¬Θ1, Θ2�b,v⇒
⇒ ¬(p ∨ I1) ∨ ¬(p ∨ I2)⇔ ¬((p ∨ I1) ∧ (p ∨ I2))

The same reasoning as in the Res-a (T1.Inv1) case is used. The first equiv-
alence is a simple logical consequence of p ∨ p ⇔ >. The second implication
follows from the two equations above. The last equivalence just factors out the
negation.

(T1.Inv3) Variable p is the only new variable added into the interpolant. Variable
p is shared (because of its label ab), thus the requirements are met. Moreover,
variable p is not assigned. If it would be assigned, it would be labeled d in one
of the antecedents, which would lead to the Res-d resolution.

Res-d: Lab(v1, p) t Lab(v2, p) = d so I = I1 resp. I = I2.
In this case, the pivot variable is assigned by PVA π. Labeling function Lab is

locality preserving and constraint D6.1 give us that there is exactly one antecedent
where the pivot is labeled d. Assume that Lab(v1, p) = d, so it holds that π |= p;
the case Lab(v2, p) = d is symmetric.

(T1.Inv1) It follows that:

π |= A ∧ ¬Θ1, Θ2�a,v⇔ ¬p�a,v2 ∧A ∧ ¬Θ1, Θ2�a,v
(L2)
⇒

⇒ A ∧ ¬p,Θ2�a,v2
(IH)
⇒ I2

The first equivalence holds because π |= ¬p�a,v2 ; the ¬p�a,v2 is either directly
> if the p literal is not preserved by the upward-filter or it is p if the p literal
is preserved by the filter �a,v2 . In the latter case, p is satisfied under π.

Exploiting Partial Variable Assignment in Interpolation-based Model Checking 21

b

ab = d

a

⊥

Fig. 13 Strength ordering (�)

(T1.Inv2) Similarly to the previous case, it holds:

π |= B ∧ ¬Θ1, Θ2�b,v⇔ ¬p�b,v2 ∧B ∧ ¬Θ1, Θ2�b,v
(L2)
⇒

⇒ B ∧ ¬p,Θ2�b,v2
(IH)
⇒ ¬I2

(T1.Inv3) This condition holds trivially from the induction hypothesis.

To summarize, we have shown that all the resolutions and hypotheses establish the
inductive invariant for its partial vertex-interpolant. Thus, the inductive invariant
also holds for the sink vertex s, where cl(s) = ∅ = ⊥; the inductive invariant
establishes Theorem 1 for the sink vertex.

ut

Symmetry. Notice that the locality constraints, as well as the way LPAISs compute
interpolants, are symmetric in terms of presence of formulas in the Aπ and Bπ sets
of satisfied clauses. It reflects the fact that these clauses are not a part of the
sub-problem under consideration, thus irrelevant for PVAI interpolants. Given
a fixed π, the satisfied clauses can be moved freely between the A and B sets;
both computed interpolants and locality of the labeling functions are unaffected if
satisfied clauses are moved. This fact allows us to articulate the strength theorem
in an elegant way.

5.3 Interpolant strength

Interpolation systems based on labeling provide some freedom in the choice of
labels (e.g., for shared variables); this choice affects the resulting interpolants, in
particular their logical strength. In the following, we investigate this relationship
in more detail.

Definition 8 (Strength order) Let � be a pre-order relation defined over the set
of labels S = {⊥, a, b, ab, d} as: b � ab = d � a � ⊥ (Fig. 13). Let Lab and Lab′

be labeling functions for a refutation R. We say Lab is stronger than Lab′, denoted
as Lab � Lab′, if for all vertices v ∈ V and for all literals l ∈ cl(v) it holds that
Lab(v, l) � Lab′(v, l).

22 P. Janč́ık et al.

Note that labels ab and d are of the same strength and can be exchanged if the
locality requirements permit it; b is the strongest label, while a is the weakest one
a literal can get. The following theorem states that the introduced strength order
on labeling functions also induces ordering of the produced interpolants by logical
strength.

Theorem 2 (Interpolant strength) Let R be a refutation of A ∧ B, π and π′ be

PVAs, and Lab and Lab′ be corresponding locality preserving labeling functions. Let

I be a partial variable assignment interpolant for LpaItp(Lab, R,A,B, π) and I ′ be a

PVAI for LpaItp(Lab′, R,A,B, π′).

If Lab � Lab′ then π, π′ |= I ⇒ I ′.

Note that if π and π′ are empty assignments, we obtain exactly the theorem on
interpolant strength from [7]. Also, note that the theorem permits different vari-
able assignments for the interpolants. Thus, it relates the interpolants generated
for different sub-problems (e.g., interpolants considering different sets of paths
through a given ARG node). Since both π and π′ are assumptions of the formula
I ⇒ I ′, the theorem applies to cases common to both sub-problems (i.e., to the
shared paths). Both interpolants (I and I ′) have to be computed using the same
A,B partitioning, thus interpolants for different ARG nodes cannot be compared
using this theorem; we present a generalization in this direction later.

Thm. 2 is a corollary of Thm. 3, articulated along with its proof below.

Weakened-labels filter. To be able to relate interpolants for different partitionings
(i.e., for different labeling functions), we need to introduce a new type of filter,
which preserves the literals whose label is weaker in Lab′ than in Lab. Let Lab and
Lab′ be labeling functions. Let v ∈ V be a vertex, Θ be a clause and C1, C2 ⊆ L be
sets of labels. The label change filter || is defined as follows:

Θ||Lab,Lab
′

v,C1⇒C2
= {l ∈ Θ | Lab(v, l) ∈ C1 and Lab′(v, l) ∈ C2}

For a preserved literal, set C1 specifies permitted labels for Lab and set C2 specifies
permitted labels for labeling function Lab′. We define weakened-labels filter |� as
follows:

Θ|�Lab,Lab
′

v = Θ||Lab,Lab
′

v,{b,ab,d}⇒{ab,d,a}

The filter preserves all the literals whose label is weaker in the primed labeling
function according to the strength ordering �. Note that the weakened-labels filter
also preserves some equally strong literals, i.e., those labeled ab or d by both
labeling functions. E.g., the filter preserves a literal l if the strongest labels b (i.e.,
Lab(v, l) = b) is weakened into label a or ab in Lab′(v, l), while it filters out a literal
if both functions assign label a to it. We omit the vertex and labeling functions
sub- and superscripts if clear from the context.

In [13], we proved the theorem above using the invariant shown below in the
proof sketch. In this article, we choose a different approach; in the next section
we show Theorem 3, which is stronger compared to the corresponding one in [13].
Theorem 2 directly follows from Theorem 3 (using the empty set of clauses S).

Exploiting Partial Variable Assignment in Interpolation-based Model Checking 23

As in LISs, for a fixed variable assignment there is a lattice of LPAISs ordered
according to the strength of labeling functions. The top element of the lattice
involves the strongest labeling function, which assigns label b to ACπB

C
π -shared and

ACπB
C
π -clean variables, while the labeling function of the bottom element assigns

label a to them. Theorem 2 claims that LPAISs produce interpolants ordered by
strength according to the lattice.

5.4 Path interpolation property

Several verification approaches such as [1,16,30] depend on the path interpolation

property (PI). In [21], the authors show that LISs can be employed to generate
path interpolants by providing a sequence of labeling functions that are decreasing
in terms of strength. In this subsection, we generalize this property for LPAIS. We
study conditions that the labeling functions have to satisfy in order to obtain a
sequence of interpolants with the PI property. The following theorem states the
main result:

Theorem 3 (PI property) Let Lab and Lab′ be locality preserving labeling functions

such that Lab � Lab′ (see Def. 8), R be a refutation of A ∧ S ∧ B, and π and π′ be

PVAs.

Then for the two interpolants I = LpaItp(Lab, R,A, S∪B, π) and I ′ = LpaItp(Lab′,
R,A ∪ S,B, π′), it holds that π, π′ |= I ∧ S ⇒ I ′.

Before we prove Thm. 3, we introduce auxiliary lemmas; the lemmas are of
similar purpose as lemmas used in the proof of the correctness (i.e., the proof of
Thm. 1). Lemma 3 about the weakened-labels filters is similar to Lemma 2. The
latter one is used to introduce assignment filters.

Lemma 3 (Weakened-labels filters in antecedent vertices)

Let R ≡ (V,E, cl, piv, s) be a resolution proof and let Lab and Lab′ be labeling functions

for proof R. Let v ∈ V be an inner vertex of the proof with vertex clause cl(v) = Θ1, Θ2.

Let vertices v1 and v2 be the antecedents of vertex v and their vertex clauses be cl(v1) =
p,Θ1 resp. cl(v2) = p,Θ2. Then the following holds:

¬p|�v1 ∧¬Θ1, Θ2|�v⇒ ¬p,Θ1|�v1 and

¬p|�v2 ∧¬Θ1, Θ2|�v⇒ ¬p,Θ2|�v2

Proof (Lemma 3). First, we show that if a literal l ∈ Θ1, Θ2 is preserved by the
weakened-labels filter in antecedent vertex v1, then it is also preserved by the
weakened-labels filter in vertex v where its label is a result of the join (i.e., t)
operation (see D3.2). The sets used by the filter |�, in particular {b, ab, d} and
{ab, d, a}, are closed under the join operation (i.e., t); formally, ∀c ∈ L and ∀c′ ∈
{b, ab, d} it holds that c t c′ ∈ {b, ab, d}.

If literal l is preserved by the weakened-labels filter in vertex v1, the first label-
ing function assigns to literal l a label from the set {b, ab, d} (formally, Lab(v1, l) ∈
{b, ab, d}); for the other labeling function, it holds that Lab′(v1, l) ∈ {ab, d, a}. Be-
cause these sets are closed under the join operation (which is used to compute the
labels at vertex v from the labels at vertex v1), the same holds even in vertex v

24 P. Janč́ık et al.

(formally Lab(v, l) ∈ {b, ab, d} and Lab′(v, l) ∈ {ab, d, a}). It means that literal l is
also preserved by the weakened-labels filter in vertex v.

It follows that Θ1, Θ2|�v1⇒ Θ1, Θ2|�v; the implication can be equivalently rewrit-
ten into the contrapositive form:

¬Θ1, Θ2|�v⇒ ¬Θ1, Θ2|�v1⇒ ¬Θ1|�v1

The claim of the lemma directly follows from the above implication:
¬p|�v1 ∧¬Θ1, Θ2|�v⇒ ¬p,Θ1|�v1

Note that the same filter is applied on pivot p; the pivot is either filtered or
preserved in both cases. The same reasoning applies to the second formula.

ut

Lemma 4 (Introducing assignment filter) Let π be a partial variable assignment

and Θ be a clause not satisfied by the partial assignment, i.e., π 6|= Θ.

Then the following holds: π |= Θ ⇔ Θ[π].

Proof (Lemma 4). It is possible to split the set of literals Θ into two disjoint sets;
set of literals Θ1 containing the literals over the assigned variables (these literals
will be filtered-out by the assignment filter) and set Θ2 containing the remaining
literals over the non-assigned variables. So Θ ⇔ Θ1 ∨Θ2.

From the assumption that π 6|= Θ, it follows that all the literals over assigned
variables evaluate to ⊥ under the assignment π, thus: π |= Θ1 ⇔ ⊥. From the
definition of the assignment filter, it directly follows that Θ2 ≡ Θ2[π] and Θ1[π] ≡
∅ ⇔ ⊥. Therefore, the following holds:

π |= Θ ⇔ Θ1 ∨Θ2 ⇔ ⊥∨Θ2 ⇔ Θ1[π] ∨Θ2[π]⇔ Θ[π]
ut

Proof (Theorem 3—Path interpolation property). By structural induction over refuta-
tion R we show that for each vertex v ∈ V of the refutation, the following invariant
holds:

π, π′ |= Iv ∧ S ∧ ¬Θ|�v⇒ I ′v

where cl(v) = Θ is the vertex clause and Iv and I ′v are the partial vertex-interpolants
for vertex v as generated by LPAIS using labeling functions Lab and Lab′, respec-
tively. In the proof, we show that the invariant holds for all possible combinations
of the rules that can be used to define partial vertex-interpolants Iv and I ′v.

Bases cases. The base cases correspond to the leaves of the proof where the hy-
potheses operations are applied. Since there are four possible Hyp rules for each
literal and each of the two labeling functions, there are sixteen possible combina-
tions of hypotheses; however, not all of them are possible due to Lab � Lab′. Below
we discuss each of the combinations in more detail.

As to the naming conventions, we call each case either as Hyp or Res, followed
by the kind of the rule used to compute the first partial vertex-interpolant I and
by the kind of the rule used to compute the second partial vertex-interpolant I ′.
Note that for the first interpolant, the partitioning is (A, S ∪ B), while for the
second interpolant the partitioning is (A∪ S,B); we use these names of partitions
in names of the Hyp rules.

Exploiting Partial Variable Assignment in Interpolation-based Model Checking 25

Hyp-ACπ -(ACπ′ ∪ SCπ′): Iv = Θ[π]|b,v,Lab and I ′v = Θ[π′]|b,v,Lab′ .
First, we show the following:

Θ|b,v,Lab ∧ ¬Θ|�v⇒ Θ|b,v,Lab′

Let literal l be labeled b by labeling function Lab (i.e., it is preserved by the
match filter |b,v,Lab). It can either get a label b by labeling function Lab′, thus l is
preserved by the match filter |b,v,Lab′ in the consequent of the implication, or it gets
a different label, which is necessarily weaker than b. In the latter case, the literal is
preserved by the weakened-labels filter |�v, which is negated in the antecedent of
the implication above. This means that if clause Θ|b,v,Lab is satisfied due to literal
l, then either the consequent of the implication is satisfied (the former case) and
the implication holds, or the negation of the literal is in the antecedent of the
implication (due to weakened-labels filter), so the antecedent of the implication is
not satisfied (and the whole implication holds).

We can add the assignments as assumptions. Then the following holds:

π, π′ |= Θ|b,v,Lab ∧ ¬Θ|�v⇒ Θ|b,v,Lab′

Clause Θ is neither satisfied by π nor by π′, so Lemma 4 can be used to remove
the falsified literals. Then the following holds:

π, π′ |= Θ[π]|b,v,Lab ∧ ¬Θ|�v⇒Θ[π′]|b,v,Lab′

π, π′ |= Iv ∧ S ∧ ¬Θ|�v⇔

Θ[π]|b,v,Lab ∧ S ∧ ¬Θ|�v⇒Θ[π′]|b,v,Lab′ ⇔ I ′v

Hyp-ACπ -(Aπ′ ∪ Sπ′): Iv = Θ[π]|b,v,Lab and I ′v = >.

Note that in contrast to the previous case, vertex clause Θ is satisfied under
assignment π′. In this case, the invariant holds trivially, since anything implies >.

Hyp-ACπ -BCπ′ : Iv = Θ[π]|b,v,Lab and I ′v = Θ[π′]|a,v,Lab′ .
This combination is impossible due to our partitionings; it would require clause

Θ to move from the A-part of the first partitioning into the B-part of the second
partitioning. However, the partitionings permit only moves of clauses from the B-
part of the first partitioning into the A-part of the second partitioning; the moved
clauses are those forming S.

Hyp-ACπ -Bπ′ : Iv = Θ[π]|b,v,Lab and I ′v = >. The same reasoning as above applies;
such combination is impossible due to our partitionings. Note that the reasoning
above is independent of the assignment.

26 P. Janč́ık et al.

Hyp-(BCπ ∪ SCπ)-(ACπ′ ∪ SCπ′): Iv = ¬Θ[π]|a,v,Lab and I ′v = Θ[π′]|b,v,Lab′ . In this case,
clause Θ is moved from the B-part of the first partitioning into the A-part of the
second partitioning; it means the clause belongs to the set of clauses S (Θ ∈ S).
First, we show that in this case, the following holds:

Θ ⇔ Θ|a,v,Lab ∨Θ|b,v,Lab′ ∨Θ|�v

The direction from right to left (i.e., the implication⇐) is trivial, since filters only
remove literals. So if the right-hand side of the equivalence holds, the unfiltered
clause Θ must also hold. The direction from left to right (i.e., the implication ⇒)
is shown below. We consider all the combinations of labels the literal l ∈ Θ can
get by labeling functions Lab and Lab′.

– If Lab(v, l) = a then the match filter |a,v,Lab preserves the literal l.
– If Lab(v, l) ∈ {ab, d} and Lab′(v, l) 6= b then the weakened-label filter |�v pre-

serves the literal l.
– If Lab(v, l) ∈ {ab, d} and Lab′(v, l) = b then the assumption Lab � Lab′ is

violated.
– If Lab(v, l) = b and Lab′(v, l) = b then the match filter |b,v,Lab′ preserves the

literal l.
– If Lab(v, l) = b and Lab′(v, l) 6= b then the weakened-label filter |�v preserves

the literal l.

The clause Θ is satisfied neither by π nor by π′ so Lemma 4 can be used to
remove the falsified literals. Then the following holds:

π, π′ |= Θ ⇔ Θ[π]|a,v,Lab ∨Θ[π′]|b,v,Lab′ ∨Θ|�v

The invariant is shown by the following:

π, π′ |= Iv ∧ S ∧ ¬Θ|�v≡
≡ ¬Θ[π]|a,v,Lab∧ S ∧ ¬Θ|�v⇒ (1)

⇒¬Θ[π]|a,v,Lab∧ Θ ∧ ¬Θ|�v⇔ (2)

⇔¬Θ[π]|a,v,Lab∧ (Θ[π]|a,v,Lab∨Θ[π′]|b,v,Lab′ ∨Θ|�v) ∧ ¬Θ|�v⇔ (3)

⇔¬Θ[π]|a,v,Lab∧ Θ[π′]|b,v,Lab′ ∧ ¬Θ|�v⇒ (4)

⇒Θ[π′]|b,v,Lab′ ≡ I ′v

The implication (1) follows from the fact that Θ ∈ S and S is a conjunction (or
equivalently a set) of clauses, so S ⇒ Θ. The equivalence (2) is shown above.
The equivalence (3) is a logical consequence. The following pattern is used twice:
¬A ∧ (A ∨ B) ⇔ (¬A ∧ A) ∨ (¬A ∧ B) ⇔ ¬A ∧ B, where we use A ≡ ¬Θ[π]|a,v,Lab
resp. A ≡ ¬Θ|�v. The implication (4) is a trivial logical consequence.

Hyp-(BCπ ∪ SCπ)-(Aπ′ ∪ Sπ′): Iv = ¬Θ[π]|a,v,Lab and I ′v = >.

As in all the other cases where the vertex clause is satisfied by the second
assignment π′, the invariant holds trivially, because anything implies I ′v ≡ >.

Exploiting Partial Variable Assignment in Interpolation-based Model Checking 27

Hyp-(BCπ ∪ SCπ)-BCπ′ : Iv = ¬Θ[π]|a,v,Lab and I ′v = ¬Θ[π′]|a,v,Lab′ .
This case is similar to the Hyp-ACπ -(ACπ′ ∪ SCπ′) case. First, we show that:

¬Θ|a,v,Lab ∧ ¬Θ|�v⇒ ¬Θ|a,v,Lab′

Let literal l be labeled a by labeling Lab′ (so it is preserved by the match filter
|a,v,Lab′). The literal is either labeled a by labeling Lab or not (in which case its
label can be b or ab). In the former case, the literal is preserved by the match filter
|a,v,Lab . In the latter case, the literal is preserved by the weakened-labels filter |�v.
To sum it up, all the literals in the consequent of the implication occur even in
the antecedent of the implication; this shows that the implication holds.

Clause Θ is neither satisfied by π nor by π′, so Lemma 4 can be used to remove
the falsified literals. Then the following holds:

π, π′ |= ¬Θ[π]|a,v,Lab ∧ ¬Θ|�v⇒ ¬Θ[π′]|a,v,Lab′

The implication above is even stronger than the invariant; it does not require S
to be a part of the antecedent of the implication.

Hyp-(BCπ ∪ SCπ)-Bπ′ : Iv = ¬Θ[π]|a,v,Lab and I ′v = >.
As in all the other cases where the vertex clause is satisfied by the second

assignment π′ the invariant holds trivially, because anything implies I ′v ≡ >.

Hyp-Aπ-(ACπ′ ∪ SCπ′): Iv = > and I ′v = Θ[π′]|b,v,Lab′ .
Vertex clause Θ is satisfied under π, thus there exists literal l ∈ Θ such that

Lab(v, l) = d; literal l makes the clause satisfied under π. From the assumption
(of the theorem that) Lab � Lab′, it follows that Lab′(v, l) 6= b; thus literal l is
preserved by weakened-labels filter |�v. It means that π, π′ |= ¬Θ|�v⇔ ⊥, so the
antecedent of the invariant implication is falsified by the assumed assignments and
the whole invariant implication holds.

Exactly the same reasoning applies to all the remaining hypotheses where the
assignment π satisfies the vertex clause; in particular, to the Hyp-Aπ-(Aπ′ ∪ Sπ′),
Hyp-Aπ-BCπ′ , Hyp-Aπ-Bπ′ , Hyp-(Bπ ∪ Sπ)-(ACπ′ ∪ SCπ′), Hyp-(Bπ ∪ Sπ)-(Aπ′ ∪ Sπ′),
Hyp-(Bπ ∪ Sπ)-BCπ′ , and Hyp-(Bπ ∪ Sπ)-Bπ′ .

Induction hypothesis. Now, we will focus on the inductive step. Let v be an inner
vertex of the proof and let variable p be the pivot of the refutation at vertex v (i.e.,
p = piv(v)). Let vertex v1 be the antecedent of v with the vertex-clause containing
the pivot positively (i.e., cl(v1) = p,Θ1) and let vertex v2 be the antecedent of v
having negated pivot in its vertex-clause (i.e., cl(v2) = p,Θ2). From the induction
hypothesis, we know that for the antecedent vertices the following invariants hold:

π, π′ |= Iv1 ∧ S ∧ ¬Θ|�v⇒ I ′v1 (PIH)

π, π′ |= Iv2 ∧ S ∧ ¬Θ|�v⇒ I ′v2

For each possible combination of the resolutions we establish the induction invari-
ant for the vertex v. Theoretically, there are 16 possible combinations of resolu-
tions, however, not all of them are possible due to the assumptions of the theorem;
below we discuss each of the combinations in more detail.

28 P. Janč́ık et al.

Res-a-a′: Lab(v1, p)t Lab(v2, p) = a and Lab′(v1, p)t Lab′(v2, p) = a. It means that
Iv ≡ Iv1 ∨ Iv2 and I ′v ≡ I ′v1 ∨ I

′
v2 .

The label of pivot p in both antecedent vertices v1 resp. v2 must be a (in both
labeling functions), so it is not preserved by the weakened-labels filters |�v1 and
|�v2 ; thus the following holds ¬p|�v1⇔ >.

It holds that:

π, π′ |= Iv1 ∧ S ∧ ¬Θ1, Θ2|�v⇔ ¬p|�v1 ∧Iv1 ∧ S ∧ ¬Θ1, Θ2|�v
L3⇒

⇒ Iv1 ∧ S ∧ ¬p,Θ1|�v1
PIH⇒ I ′v1

π, π′ |= Iv2 ∧ S ∧ ¬Θ1, Θ2|�v⇔ ¬p|�v2 ∧Iv2 ∧ S ∧ ¬Θ1, Θ2|�v
L3⇒

⇒ Iv2 ∧ S ∧ ¬p,Θ2|�v2
PIH⇒ I ′v2

The invariant for the vertex v follows directly from the implications above:

π, π′ |= ((Iv1 ∨ Iv2)) ∧ S ∧ ¬Θ1, Θ2|�v⇒ (I ′v1 ∨ I
′
v2)

Res-a-ab′, Res-a-d′ and Res-a-b′: All these cases violate the assumption of the the-
orem that Lab � Lab′. Pivot p gets a stronger label than a by Lab′ in at least one
of the antecedent vertices (i.e., v1 and v2); otherwise, this will become the pre-
vious Res-a-a′ case. Variable p at that vertex is the witness that the assumption
Lab � Lab′ is violated.

Res-ab-ab′: Lab(v1, p) t Lab(v2, p) = ab and Lab′(v1, p) t Lab′(v2, p) = ab. It means
that Iv ≡ (p ∨ Iv1) ∧ (p ∨ Iv2) and I ′v ≡ (p ∨ I ′v1) ∧ (p ∨ I ′v2).

Note that in this case, the proof is independent of the labels of the pivot
variable. Also note that the proof works regardless of whether p is assigned by
assignment π (resp. π′) or not. So it can be safely used to show other cases, such
as Res-ab-a′, as well.

We have to show the following:

π, π′ |= (p ∨ Iv1) ∧ (p ∨ Iv2) ∧ S ∧ ¬Θ1, Θ2|�v⇒ (p ∨ I ′v1) ∧ (p ∨ I ′v2)

First, we introduce two auxiliary implications. The following holds:

π, π′ |= Iv1 ∧ S ∧ ¬Θ1, Θ2|�v⇒ p ∨ (p ∧ Iv1 ∧ S ∧ ¬Θ1, Θ2|�v)⇒

⇒ p ∨ (¬p|�v1 ∧Iv1 ∧ S ∧ ¬Θ1, Θ2|�v)
L3⇒

⇒ p ∨ (Iv1 ∧ S ∧ ¬p,Θ1|�v1)
PIH⇒ p ∨ I ′v1

π, π′ |= Iv2 ∧ S ∧ ¬Θ1, Θ2|�v⇒ p ∨ (p ∧ Iv2 ∧ S ∧ ¬Θ1, Θ2|�v)⇒

⇒ p ∨ (¬p|�v2 ∧Iv2 ∧ S ∧ ¬Θ1, Θ2|�v)
L3⇒

⇒ p ∨ (Iv2 ∧ S ∧ ¬p,Θ1|�v2)
PIH⇒ p ∨ I ′v2

The first implication stems from the fact that p∨p⇔ >. The second implication
holds because p⇒ ¬p|�v1 ; either the literal p is preserved by the filter |�v1 and then
it holds that p ⇔ ¬p|�v1 , or the literal p is not preserved by the weakened-labels
filter and then it holds that ¬p|�v1⇔ >.

Exploiting Partial Variable Assignment in Interpolation-based Model Checking 29

The proof can be split into two cases. It holds that:

(p ∨ Iv1) ∧ (p ∨ Iv2)⇔(p ∧ Iv2) (1)

∨
(p ∧ Iv1) (2)

We show that each of the two cases (1) and (2) leads to (p ∨ I ′v1) ∧ (p ∨ I ′v2).

π, π′ |= (p ∧ Iv1) ∧ S ∧ ¬Θ1, Θ2|�v ⇒p ∧ (p ∨ I ′v1) ⇒(p ∨ I ′v1) ∧ (p ∨ I ′v2)

π, π′ |= (p ∧ Iv2) ∧ S ∧ ¬Θ1, Θ2|�v ⇒p ∧ (p ∨ I ′v2) ⇒(p ∨ I ′v1) ∧ (p ∨ I ′v2)

The first implication comes from the auxiliary implications above. The second
implication is a simple logical consequence.

We have shown that:

π, π′ |= (p ∨ Iv1) ∧ (p ∨ Iv2) ∧ S ∧ ¬Θ1, Θ2|�v⇒ (p ∨ I ′v1) ∧ (p ∨ I ′v2)

Res-ab-a′: Lab(v1, p) t Lab(v2, p) = ab and Lab′(v1, p) t Lab′(v2, p) = a. It means
that Iv ≡ (p ∨ Iv1) ∧ (p ∨ Iv2) and I ′v ≡ I ′v1 ∨ I

′
v2 .

It holds that:

π, π′ |= (p ∨ Iv1) ∧ (p ∨ Iv2) ∧ S ∧ ¬Θ1, Θ2|�v ⇒

⇒ (p ∨ I ′v1) ∧ (p ∨ I ′v2)⇒ I ′v1 ∨ I
′
v2

The first implication comes from Res-ab-ab′. The second one is a trivial logical
consequence.

Res-ab-d′: Lab(v1, p) t Lab(v2, p) = ab and Lab′(v1, p) t Lab′(v2, p) = d. So, partial
vertex-interpolant Iv is defined as follows: Iv ≡ (p ∨ Iv1) ∧ (p ∨ Iv2). Assume that
Lab′(v1, p) = d thus I ′v ≡ I ′v2 . The situation is symmetric if Lab′(v2, p) = d.

It holds that:

π, π′ |= (p ∨ Iv1) ∧ (p ∨ Iv2) ∧ S ∧ ¬Θ1, Θ2|�v⇒ (p ∨ I ′v1) ∧ (p ∨ I ′v2)⇔ I ′v2

The implication comes from Res-ab-ab′. It holds that π′ |= p (the locality con-
straint D6.1 and Lab′(v1, p) = d); the equivalence is a trivial logical consequence
of the fact that variable p is assigned > by π′.

Res-ab-b′: This case violates the assumption of the theorem that Lab � Lab′. The
pivot variable p gets the strongest label b by Lab′ in both antecedent vertices (i.e.,
v1 and v2). However, the first labeling function Lab has to assign a weaker label a
resp. ab to the pivot variable in at least one of the antecedent vertices; otherwise
this case will become Res-b-b′. Variable p at that vertex is the witness that the
assumption Lab � Lab′ is violated.

30 P. Janč́ık et al.

Res-b-a′: Lab(v1, p) t Lab(v2, p) = b and Lab′(v1, p) t Lab′(v2, p) = a. It means that
Iv ≡ Iv1 ∧ Iv2 and I ′v ≡ I ′v1 ∨ I

′
v2 .

It holds that:

π, π′ |= (Iv1 ∧ Iv2) ∧ S ∧ ¬Θ1, Θ2|�v ⇒
⇒ (p ∨ Iv1) ∧ (p ∨ Iv2) ∧ S ∧ ¬Θ1, Θ2|�v ⇒

⇒ (p ∨ I ′v1) ∧ (p ∨ I ′v2)⇒ I ′v1 ∨ I
′
v2

The first and third implications are simple logical consequences. The second
implication comes from Res-ab-ab′.

Res-b-ab′: Lab(v1, p) t Lab(v2, p) = b and Lab′(v1, p) t Lab′(v2, p) = ab. It means
that Iv ≡ Iv1 ∧ Iv2 and I ′v ≡ (p ∨ I ′v1) ∧ (p ∨ I ′v2).

It holds that:

π, π′ |= (Iv1 ∧ Iv2) ∧ S ∧ ¬Θ1, Θ2|�v ⇒

⇒ (p ∨ Iv1) ∧ (p ∨ Iv2) ∧ S ∧ ¬Θ1, Θ2|�v ⇒ (p ∨ I ′v1) ∧ (p ∨ I ′v2)

The first implication is simple logical consequence. The second implication
comes from Res-ab-ab′.

Res-b-d′: Lab(v1, p) t Lab(v2, p) = b and Lab′(v1, p) t Lab′(v2, p) = d. So, partial
vertex-interpolant Iv is defined as Iv ≡ Iv1 ∧ Iv2 . Assume that Lab′(v1, p) = d, thus
I ′v ≡ I ′v2 . The situation is symmetric if Lab′(v2, p) = d. We will use Res-ab-ab′ in
the same way as in the above cases.

It holds that:

π, π′ |= (Iv1 ∧ Iv2) ∧ S ∧ ¬Θ1, Θ2|�v ⇒
⇒ (p ∨ Iv1) ∧ (p ∨ Iv2) ∧ S ∧ ¬Θ1, Θ2|�v ⇒

⇒ (p ∨ I ′v1) ∧ (p ∨ I ′v2)⇔ I ′v2

The first implication is a simple logical consequence. The second implication
comes from Res-ab-ab′. It holds that π′ |= p (the locality constraint D6.1 and
Lab′(v1, p) = d); the second equivalence is a trivial logical consequence of the fact
that variable p is assigned > by π′.

Res-b-b′: Lab(v1, p) t Lab(v2, p) = b and Lab′(v1, p) t Lab′(v2, p) = b. It means that
Iv ≡ Iv1 ∧ Iv2 and I ′v ≡ I ′v1 ∧ I

′
v2 .

The label of pivot p in both antecedent vertices v1 and v2 must be b (in both
labeling functions), so it is not preserved by the weakened-labels filters |�v1 and
|�v2 ; thus, it holds that ¬p|�v1⇔ >.

The same auxiliary implications as in the previous Res-a-a′ case hold:

π, π′ |= Iv1 ∧ S ∧ ¬Θ1, Θ2|�v⇔ ¬p|�v1 ∧Iv1 ∧ S ∧ ¬Θ1, Θ2|�v
L3⇒

⇒ Iv1 ∧ S ∧ ¬p,Θ1|�v1
PIH⇒ I ′v1

π, π′ |= Iv2 ∧ S ∧ ¬Θ1, Θ2|�v⇔ ¬p|�v2 ∧Iv2 ∧ S ∧ ¬Θ1, Θ2|�v
L3⇒

⇒ Iv2 ∧ S ∧ ¬p,Θ2|�v2
PIH⇒ I ′v2

Exploiting Partial Variable Assignment in Interpolation-based Model Checking 31

The first equivalence is shown above. The following implication is application
of Lemma 3, while the last one is the induction hypothesis.

The invariant for the vertex v follows directly from these implications:

π, π′ |= (Iv1 ∧ Iv2) ∧ ¬Θ1, Θ2|�v⇒ (I ′v1 ∧ I
′
v2)

Res-d-a′: Lab(v1, p)t Lab(v2, p) = d and Lab′(v1, p)t Lab′(v2, p) = a. It means that
partial vertex-interpolant I ′v is defined as follows: I ′v ≡ I ′v1 ∨ I

′
v2 . Assume that

Lab(v1, p) = d, thus Iv ≡ Iv2 . The situation is symmetric if Lab(v2, p) = d.
It holds that π |= p (the locality constraint D6.1 and Lab(v1, p) = d); thus, the

following equivalence holds: π |= Iv2 ⇔ (p ∨ Iv1) ∧ (p ∨ Iv2). So, the invariant for
vertex v can be established using the Res-ab-ab resolution:

π, π′ |= Iv2 ∧ S ∧ ¬Θ1, Θ2|�v ⇔
⇔ (p ∨ Iv1) ∧ (p ∨ Iv2) ∧ S ∧ ¬Θ1, Θ2|�v ⇒

⇒ (p ∨ I ′v1) ∧ (p ∨ I ′v2)⇒ I ′v1 ∨ I
′
v2

Res-d-ab′: Lab(v1, p)tLab(v2, p) = d and Lab′(v1, p)tLab′(v2, p) = ab. It means that
partial vertex-interpolant I ′v is defined as follows: I ′v ≡ (p∨ I ′v1)∧ (p∨ I ′v2). Assume
that Lab(v1, p) = d, thus Iv ≡ Iv2 . The situation is symmetric if Lab(v2, p) = d.

It holds that π |= p (the locality constraint D6.1 and Lab(v1, p) = d); thus the
following equivalence holds: π |= Iv2 ⇔ (p ∨ Iv1) ∧ (p ∨ Iv2).

The invariant for vertex v can be established using the Res-ab-ab resolution:

π, π′ |= Iv2 ∧ S ∧ ¬Θ1, Θ2|�v ⇔

⇔ (p ∨ Iv1) ∧ (p ∨ Iv2) ∧ S ∧ ¬Θ1, Θ2|�v ⇒ (p ∨ I ′v1) ∧ (p ∨ I ′v2)

Res-d-d′: Lab(v1, p) t Lab(v2, p) = d and Lab′(v1, p) t Lab′(v2, p) = d.
This rule splits into two different sub-cases; the pivot variable gets assigned

either the same value by π and π′ or one assignment assigns >, while the other
assignment assigns ⊥ to p.

In the latter case, the invariant for vertex v holds trivially. The assumptions
(i.e., assignments) contradict, so any formula, e.g., the invariant, holds. Let us focus
on the former case. Assume that Lab(v1, p) = d, thus it holds that Lab′(v1, p) = d

and Iv ≡ Iv2 , I ′v ≡ I ′v2 . The situation is symmetric if Lab(v2, p) = d.
The invariant for vertex v can be established from the invariant of vertex v2:

π, π′ |= Iv2 ∧ S ∧ ¬Θ1, Θ2|�v⇔ p ∧ Iv2 ∧ S ∧ ¬Θ1, Θ2|�v ⇔

⇒ ¬p|�v2 ∧Iv2 ∧ S ∧ ¬Θ1, Θ2|�v
L3⇒

⇒ Iv2 ∧ S ∧ ¬p,Θ1|�v2
PIH⇒ I ′v2

It holds that π |= p (the locality constraint D6.1 and Lab(v1, p) = d); this shows
the first equivalence. It holds that π |= ¬p|�v2 ; either the filter preserves the literal
p, which means that due to the assignment ¬p ≡ p evaluates to > or the filter
removes the literal and the negated empty clause is equivalent to > without any
assumptions. The above reasoning shows the second equivalence.

Note that alternatively, this case can be shown via Res-ab-ab resolution as well.

32 P. Janč́ık et al.

1 → 2 → 3 → 4
(A,S ∪B, π) (A,S ∪B, (π, π′)) (A ∪ S,B, (π, π′)) (A ∪ S,B, π′)

Lab � Lab+
π→(π,π′) � LabS(π,π′) � Lab−

(π,π′)→π′

Fig. 14 Idea of PI property proof in [13].

Res-d-b′: This case violates the assumption of the theorem that Lab � Lab′. Pivot
p gets the strongest label b by Lab′ in both antecedent vertices (i.e., v1 and v2).
However, the first labeling function Lab has to assign a weaker label d to the pivot
variable in one of the antecedent vertices. Variable p at that vertex is the witness
that assumption Lab � Lab′ is violated.

ut

Existence of labeling functions. Theorem 3 requires two labeling functions related
by their strength (Lab � Lab′). However, such a pair of labeling functions may not
exist. In the following, we discuss this in more detail. To simplify the situation,
first assume that no clauses are moved between the A and B parts, i.e., S ≡ ∅.

Assume that ACπ -local variable x is assigned True and that x satisfies a clause
in A (formally expressed π′ ≡ π ∧ x and that ACπ ⊃ Aπ′).

In such a case, labeling function Lab has to assign label a to all occurrences
of literal x, since x is ACπ -local (under assignment π). However, labeling function
Lab′ needs to assign label d to these literals because of π′. These literals show
that Lab � Lab′. A symmetric situation occurs if an unassigned variable becomes
BCπ′ -local.

In [13], the PI property is shown in a different way, however, the proof is
constructive. In other words, given a labeling function Lab, (the strongest locality-
preserving) labeling function Lab′ for (A ∪ S,B) and assignment π′ are created
(denoted as Lab−

(π,π′)→π′ in the proof).

In [13] the strongest possible locality preserving labeling function (Lab−
(π,π′)→π′)

is constructed in 3 steps, which are highlighted in Fig. 14.

In the first step (1 → 2), new variables from π′ are assigned, thus the as-
signment being considered in 2 is π ∧ π′. An extended-assignment labeling function

(Lab+π→(π,π′))—the strongest locality-preserving labeling function if new variables

get assigned—is created from Lab. In the second step (2 → 3), the clauses of
S are moved under the fixed variable assignment (π ∧ π′). The strongest succes-

sor labeling function (LabS(π,π′)) is created from Lab+π→(π,π′). In the the last step

(3 → 4), the assignment π is removed. The restricted-assignment labeling function

(Lab−
(π,π′)→π′)—the strongest locality-preserving labeling function if variables get

unassigned—is computed from LabS(π,π′).

We have shown that under some additional assumptions (which are easy to sat-
isfy in our motivation example), the labeling functions are connected by strength
as shown in the third line of Fig. 14. Hereby, we have constructed (locality pre-
serving) function Lab−

(π,π′)→π′ that is weaker than Lab as required. Moreover, we

have shown that Lab−
(π,π′)→π′ is the strongest function satisfying the requirements.

Exploiting Partial Variable Assignment in Interpolation-based Model Checking 33

V
e

ri
fi

c
a

ti
o

n
to

o
l

MINISAT

PERIPLO-based preprocessing

CNFization Proof Construction Proof Reduction

FCNF

UNSAT

PVA Interpolation engine

Interpolant
Construction

d-Labeler

LIS

Refutation R

PVAIR

PVA Interpolant Ii

Partitioning Pi
Assignment pi R, Pi

d-Labeling i

R, Pi

Labeling i

Fig. 15 PVAIR architecture.

DAG interpolants. Let us look back at our motivation example. For each ARG
node (i), the PVA πi blocking all paths not going via the node i can be easily
constructed; see assignment π3 in the motivation example. Such an assignment
blocks each node j (i.e., assigns False to the corresponding structure-encoding
variables nj) that both cannot reach node i (j 6 i) and cannot be reached from
node i (i 6 j); formally: πi ≡ ni ∧

∧
j

(¬nj | j 6 i and i 6 j).

Let each ARG node (i) be annotated by the blocking PVA as shown above
and Labi be (locality preserving) labeling functions such that their strength is
decreasing along each ARG edge, i.e., for each ARG edge i → j, it holds that
Labi � Labj .

Assume that node PVA interpolants are computed by LPAIS using the as-
signments and labeling functions above; formally, Ii ≡ LpaItp(Labi, R,Ai, Bi, πi)
where R is the Cond for given ARG and Ai is the part of R corresponding to the
antecedent nodes of i. Then, by Theorem 3, it directly follows that node PVA
interpolants form so called DAG interpolants.

The variable assignment is used to remove out-of-scope variables, while the
path interpolation property guarantees a correct strength relation among node
interpolants.

6 Evaluation

We implemented LPAIS in Partial Variable Assignment InterpolatoR (PVAIR).
PVAIR is built on top of the open-source tool PeRIPLO [19], which provides
refutations and is able to optimize the refutations for interpolation through trans-
formations. PeRIPLO has been used in various verification projects, including
function summarization in eVolCheck [9] and FunFrog [25], both as an interpo-
lation engine and as a SAT solver.

34 P. Janč́ık et al.

The PVAIR architecture is shown in Fig. 15. It takes a propositional formula Φ,
its (A,B)-partitioning, and a partial variable assignment π as input and produces
PVA interpolant if the input formula is unsatisfiable. The input can be provided
either in a file in the SMT-LIB 2.0 [4] format or via a C++ API.

The workflow of the PVAIR tool is as follows. First, the input formula is
passed to the PeRIPLO-based preprocessing module. Since the formula can be
in arbitrary form, it is transformed into CNF (the top box in Fig. 15) using an
efficient, structure-sharing version of the Tseitin encoding [29]. Its satisfiability is
then determined using the MiniSAT 2.2.0 solver [8].

In the case of an unsatisfiable input, an initial refutation is extracted from the
solver in the compact MiniSAT internal proof format. The format is then trans-
formed into a resolution DAG to allow more efficient handling of the refutation
(Proof Construction). In particular, using the resolution DAG form, the refutation
can be compressed using well-known proof reduction techniques such as structural
hashing or pivot recycling [20,18] available in PeRIPLO (Proof Reduction). The
proof reduction techniques can be enabled/disabled via a configuration file or API.

Once the refutation R is computed, it is passed together with the partitionings
and variable assignments to the interpolation engine (the bottom box in Fig. 15).
From this point on, any number of partial variable assignments πi and partition-
ings Pi (into Ai ∧Bi) can be given as input to the tool and used to construct the
corresponding interpolants Ii. Note that in any case only one SAT-solver call will
be made during the entire execution. Then the refutation is labeled; the labels are
assigned to literals in the refutation based on the partitioning and the assignment
and selected LIS-based interpolation algorithm (which can be chosen in the config-
uration file or via API). When the labeling is complete, it is used together with the
partitioning and refutation R to compute interpolants (Interpolant Construction).

The construction starts by computing partial vertex-interpolants (according to
the upper part of Tab. 1) for the leaf nodes of the refutation. The computation
then proceeds from the leaves to the root node. During the interpolant construc-
tion, partial interpolants are optimized using Boolean constant propagation and
structural sharing (hashing). The final interpolant is computed in the root node.

In symbolic model checking Craig interpolants are used as a tool to compute
sets of program states with required properties; their usage varies significantly
among verification techniques. Thus we decide to choose unsatisfiable benchmarks
from SAT Competition [23]. They provide us with large and heterogeneous set of
benchmarks. We also employed the PVAIR tool in software verification process;
we applied it on computational problems generated by the eVolCheck tool during
verification procedure. To demonstrate the tool performance, we measured the size
of produced interpolants and its effect on the total verification time.

6.1 SAT competition

We used 47 unsatisfiable benchmarks from the SAT Competition 2011 from all
categories—12 from the Application (APP), 11 from the Crafted (CRF), and 24
from the Random (RND) sets. Since the benchmarks are not partitioned, we gen-
erated six partitionings for each benchmark; we simulated the typical way the path
interpolants are computed, i.e., we randomly choose a number n, and the first n
clauses of the benchmark will belong to the A part, whereas the remaining clauses

Exploiting Partial Variable Assignment in Interpolation-based Model Checking 35

0

0.5

1

1.5

2

2.5

3

3.5

0 0.5 1 1.5 2 2.5 3 3.5 4

CRF

RND

APP

0

0.5

1

1.5

2

2.5

3

3.5

0 0.5 1 1.5 2 2.5 3 3.5 4

CRF

RND

APP

Fig. 16 Comparison of interpolant sizes computed without variable assignment [x] and with
one variable assigned [y] (left) and five variables assigned (right).

PVAIs APP RND CRF All
No Assignment 344 298.7 1 308 750.1 489 469.1 776 573.9
1 var 92.8 % 83.0 % 78.1 % 83.7 %
5 vars 76.2 % 45.2 % 31.5 % 47.6 %
20 vars 48.3 % 10.1 % 4.8 % 15.0 %

Itp. from sub-prob. APP RND CRF All
No Assignment 344 298.7 1 308 750.1 489 469.1 776 573.9
1 var 69.5 % 55.0 % 65.5 % 58.8 %
5 vars 24.4 % 5.7 % 9.7 % 9.1 %
20 vars 0.12 % 0.01% 0.39% 0.09%

Table 2 Average interpolant sizes by category and number of assigned variables.

belong to the B part. We ensure that no partition is empty. No assignment is given
by authors of the benchmarks, thus for each partitioning, we generate five random
variable assignments consisting of a single, five, resp. twenty assigned variables.
Assignments of various sizes indicate how the reduction scales w.r.t. the number
of assigned variables.

For comparison, we use McMillan’s interpolants—a widely used approach. Ex-
periments were run on a Linux server with Intel Xeon X5687 CPU using the
timeout of 60 minutes and the memory limit of 20GB using the GNU Parallel en-
vironment [27]. The proof reduction techniques were disabled; we used the default
PeRIPLO settings.

Fig. 16 compares the sizes of the computed interpolants. Each point in the
graph corresponds to a single partitioning of a benchmark; the x-axis represents
the interpolant size if no assignment is provided (Craig interpolant), while the
y-axis represents the size of the PVA interpolant with a single (resp. five and
twenty) assigned variable(s). For presentation clarity, the y-axis is the average size
of all five random assignments generated for a given partitioning. The values on
axes represent millions of nodes if an interpolant is represented as DAG (counting
literals and Boolean operators). All graphs show expected reduction in the size
for PVA interpolants as well as substantially larger reduction in case of five resp.
twenty assigned variables. In all graphs, the same partition of the same bench-
mark shares the same x-value, thus it is possible, especially for the larger ones, to
compare their reductions.

36 P. Janč́ık et al.

Tab. 2 summarizes the results shown in the graphs, reporting precise numbers.
The first table compares the sizes of PVA interpolants to Craig interpolants. The
No assignment row shows the average size of Craig interpolants for a given bench-
mark type. The remaining rows show the relative sizes of focused interpolants
w.r.t. the No assignment row. The application benchmarks exhibit a smaller re-
duction compared to the other types, and even for twenty assigned variables, the
interpolants are half in the size of the Craig interpolants.

Time and memory demands are crucial properties of each interpolation tool.
The reduction in overall running time and required memory roughly correspond
to the reduction of interpolant sizes; e.g., on average PVAIR is 11% faster and
requires 9% less memory if a single variable is assigned. The time and memory
savings occur during the interpolant computation phase due to smaller interpolants
being handled.

A PVA interpolant can be seen as a Craig interpolant for the sub-problem
corresponding to the related partial assignment. For each pair of partitioning and
assignment, we created the sub-problem instance and used PVAIR to compute the
Craig interpolant for it. Sub-problems are simpler compared to the benchmark
from which they were generated; the satisfied clauses and falsified literals are
removed. As a result also the interpolants for sub-problems are typically smaller
compared to Craig interpolants of the benchmark. However, the interpolant for
each sub-problem is computed from a different refutation; in contrast to focused
interpolants, which, for a particular benchmark, are all computed from the same
refutation. This means that the sequence of interpolants for sub-problems may not
have the path interpolation property [30].

Conclusions of the experimentation. The No assignment reflects the state-of-the-art
approaches, where Craig interpolants are used directly. Focused interpolants show
how the size of the interpolants can be reduced if the model checker (i.e., a tool
generating the input) provides an assignment together with a partitioning. While
in some cases interpolants for a sub-problem can be seen as an alternative to
focused interpolants because of their similar meaning, these interpolants lack the
properties of the focused ones.

6.2 Applying PVAIR for Checking Software Upgrades

The usefulness of PVAIR is motivated by the tremendous role of interpolation in
symbolic model checking. One of the possible applications of PVAIR is checking
software upgrades [24]. The eVolCheck tool relies on interpolation to generate so
called function summaries for a given program S and an assertion a, and then it
uses them to accelerate verification of a modified version U of S against the same
assertion a.

Below, we describe the technique in more detail. eVolCheck follows the Boun-
ded Model Checking paradigm, in which loops are unrolled a fixed number of
times, and the verification of S against a is reduced to the satisfiability of formula
S ∧ ¬a. If this formula is unsatisfiable, a set of interpolants can be extracted
from the resolution refutation. We refer to them as to function summaries [26].
By construction, a function summary is an over-approximation of behavior of

Exploiting Partial Variable Assignment in Interpolation-based Model Checking 37

the corresponding function, and it preserves all the necessary information about
reachable states in S which is relevant to the proof that a holds in S.

Given a modified version U of S, eVolCheck validates the existing function
summaries for the new behavior of the corresponding functions in U . In that
context, programs S and U must have a non-empty set of common function calls.
eVolCheck traverses this set starting from the deepest level of the (unwound
during preprocessing) function call tree and checks whether each original function
summary still over-approximates the new behavior of the corresponding function.
If there is a function call, the original summary of which does not over-approximate
the new behavior, eVolCheck propagates the check to the caller function. If there
is no function to propagate then U is buggy. If at some depth of the unwound
call tree all the function summaries are proven to be valid, then U is safe, and
eVolCheck reconstructs the summaries for the modified function calls.

Applying PVAIR to eVolCheck. Consider the case when U is obtained from S

by removing some behaviors (deleting some lines of code), i.e., U is a refinement
of S. Then by construction, the original summaries of S are still valid over-
approximations of the new behavior of the corresponding functions in U . How-
ever, they might be unnecessarily general and consume excessive memory. While
the use of the original summaries does not break soundness of the further upgrade
checking, it is practical to refresh, and thereby potentially shrink, the summaries
to become more accurate with respect to U .

The baseline eVolCheck’s algorithm is not designed for refreshing summaries
besides completely re-verifying U . In contrast, after integrating it with PVAIR, this
approach becomes natural. Let ∆S,U denote the behavioral difference between S

and U , i.e., the set of behaviors of S not present in U . If the set ∆S,U is non-
empty, it could be exploited by PVAIR to generate the partial interpolants that
represent new summaries for each function in U . These updated summaries are
still guaranteed to preserve safety of the assertion a in U .

Experiments. We experimented with PVAIR on a set of 10 pairs of different bench-
marks written in C. They were crafted by us based on the prior experience with
eVolCheck. In particular, we focused on cases which are hard for the default
implementation of eVolCheck. In particular, all benchmarks were quite simple
(tens of LOC), however, they use non-linear arithmetic operations. After the re-
quired propositional encoding (i.e., bit-blasting), the resulting large-size formulae
have been a bottleneck for solving and interpolation using the original eVolCheck

approach.
In our experiments, for each pair of programs, S and U , we obtained U from the

corresponding S by assigning guards in some conditional expressions. In particular,
we replaced the code if P do A else do B by assume(P); A. This is equivalent to
assigning P = true, and ∆S,U consists of the behaviors specified by assume(¬P); B.
For simplicity, in our experiments, we assumed that ∆S,U affected only a single
function f .

To study the behavior of eVolCheck in this scenario, we constructed examples
of the form given in Fig. 17. The idea is that the programmer determines the
initial version of the function fS (left top) to be too complex with respect to the
assumptions and the assertion (right bottom), and re-implements the function as
fU (left bottom). Function fU has fewer behaviors than function fS and therefore

38 P. Janč́ık et al.

fS(x1, x2, x3, x4):
if (*):

res := cplx1(x1, x2, x3, x4)
else:

res := cplx2(x1, x2, x3, x4)
if (*):

res := res + cplx1(x1, x2, x3, x4)
else:

res := res + cplx2(x1, x2, x3, x4)
return res

fU(x1, x2, x3, x4):
res := cplx2(x1, x2, x3, x4)
res := res + cplx2(x1, x2, x3, x4)
return res

cplx1(x1, x2, x3, x4):
return 5× (x1 × x2 + x3 × x4)

cplx2(x1, x2, x3, x4):
return 5× (x1 + x2 × x3 + x4)

main:
assume(3 < bi < 20 for all i = 1, ..., 4)
res := f(b1, b2, b3, b4)
assert(res > b1 + b2 ∗ b3)

Fig. 17 An eVolCheck example benchmark. An initial and an optimized version of the
function f (left, fS and fU, respectively), and the functions cplx1, cplx2 simulating complex
operations and a main function (right).

the summary of fS is valid for fU. In the examples, the number of conditional
expressions per function ranges from one to three.

The results of our experiments are shown in Tab. 3 and Tab. 42. For each S and
U , we identified ∆S,U and obtained the set of conditional expressions to be assigned
in S (column #var. assigned). Then we performed two steps: (1) constructed the
summary of f without/with ∆S,U ; and (2) validated the corresponding summaries
of f with respect to the new code in U . This experiment illustrates to what extent:

(a) the use of PVAIR yields smaller summaries than the ones of PeRIPLO,
(b) the use of smaller summaries improves the overall performance of eVolCheck.

We collected the size of the resulting interpolants and total verification time needed
to perform steps (1) and (2). We used the Pudlák interpolation algorithm [17]
(which is more suitable for function summaries than McMillan’s) to construct
the “orig.” interpolants (the ones constructed without ∆S,U). As to the runtime
spent by particular phases of verification, the largest amount of it is spent by SAT
solver, while translation of the program into the formula and generation of the
interpolants are negligible.

Conclusions of the experimentation. As can be seen from the tables, the use of
PVAIR helped eVolCheck to make the function summaries up to 60% smaller
compared to the ones produced by PeRIPLO (columns #var. orig vs. #var. PVAI,
and #cl. orig vs. #cl. PVAI), while taking almost no additional time (columns boot.

orig. vs. boot. PVAI). Furthermore, eVolCheck spent up to 60% less effort in the
validating step (columns upgr. orig. vs. upgr. PVAI), in which the model checker
finally confirmed that the new code is safe. In other words, in the considered
verification scenario and driven by PVAIR, eVolCheck improved both the size of
the summaries and the overall verification time, without sacrificing soundness of
the entire model checking procedure.

2 Note that the implementation of PVAIR does not involve any parallel computation—this
is planned as future work.

Exploiting Partial Variable Assignment in Interpolation-based Model Checking 39

C program Interpolant (function summary) size
name #var #var orig. #var PVAI #cl orig #cl PVAI
Test 0 3 vars 15227 62.61 % 45192 62.21 %
Test 1 1 var 23273 78.46 % 69330 78.31 %
Test 2 2 vars 31278 59.19 % 93345 58.98 %
Test 3 1 var 12236 63.80 % 36219 63.31 %
Test 4 2 vars 20447 74.57 % 60852 74.37 %
Test 5 3 vars 24716 32.50 % 73659 32.05 %
Test 6 3 vars 33076 37.89 % 98739 37.58 %
Test 7 1 var 12478 57.47 % 36945 56.91 %
Test 8 1 var 21201 50.42 % 63114 50.04 %
Test 9 2 vars 20314 39.71 % 60453 39.22 %

Table 3 eVolCheck verification statistics—interpolant size.

C program Verification time (sec)
name #var boot. orig. boot. PVAI upgr. orig. upgr. PVAI
Test 0 3 vars 18.93 99.17 % 4.025 65.96 %
Test 1 1 var 10.36 99.24 % 4.034 77.79 %
Test 2 2 vars 8.71 100.32 % 3.878 57.61 %
Test 3 1 var 7.34 100.12 % 1.256 71.50 %
Test 4 2 vars 12.40 101.94 % 2.982 81.35 %
Test 5 3 vars 12.20 102.94 % 3.855 39.46 %
Test 6 3 vars 12.63 102.16 % 7.951 40.05 %
Test 7 1 var 8.88 100.29 % 2.350 57.96 %
Test 8 1 var 14.46 97.55 % 3.706 50.94 %
Test 9 2 vars 21.42 101.26 % 4.581 40.30 %

Table 4 eVolCheck verification statistics—computation time.

7 Conclusion

In this article, we described the Partial Variable Interpolation System, extending
LIS with a partial variable assignment. The assignments are used to focus the
computed interpolants on particular sub-problems. The main motivation for this
step was two-fold. The first goal was to make the computed interpolant smaller
to improve the efficiency of the entire model checking process. The second goal
was to make the computation of the interpolant itself more efficient in terms of
both time and memory. Our experiments show that there is a clear improvement
in both points.

We have also presented proofs of important properties of focused interpolants—
in particular, the proof of correctness of our LPAIS, and the proof that focused
interpolants computed upon a single refutation satisfy, under some additional as-
sumptions, the path-interpolation property. Many interpolation-based verification
tools require the property.

As future work, we plan to fully integrate PVAI in software verification process,
through implementing the approach into SMT solvers such as the OpenSMT2 [11]
solver. In particular, we are interested in applying PVAI in parallelization of soft-
ware verification by case splitting upon selected program variables. This is a similar
approach as in the example code in Fig. 17; the variable representing a branching
condition is to be used as a case splitting variable. Then, two interpolants (repre-

40 P. Janč́ık et al.

senting summaries) are computed in parallel, one for the case when the condition
holds, the other for the case when the condition does not hold. The advantage of
this approach is in splitting the verification formula into two smaller ones (each
one omitting the non-reachable branch) and computing them in parallel. Further,
if there is an update of the code in a single branch only, just one summary has to
be re-checked and potentially re-computed. The only possible disadvantage we cur-
rently envision is that if the condition variable is not local to the function where it
is used, the case splitting has to propagate to lower levels of the call tree, affecting
thus interpolant computation there as well. This way, the number of the summaries
for a single functions would grow with all the possible case splitting values, i.e.,
exponentially. As a future work, we will research on the methods to decide what
variables are suitable for case splitting as well as how to limit the total number
of case splittings on a single path in the call tree. Nonetheless, our preliminary
results indicate that this can further improve the model checking performance.

References

1. Aws Albarghouthi, Arie Gurfinkel, and Marsha Chechik. From under-approximations to
over-approximations and back. In Cormac Flanagan and Barbara König, editors, Tools and
Algorithms for the Construction and Analysis of Systems – 18th International Conference,
TACAS 2012, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2012, Tallinn, Estonia, March 24 – April 1, 2012. Proceedings, volume
7214 of Lecture Notes in Computer Science, pages 157–172. Springer, 2012.

2. Aws Albarghouthi, Arie Gurfinkel, and Marsha Chechik. Whale: An Interpolation-Based
Algorithm for Inter-procedural Verification. In Viktor Kuncak and Andrey Rybalchenko,
editors, Verification, Model Checking, and Abstract Interpretation – 13th International
Conference, VMCAI 2012, Philadelphia, PA, USA, January 22-24, 2012. Proceedings,
volume 7148 of Lecture Notes in Computer Science, pages 39–55. Springer, 2012.

3. Aws Albarghouthi, Yi Li, Arie Gurfinkel, and Marsha Chechik. UFO: A Framework for
Abstraction- and Interpolation-Based Software Verification. In Madhusudan and Seshia
[14], pages 672–678.

4. Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB Standard: Version 2.0.
Technical report, Department of Computer Science, The University of Iowa, 2010. Avail-
able at www.SMT-LIB.org.

5. Gianpiero Cabodi, C. Loiacono, and D. Vendraminetto. Optimization techniques for Craig
Interpolant compaction in Unbounded Model Checking. In Enrico Macii, editor, Design,
Automation and Test in Europe, DATE 13, Grenoble, France, March 18-22, 2013, pages
1417–1422. EDA Consortium San Jose, CA, USA / ACM DL, 2013.

6. William Craig. Three uses of the herbrand-gentzen theorem in relating model theory and
proof theory. J. Symb. Log., 22(3):269–285, 1957.

7. Vijay D’Silva, Daniel Kroening, Mitra Purandare, and Georg Weissenbacher. Interpolant
Strength. In Gilles Barthe and Manuel V. Hermenegildo, editors, Verification, Model
Checking, and Abstract Interpretation, 11th International Conference, VMCAI 2010,
Madrid, Spain, January 17-19, 2010. Proceedings, volume 5944 of Lecture Notes in Com-
puter Science, pages 129–145. Springer, 2010.

8. Niklas Eén and Armin Biere. Effective Preprocessing in SAT Through Variable and Clause
Elimination. In Fahiem Bacchus and Toby Walsh, editors, Theory and Applications of
Satisfiability Testing, 8th International Conference, SAT 2005, St. Andrews, UK, June
19-23, 2005, Proceedings, volume 3569 of Lecture Notes in Computer Science, pages 61–75.
Springer, 2005.

9. Grigory Fedyukovich, Ondrej Sery, and Natasha Sharygina. eVolCheck: Incremental Up-
grade Checker for C. In Nir Piterman and Scott A. Smolka, editors, Tools and Algorithms
for the Construction and Analysis of Systems – 19th International Conference, TACAS
2013, Held as Part of the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings, volume 7795 of Lecture
Notes in Computer Science, pages 292–307. Springer, 2013.

Exploiting Partial Variable Assignment in Interpolation-based Model Checking 41

10. Arie Gurfinkel, Simone Fulvio Rollini, and Natasha Sharygina. Interpolation Properties
and SAT-Based Model Checking. In Dang Van Hung and Mizuhito Ogawa, editors, Auto-
mated Technology for Verification and Analysis – 11th International Symposium, ATVA
2013, Hanoi, Vietnam, October 15-18, 2013. Proceedings, volume 8172 of Lecture Notes
in Computer Science, pages 255–271. Springer, 2013.

11. Antti E. J. Hyvärinen, Matteo Marescotti, Leonardo Alt, and Natasha Sharygina.
OpenSMT2: An SMT Solver for Multi-core and Cloud Computing. In Nadia Creignou and
Daniel Le Berre, editors, Theory and Applications of Satisfiability Testing – SAT 2016:
19th International Conference, Bordeaux, France, July 5-8, 2016, Proceedings, pages 547–
553, Cham, 2016. Springer International Publishing.

12. Pavel Janč́ık, Leonardo Alt, Grigory Fedyukovich, Antti E. J. Hyvärinen, Jan Kofroň, and
Natasha Sharygina. PVAIR: Partial Variable Assignment InterpolatoR. In To appear in
Fundamental Approaches to Software Engineering (FASE) 2016, LNCS 9633, 2016.

13. Pavel Janč́ık, Jan Kofroň, Simone Fulvio Rollini, and Natasha Sharygina. On Interpolants
and Variable Assignments. In Formal Methods in Computer-Aided Design, FMCAD 2014,
Lausanne, Switzerland, October 21-24, 2014, pages 123–130. IEEE, 2014.

14. P. Madhusudan and Sanjit A. Seshia, editors. Computer Aided Verification – 24th In-
ternational Conference, CAV 2012, Berkeley, CA, USA, July 7-13, 2012 Proceedings,
volume 7358 of Lecture Notes in Computer Science. Springer, 2012.

15. Kenneth L. McMillan. Interpolation and SAT-Based Model Checking. In Warren A. Hunt
Jr. and Fabio Somenzi, editors, Computer Aided Verification, 15th International Confer-
ence, CAV 2003, Boulder, CO, USA, July 8-12, 2003, Proceedings, volume 2725 of Lecture
Notes in Computer Science, pages 1–13. Springer, 2003.

16. Kenneth L. McMillan. Lazy Abstraction with Interpolants. In Thomas Ball and Robert B.
Jones, editors, Computer Aided Verification, 18th International Conference, CAV 2006,
Seattle, WA, USA, August 17-20, 2006, Proceedings, volume 4144 of Lecture Notes in
Computer Science, pages 123–136. Springer, 2006.

17. Pavel Pudlák. Lower Bounds for Resolution and Cutting Plane Proofs and Monotone
Computations. Journal of Symbolic Logic, 62(3):981–998, 1997.

18. Simone Rollini, Roberto Bruttomesso, and Natasha Sharygina. An Efficient and Flexi-
ble Approach to Resolution Proof Reduction. In Sharon Barner, Ian G. Harris, Daniel
Kroening, and Orna Raz, editors, Hardware and Software: Verification and Testing –
6th International Haifa Verification Conference, HVC 2010, Haifa, Israel, October 4-7,
2010. Revised Selected Papers, volume 6504 of Lecture Notes in Computer Science, pages
182–196. Springer, 2010.

19. Simone Fulvio Rollini, Leonardo Alt, Grigory Fedyukovich, Antti Eero Johannes Hyväri-
nen, and Natasha Sharygina. PeRIPLO: A Framework for Producing Effective Interpolants
in SAT-Based Software Verification. In Kenneth L. McMillan, Aart Middeldorp, and An-
drei Voronkov, editors, Logic for Programming, Artificial Intelligence, and Reasoning –
19th International Conference, LPAR-19, Stellenbosch, South Africa, December 14-19,
2013. Proceedings, volume 8312 of Lecture Notes in Computer Science, pages 683–693.
Springer, 2013.

20. Simone Fulvio Rollini, Roberto Bruttomesso, Natasha Sharygina, and Aliaksei Tsitovich.
Resolution Proof Transformation for Compression and Interpolation. Formal Methods in
System Design, 45(1):1–41, 2014.

21. Simone Fulvio Rollini, Ondrej Sery, and Natasha Sharygina. Leveraging Interpolant
Strength in Model Checking. In Madhusudan and Seshia [14], pages 193–209.

22. Philipp Rümmer, Hossein Hojjat, and Viktor Kuncak. Classifying and solving horn clauses
for verification. In Ernie Cohen and Andrey Rybalchenko, editors, Verified Software:
Theories, Tools, Experiments: 5th International Conference, VSTTE 2013, Menlo Park,
CA, USA, May 17-19, 2013, Revised Selected Papers, pages 1–21, Berlin, Heidelberg,
2014. Springer Berlin Heidelberg.

23. SAT Competition. http://www.satcompetition.org/.
24. O. Sery, G. Fedyukovich, and N. Sharygina. Incremental upgrade checking by means

of interpolation-based function summaries. In 2012 Formal Methods in Computer-Aided
Design (FMCAD), pages 114–121, Oct 2012.

25. Ondrej Sery, Grigory Fedyukovich, and Natasha Sharygina. FunFrog: Bounded Model
Checking with Interpolation-Based Function Summarization. In Supratik Chakraborty
and Madhavan Mukund, editors, Automated Technology for Verification and Analysis –
10th International Symposium, ATVA 2012, Thiruvananthapuram, India, October 3-6,
2012. Proceedings, volume 7561 of Lecture Notes in Computer Science, pages 203–207.
Springer, 2012.

42 P. Janč́ık et al.

26. Ondrej Sery, Grigory Fedyukovich, and Natasha Sharygina. Interpolation-based function
summaries in bounded model checking. In Kerstin Eder, João Lourenço, and Onn She-
hory, editors, Hardware and Software: Verification and Testing: 7th International Haifa
Verification Conference, HVC 2011, Haifa, Israel, December 6-8, 2011, Revised Selected
Papers, pages 160–175, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

27. O. Tange. GNU Parallel – The Command-Line Power Tool. The USENIX Magazine,
36(1):42–47, Feb 2011.

28. Stefano Tonetta. Abstract Model Checking without Computing the Abstraction, pages
89–105. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

29. Grigori S. Tseitin. On the Complexity of Derivation in Propositional Calculus. In Studies
in Constructive Mathematics and Mathematical Logic, Part II, Volume 8 of Seminars in
Mathematics, V. A. Steklov Mathematical Institute, Leningrad, 1969. Consultants Bureau.

30. Yakir Vizel and Orna Grumberg. Interpolation-Sequence based Model Checking. In Pro-
ceedings of 9th International Conference on Formal Methods in Computer-Aided Design,
FMCAD 2009, 15-18 November 2009, Austin, Texas, USA, pages 1–8. IEEE, 2009.

31. Yakir Vizel, Arie Gurfinkel, and Sharad Malik. Fast Interpolating BMC. In Daniel Kroen-
ing and Corina S. Păsăreanu, editors, Computer Aided Verification, number 9206 in Lec-
ture Notes in Computer Science, pages 641–657. Springer International Publishing, July
2015. DOI: 10.1007/978-3-319-21690-4 43.

