Decomposing Farkas Interpolants

Martin Blicha®?, Antti E. J. Hyvirinen', Jan Kofroi?, and Natasha
Sharygina®

! Universita della Svizzera italiana (UST), Switzerland
2 Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic

Abstract. Modern verification commonly models software with Boolean
logic and a system of linear inequalities over reals and over-approximates
the reachable states of the model with Craig interpolation to obtain, for
example, candidates for inductive invariants. Interpolants for the linear
system can be efficiently constructed from a Simplex refutation by ap-
plying the Farkas’ lemma. However, this approach results in the worst
case in incompleteness, since Farkas interpolants do not always suit the
verification task. This work introduces the decomposed interpolants, a
fundamental extension of the Farkas interpolants obtained by identifying
and separating independent components from the interpolant structure
using methods from linear algebra. We integrate our approach to the
model checker Sally and show experimentally that a portfolio of decom-
posed interpolants results in immediate convergence on instances where
state-of-the-art approaches diverge. Being based on the efficient Simplex
method, the approach is very competitive also outside these diverging
cases.

Keywords: Model checking - Satisfiability modulo theory - Linear arith-
metic - Craig interpolation

1 Introduction

A central task in model checking systems with respect to safety properties [25]
consists of proving facts and attempting to generalize the obtained proofs. The
generalizations serve as a basis for inductive invariants needed for guiding the
search for a correctness proof in approaches such as IC3 [7] and k-induction [27],
both known to scale to the verification of highly complex systems.

Finding good proofs and generalizing them is hard. A widely used approach,
Satisfiability Modulo Theories (SMT) [12lJ6], models a system with propositional
logic and a range of first-order logics. Solvers for SMT combine a resolution-based
variant of the DPLL-algorithm [ITJI0] for propositional logic with decision pro-
cedures for first-order logics. A vast range of first-order logics is maintained as
part of the SMT-LIB Initiative [5]. What is common to these logics is that their
solving requires typically only a handful of algorithms. Arguably, the two most
important algorithms are a congruence closure algorithm for deciding quantifier-
free equality logic with uninterpreted functions [29], and a Simplex-based pro-
cedure for linear arithmetic over real or rational numbers [I5].

Generalizing proofs to inductive invariants is commonly done by Craig inter-
polation [9]. Here, the model is split into two parts, say, A and B, resulting in an
interpolation problem (A, B). The proof of unsatisfiability for A A B is used to
extract an interpolant I, a formula that is defined over the common symbols of
A and B, is implied by A, and is unsatisfiable with B. Several interpolants can
be computed for a given interpolation problem, and not all of them are useful for
proving safety. Typically, this is a phenomenon used to construct a portfolio [18]
of interpolation algorithms that is then applied in the hopes of aiding to find the
safety proof.

The approaches to interpolation based on Farkas’ lemma construct an LRA
interpolant by summing all inequalities appearing in A into a single inequality.
We call the resulting interpolant the Farkas interpolant. While a single inequal-
ity is desirable in some cases, it prevents IC3-style algorithms from converging in
other ones [34]. We present how methods from linear algebra can be applied on a
Farkas interpolant to obtain decomposed interpolants that do not consist of a sin-
gle inequality and guarantee the convergence of the model-checking algorithm for
some of the cases where Farkas interpolants do not converge. A major advantage
of decomposed interpolants is that they can be computed using Simplex-based
decision procedures as a black box, allowing us to make use of the highly tuned
implementations present in many state-of-the-art SMT solvers.

Intuitively, while computing the decomposed interpolants we do not directly
sum the inequalities in A, but, instead, we split the sum into sub-sums. The result
is an interpolant that is a conjunction of often more than one component of the
Farkas interpolant. This allows us not only to solve the convergence problem
observed in model checking examples, but also to gain more control over the
strength of LRA interpolants. In summary, the main contributions of this paper
are

1. a new Farkas-lemma-based interpolation algorithm for LRA that is able to
deal with convergence problems in model-checking benchmarks while still
relying on a highly efficient Simplex-based decision procedure,

2. establishing properties regarding logical strength of interpolants produced by
our interpolation algorithm with respect to the original Farkas interpolants,

3. implementation of our new interpolation algorithm in OPENSMT, our SMT
solver, and integration of our approach with the model checker SALLY

4. experiments showing that the new approach is efficient in model checking,
in particular in showing systems unsafe.

While the underlying intuition is simple, we quote here Jean D’Alembert (1717
— 1783) in saying that Algebra is generous; she often gives more than is asked
of her: Our detailed analysis in Sec. [4] and Sec. [5] shows that the structure
of the problem is surprisingly rich. Our experiments in Sec. [f] verify that the
phenomena are practically relevant. Overall a portfolio constructed from our
interpolation algorithm is significantly better than a portfolio based purely on
Farkas interpolants. We furthermore show for individual instances that the effect
is consistent instead of arising from random effects.

Related work. The work on interpolation in LRA dates back to [30]. A compact
set of rules for deriving LRA interpolants from the proof of unsatisfiability in
an inference system was presented in [22]. The interpolants in these works were
the Farkas interpolants. Current methods usually compute Farkas interpolants
from explanations of unsatisfiability extracted directly from the Simplex-based
decision procedure inside the SMT solver [I5]. Recently in [2], we presented a
way of computing an infinite family of interpolants between a primal and a dual
interpolant with variable strength. However, those interpolants are still restricted
to single inequalities.

The work most closely related to ours is [34] where the authors independently
recognized the weakness of interpolation based on Farkas coefficients. They in-
troduce a new interpolation procedure that gives guarantees of convergence of
a special sequence of interpolation problems often occurring in model checking
problems. However, this interpolation algorithm is based on a different decision
procedure, called conflict resolution [24], which, based on the results reported
in [34], is not as efficient as the Simplex-based decision procedure. In contrast, we
show how the original approach based on the Simplex-based decision procedure
and Farkas coefficients can be modified to produce interpolants not restricted
to the single-inequality form, while additionally obtaining strength guarantees
with respect to the original Farkas interpolants.

Other work on LRA interpolants include e.g. [TI35I33]. Both [I] and [35] focus
on producing simple overall interpolants by attempting to reuse (partial) inter-
polants from pure LRA conflicts. Our focus is not on the overall interpolant, but
on a single LRA conflict. However, in the context of interpolants from proofs pro-
duced by SMT solvers, our approach also has a potential for re-using components
of interpolants for LRA conflicts across the whole proof. Beside algorithms for
interpolants for LRA conflicts, there exist a large body of work on propositional
interpolation. See, e.g. [13].

The structure of the paper is as follows. In Sec. [2] we provide a concrete ex-
ample model-checking problem where our approach guarantees immediate con-
vergence but Farkas interpolation deviates. In Sec. [3| we define the notation used
in the paper, and in Sec. [4] and [§] detail our main theoretical contribution. We
provide experimental results in Sec. [6] and finally conclude in Sec. [7}

2 DMotivation

Consider the transition system S = (I, T, Err), where I and Err are, respectively,
predicates that capture the initial and error states, and T is the transition func-
tion. The symbols z, y are real variables, and ',y are their next-state versions [

I'=(x=0)A(y=0),
S={T=@G@"=2+y) Ay =y+1), (1)
Err=(z <0)

3 This example was first brought to our attention by Prof. Arie Gurfinkel. A similar
example appears in [34].

The system is one variant from a family of similar transition systems that are
known to not converge in straightforward implementations of 1C3-based algo-
rithms using LRA interpolation. For example, both SPACER [23] (using inter-
polation algorithm of Z3 [28]) and saLLy [2I] (using interpolation algorithm of
MATHSAT []]) fail to compute a safe inductive invariant for this transition sys-
tem. However, SALLY with our interpolation algorithm succeeds in computing the
safe inductive invariant [] Closer examination of SALLY and SPACER reveals that
the tools in their default configurations produce a divergent series of candidate
invariants of the form 0 < kx + y for k = 1,2,3,.... The reason for producing
such a series is that both tools rely on Farkas interpolants that always consist of
a single inequality. Instead of generalizing the Farkas interpolants, an approach
advocated in this work, interpolation based on a different decision procedure was
proposed for SALLY in [34], whereas SEAHORN [I7] with SPACER as its underlying
reasoning engine solves this issue with abstract interpretation.

In Sec. [l we show how to modify the interpolation algorithm to produce in the
general case a conjunction of multiple inequalities, leading, in this case, to the
discovery of an inductive safe invariant x > 0 Ay > 0. To avoid here a lengthy
discussion on internals of IC3 but nevertheless provide a concrete example of
the power of decomposed interpolants, we apply decomposed interpolants in
a simple, interpolation-based procedure for computing inductive invariants for
transition systems. This approach is a simplified version of k-induction (see,
e.g., [26]). When applied to the system in Eq. , we show that computing the
Farkas interpolant fails and decomposed interpolant succeeds in producing a safe
inductive invariant. A safe, inductive invariant for (I,T, Err) is a predicate R
that satisfies (1) I(X) — R(X), (2) R(X)AT(X,X') — R(X), and (3) R(X) A
Err(X) — 1. We may opportunistically try to synthesise R by interpolating
over the interpolation problem (I(X),T(X,X’) A Err(X’)). Using the system
S of Eq. (), we obtain (z > 0Ay > 0,2/ =z+yAy =y+1A2 <0). A
Farkas interpolant, the sum of the components from the A-part, is + y > 0,
which is neither safe nor inductive for S. However, the decomposed interpolant
(see Sec. x > 0Ay >0 is an inductive invariant.

3 Preliminaries

We work in the domain of Satisfiability Modulo Theories (SMT) [12I6], where sat-
isfiability of formulas is determined with respect to some background theory. In
particular, we are concerned with the lazy approach to SMT, that combines SAT
solver dealing with the propositional structure of a formula and theory solver
for checking consistency of a conjunction of theory literals. The proof of unsat-
isfiability in this approach is basically a propositional proof that incorporates
theory lemmas learnt by the theory solver and propagated to the SAT solver.

4 Current implementation of SPACER does not support conjunctions of inequalities as
interpolants, and therefore we are at the moment unable to try our approach on
SPACER.

The proof-based interpolation algorithm then combines any propositional-proof-
based interpolation algorithm with theory interpolator. Theory interpolator pro-
vides an interpolant for each theory conflict—an unsatisfiable conjunction of
theory literals.

Linear arithmetic and linear algebra. We use the letters x, y, z to denote variables
and ¢, k to denote constants. Vector of n variables is denoted by x = (x1,...,2,)"
where n is usually known from context. x[i] denotes the element of x at position
i, i.e. x[i] = x;. The vector of all zeroes is denoted as 0 and e; denotes the
unit vector with e;[i] = 1 and e;[j] = 0 for j # ¢. Q denotes the set of rational
numbers, Q™ the n-dimensional vector space of rational numbers and Q™*" the
set of rational matrices with m rows and n columns. A transpose of matrix M
is denoted as MT. A kernel (also nullspace) of a matrix M is the vector space
ker(M) ={x| Mx =0}

We adopt the notation of matrix product for linear arithmetic. For a linear
term [= c1x1 + -+ - 4 ¢y, We write cTx to denote . Without loss of generality
we assume that all linear inequalities are of the form ¢Tx < ¢ with e {<, <}.
By linear system over variables x we mean a finite set of linear inequalities
S={C;|i=1,...,m}, where each C; is a linear inequality over x. Note that
from the logical perspective, each C; is an atom in the language of the theory of
linear arithmetic, thus system S can be expressed as a formula A", C; and we
use these representations interchangeably. A linear system is satisfiable if there
exists an evaluation of variables that satisfies all inequalities; otherwise, it is
unsatisfiable. This is the same as the (un)satisfiability of the formula representing
the system.

We extend the matrix notation also to the linear system and we write Cx < ¢
to denote the linear system S where C denotes the matrix of all coefficients of the
system, x are the variables and c is the vector of the right sides of the inequali-
ties. With the matrix notation, we can easily express the sum of (multiples) of
inequalities. Given a system of inequalities Cx < ¢ and a vector of “weights”
(multiples) of the inequalities k > 0, the inequality that is the (weighted) sum
of the system can be expressed as kTCx < kTc. Note that if at least one in-
equality in the system is strict, then its sum is a strict inequality. For the sake
of simplicity, we use < notation, as the theory and the algorithm work the same
way also in the presence of strict inequalities.

Crraig interpolation. Given two formulas A(x,y) and B(y,z) such that AA B is
unsatisfiable, a Craig interpolant [9] is a formula I(y) such that A = I and
I = -B.

The pair of formulas (A, B) is also referred to as an interpolation problem.
In linear arithmetic, the interpolation problem is a linear system .S partitioned
into two parts: A and B.

One way to compute a solution to an interpolation problem in linear arith-
metic, used in many modern SMT solvers, is based on Farkas’ lemma [T6J36].
Farkas’ lemma states that for an unsatisfiable system of linear inequalities S =
Cx < c there exist Farkas coefficients k > 0 such that kTCx < kTe =0 < —1.

In other words, the weighted sum of the system given by the Farkas coefficients
is a contradictory inequality. If S' contains strict inequality, the witness weighted
sum might also be 0 < 0.

The idea behind the interpolation algorithm based on Farkas coefficients is
simple. Intuitively, given the partition of the linear system into A and B, we
compute only the weighted sum of A. It is not hard to see that this sum is an
interpolant. It follows from A because a weighted sum of a linear system with
non-negative weights is always implied by the system. It is inconsistent with
B because its sum with the weighted sum of B (using Farkas coefficients) is a
contradictory inequality by Farkas lemma. Finally, it cannot contain any A-local
variables, because in the weighted sum of the whole system all variables are
eliminated, A-local variables are not present in B, so they must be eliminated
already in the weighted sum of A.

More formally, for an unsatisfiable linear system S = Cx < ¢ over n variables,
where C' € Q™" ¢ € Q™, and its partition to A = Cyx < cp and B =Cpx <
cB, where Cy € Q"*", Cp € Q" ca € QF, cg € Q' and k + [= m, there
exist Farkas coefficients kT = (k}, k§) such that

Ca ca
(i kL) <CB) — 0, (kL) (CB) 1,
and the Farkas interpolant for (A, B) is the inequality

I' =k, Cax < klca (2)

4 Decomposed Interpolants

In this section, we present our new approach to computing interpolants in linear
arithmetic based on Farkas coefficients.

Recall the definition of Farkas interpolant . This corresponds to the weighted
sum of A-part of the unsatisfiable linear system.

This sum can be decomposed into j “smaller” sums by decomposing the
vector ka into j vectors

J
ka = Z kai (3)
i=1
such that 0 < ka ; < ka for all 7, thus obtaining j inequalities
I; = kI&,iCAX < kLinA (4)
If ka; are such that the left-hand side of the inequalities I; contains only

shared variables, the decomposition has an interesting application in interpola-
tion, as illustrated below.

Definition 1 (decomposed interpolants). Given an interpolation instance
(A, B), if there exists a sum of the form Eq. such that the left side of Eq.
contains only shared variables for all 1 < i < j, then the set of inequalities S =

{L,...,I;} is a decomposition. In that case the formula \]_, I; is a decomposed
interpolant (DI) of size j for (A, B).

The decomposed interpolants are proper interpolants, as stated in the following
theorem.

Theorem 1. Let (A, B) be an interpolation problem in linear arithmetic. If S =
{L,...,I};} is a decomposition, then IP! = I, A ... NI}, is an interpolant for
(A, B).

Proof. Let IPT = I} A...AI. First, A = IP! holds since for all I;, A = I,.
This is immediate from the fact that A is a system of linear inequalities C'yx <
ca, I; = kL,iCAx < kI&,iCA and 0 < ka ;. Second, IPT A B = 1 since IP!
implies Farkas interpolant I/. This holds because ka = > kaiand 0 < ka ;.
Third, I”! contains only shared variables by the definition of decomposition
(Def. Therefore, IP7 is an interpolant. O

Each interpolation instance has a DI of size one, a trivial decomposition, corre-
sponding to the Farkas interpolant of Eq. . However, interpolation problems
in general can admit bigger decompositions. In the following we give a concrete
example of an instance with decomposition of size two.

Ezample 1. Let (A, B) be an interpolation problem in linear arithmetic with
A= (z14+22<0)A (21 +23 <0)A(—21 <0) and B = (—x92 — 23 < —1). The
linear systems corresponding to A and B are

110 0
Ca=|(101), ca={(0], and C’B:(Oflfl), cB:(fl).
-100 0
Farkas coefficients are

K, = (112) and kf; = (1),

while Farkas interpolant for (A, B) is the inequality I/ = x5 + 3 < 0. However,
if we decompose ka into

ki, =(101) andk} , = (011),

we obtain the decomposition {zo < 0,23 < 0} corresponding to the decomposed
interpolant P! = 29 < 0 A 3 < 0 of size two.

4.1 Strength-Based Ordering of Decompositions

Here we define an order on decompositions for a single interpolation problem.

Definition 2. Let Dy, Dy denote two decompositions of the same interpolation
problem of size m, n, respectively. Let (qu,...,dm) denote the decomposition of
Farkas coefficients corresponding to Dy and let (r1,...,ry) denote the decom-
position of Farkas coefficients corresponding to Do. We say that decomposition
D is finer than Dy (or equivalently Dy is coarser than D) and denote this as
Dy < Dy when there exists a partition P= {p1,...,pn} of the set {q1,...,dm}
such that for each i with 1 <i<mn, r; = quzn q.

Lemma 1. Assume D1, Dy are two decompositions of the same interpolation
problem such that Dy < Dy. Let IP1, IP? be the decomposed interpolants corre-
sponding to Dy, Dy. Then IPt implies IP2.

Proof. Informally, the implication follows from the fact that each linear inequal-
ity of I”2 is a sum of some inequalities in 7.

Formally, let I; denote the i-th inequality in I72. Then I; = r]Csx < r]ca.
Since Dy < Dy, there is a set {I;,,...,I;;} C D; such that for each & with
1<k<j, iy =q] Cax < qf ca and r; = ST -

Since qi, > 0, it holds that [;, A--- AL;; = I;. This means that I”
implies every conjunct of 172, a

Note that the trivial, single-element decomposition corresponding to Farkas
interpolant is the greatest element of this decomposition ordering. Also, for any
decomposition of size more than one, replacing any number of elements by their
sum yields a coarser decomposition. A possible reason to use a coarser decom-
position may be that summing up some of the elements of a decomposition may
result in eliminating a shared variable from the decomposition.

4.2 Duality

Let Itp denote an interpolation procedure and let Itp(A, B) stand for the inter-
polant computed by Itp for an interpolation problem (A, B). Then by Itp’ we
denote the dual interpolation procedure, which works as follows: Itp’(A, B) =
—Itp(B, A). The duality theorem for interpolation states that Itp’ is correct
interpolation procedure. This can be shown by verifying that the three interpo-
lation conditions hold for Itp’(A, B), given they hold for Itp(B, A).

Let us denote the interpolation procedure based on Farkas’ lemma as Itpg
and the interpolation procedure computing decomposed interpolants as Itppy.
The relation between Itpr and its dual Itp) has been established in [2], namely
that Itpr(A, B) = Itp=(A, B). We have shown in Lemmathat decomposed
interpolant always implies Farkas interpolant computed from the same Farkas
coefficients. This means that Itppr(A, B) = Itpr(A, B).

We can use this result to establish similar result for the dual interpolation pro-
cedures. Since Itppr(B,A) = Itpp(B,A), it follows that —Itpp(B,A) =
—Itppr(B, A) and consequently Itpn(A, B) = Itp)r;(A, B).

Putting all the results on logical strength together, we obtain

Itppr(A, B) = Itpr(A,B) = Itpr(A,B) = Itph;(A, B).

Note that while both Itpr and Itp, produce interpolants which are a single
inequality and interpolants produced by Itpp; are conjunctions of inequalities,
interpolants produced by Itp',; are disjunctions of inequalities.

In the following section, we describe the details of the Itpp; interpolation
procedure.

5 Finding Decompositions

In this section we present our approach for finding decompositions for linear
arithmetic interpolation problems given their Farkas coefficients.

We focus on the task of finding decomposition of kTAC’Ax. Recall that C4 €
Q"™ and x is a vector of variables of length n. Without loss of generality assume
that there are no B-local variables since columns of C'4 corresponding to B-local
variables would contain all zeroes by definition in any case.

Furthermore, without loss of generality, assume the variables in the inequal-
ities of A are ordered such that all A-local variables are before the shared ones.
Then let us write

Cya= (L S) , xT= (XLT XST) (5)

with x7, the vector of A-local variables of size p, xg the vector of shared
variables of size ¢, n = p+¢, L € QP and S € Q'*9. We know that ky L = 0
and the goal is to find ka ; such that Zl kai=ka andforeachi 0 <ka; <ka
and k} ;L =0.

In the following we will consider two cases for computing the decompositions.
We first study a common special case where the system A contains rows with
no local variables, and give a linear-time algorithm for computing the decom-
positions. We then move to the general case where the rows of A contain local
variables, and provide a decomposition algorithm based on computing a vector
basis for a null space of a matrix obtained from A.

5.1 Trivial Elements

First, consider a situation where there is a linear inequality with no local vari-
ables. This means there is a row j in C4 (denoted as C4;) such that all entries
in columns corresponding to local variables are 0, i.e., L; = 0T. Then {[y, >}
for ka1 = kalj] x ej and ka2 = ka — ka1 is a decomposition. Intuitively,
any linear inequality that contains only shared variables can form a stand-alone
element of a decomposition. When looking for finest decomposition, we do this
iteratively for all inequalities with no local variables. In the next part we show
how to look for a non-trivial decomposition when dealing with local variables.

5.2 Decomposing in the Presence of Local Variables

For this section, assume that L has no zero rows (we have shown how to deal
with such rows in [5.1]). We are going to search for a non-trivial decomposition
starting with the following observation:

input : matrix M, vector v such that v € ker(M) and v > 0
output: (w1, ..., Wm), a decomposition of v, such that w; € ker(M),w; > 0
and Y wi =v
1 n « Nullity(M)
2 if n <1 then return (v)
3 (b1,...,bn) < KernelBasis(M)
4 (0a,...,an) + Coordinates(v, (b1,...,bn))
5 (W1,...,Wn) < (a1b1,...,anby)
6 if w; > 0 for each ¢ then return (wi,...,wn)
7 else return (v)

Algorithm 1: Algorithm for decomposition of Farkas coefficients

Observation. ki L = 0. Equivalently, there are no A-local variables in the
Farkas interpolant. It follows that LTka = 0 and ka is in the kernel of matriz
LT.

Let us denote by K = ker(LT) the kernel of LT.

Theorem 2. Let vq,...,v, be n linearly independent wvectors from K such
that 3o, ..., ap with a;vy > 0 for all i and ayvy + -+ + o, v = ka. Then
{W1,...,wn} for wiy = a;vi is a decomposition of ka and {I,...,I,} for

I, = wiCax < ca s a decomposition.

Proof. The theorem follows from the definition of decomposition (Def. . From
the assumptions of the theorem we immediately obtain ka = > ., w; and
w; > 0. Moreover, w; € K, since vi € K and w; = a;vj. As a consequence,
LTw; = 0 and it follows that there are no A-local variables in w;TC4x. a

Corollary 1. Let B denote a basis of K such that Vw € B, w > 0 and ka
belongs to the conical hull of B. Then B forms a decomposition. In addition,
it is the finest decomposition in the sense that it is the minimal element of the
decomposition order <.

Based on Corollary [} we search for decomposition of Farkas coefficients ka
by computing basis of the kernel of the matrix of A-local variables L, as in
Algorithm

Function Nullity returns the dimension of the kernel. This can be efficiently
computed for example using Rank-Nullity Theorem by computing Row Echelon
Form of M by Gaussian elimination. Only if nullity is at least 2, we can hope to
find any non-trivial decomposition.

Function KernelBasis returns a basis of the kernel of given matrix while
function Coordinates returns the coordinates of the given vector with respect
to the given basis. If the components of the linear combination are all non-
negative, it is a true decomposition, otherwise, it cannot be used and we fall
back to the trivial decomposition leading to the original Farkas interpolant. An
algorithm to compute a basis of the kernel of a matrix can be found in any good
introductory book on Linear Algebra, see e.g. [].

We noticed that sometimes the computed basis is not good, but it can be
modified to get a suitable basis and we implemented a simple heuristic to do
this.

6 Experiments

We have implemented our algorithm in our SMT solver OPENSMT [19], which
had already provided a variety of interpolation algorithms for propositional
logic [3T20], theory of uninterpreted functions [3] and theory of linear real arith-
metic [2]. We implemented both primal and dual versions of decomposed inter-
polation algorithm, which return the finest decomposition they can find.

We evaluated the effect of decomposed interpolants in a model-checking sce-
nario using the model checker SALLY, which relies on OPENSMT for interpola-
tionE| The PDKIND engine of SALLY was used, relying on YICES [I4] for satisfi-
ability queries and OPENSMT for interpolation queries. We experimented with
four LRA interpolation algorithms: the original interpolation algorithms based
on Farkas’ lemma, Itpr and Itpf, and the interpolation algorithm computing
decomposed interpolants, Itpp; and Itp)p;. In each case, we used McMillan’s
interpolation rules [26] for the Boolean part. For comparison, we ran also a ver-
sion of SALLY using MATHSAT in its default settings as an interpolation engine
instead of OPENSMT. Since OPENSMT does not support the combination of
incremental functionality and interpolation, SALLY was also using MATHSAT in
non-incremental mode in this setting. The results are summarised in Figures
and [2| and Table [I} The result of a portfolio is the virtual best of the results
of individual algorithms in the portfolio. The original portfolio of OPENSMT
consists of Itpr and Itp’, while in the new portfolio Itpp; and Itp',; are added.

We used the same benchmarks as in [34]. They consist of several problem sets
related to fault-tolerant algorithms (om, ttesynchro, ttastartup,unifapprox,
azadmanesh, approxagree, hacms, misc), benchmarks from software model
checking (cav12, ctigar), benchmarks from the benchmark suite of KIND model
checker (lustre), simple concurrent programs (conc), and problems modelling
a lock-free hash table (1fht). Each benchmark is a transition system defined by
formulas characterizing initial states and the transition relation. In addition, each
benchmark defines a property that should hold for the system. SALLY can finish
with two possible answers: valid means the property holds and a safe invariant
implying the property has been found; invalid means the property does not hold
and a counterexample leading to a state where the property does not hold has
been found. In the plots, we denote the answers as + and o, respectively.

The benchmarks were run on Linux machines with Intel E5-2650 v3 processor
(2.3 GHz) with 64GB of available memory. Each benchmark was restricted to
600 seconds of running time and to 4GB of memory.

5 Detailed description of the set-up and specifications of the experiments, to-
gether with all the results, can be found at http://verify.inf.usi.ch/content/
decomposed-interpolants

http://verify.inf.usi.ch/content/decomposed-interpolants
http://verify.inf.usi.ch/content/decomposed-interpolants

103 —— 103
O-4am B4 °
102 O 10?2
€
8
_ 10t = 10!
a]
S c
100 = 10°
=
2
107! ol0?!
= . Q-
=) & o)
1072 o 1072 &0
102 107! 10° 10! 102 103 102 107t 10° 10 102 103
Itpe OpenSMT original portfolio

Fig. 1: Evaluation of the decomposed interpolants in model checking scenario.
On the left, comparison of performance of SALLY using OPENSMT with different
interpolation procedures, Itpr and Itppr. On the right, the benefit of adding
Itppr and Itp'y; to the portfolio of interpolation procedures.

Figure illustrates the benefit of adding Itppr and Itp’y; to the portfolio of
OPENSMT interpolation algorithms. The direct comparison of Itpr and Itpp;
clearly shows that in many cases, the use of decomposed interpolants outperforms
the use of original interpolation procedure, sometimes by an order of magnitude.
The comparison of the capabilities of the old and the new portfolio shows that the
importance of decomposition is still significant even after taking the capabilities
of dual versions into account.

103 - - 103
102 102
K 100 K 10
))
5 =
© 10° O 10°
= =
10! 1071
-2 |7 102
102 107! 10° 10! 102 103 102 _107' 10° 10* 102 103
OpenSMT Itpe OpenSMT new portfolio

Fig.2: Comparison of performance for the use of MATHSAT interpolation pro-
cedure and the use of OPENSMT interpolation procedure—original Itpp and
the whole portfolio, respectively.

Table 1: Performance of SALLY with old and new OPENSMT interpolation ca-
pabilities. Comparison with MATHSAT with its default interpolation included.

N V] D /]

Problem set solved (V/I) S time(s)| solved (V/I) S time(s) | solved (V/I) S time(s)
approxagree (9) 9 (8/1) 101 9 (8/1) 72 9 (8/1) 173
azadmanesh (20)16 (13/3) |74 |16 (13/3) |69 19 (16/3) |102
cavl2 (99) 63 (46/17) |3,427 |63 (46/17) |2,960 |64 (47/17) |796
conc (6) 3 (3/0) 48 4 (4/0) 347 3 (3/0) 38
ctigar (110) |70 (51/19) |1,812 |72 (53/19) |1,493 |75 (55/20) |1,803
hacms (5) 1 (1/0) 147 1 (1/0) 84 1 (1/0) 55
Ifht (27) 17 (17/0) |502 |17 (17/0) |502 |16 (16/0) |518
lustre (790) |757 (423/334)[5,122 |759 (425/334)[4,903 |752 (420/332)|5,610
misc (10) 7 (6/1) 80 |7 (6/1) 80 7 (6/1) 36
om (9) 9 (7/2) 7 9 (7/2) 7 9 (7/2) 6
ttastartup (3) 1 (1/0) 2 1 (1/0) 2 1 (1/0) 13
ttesynchro (6) |6 (3/3) 11 6 (3/3) 10 6 (3/3) 6
unifapprox (11) |10 (7/3) 21 10 (7/3) 20 11 (8/3) 125

969 (586/383)|11,354 974 (591/383)|10,549 (973 (591/382)(9,281

Fig. [2|shows the benefit of the new portfolio by comparing the model checker
performance to one using a different SMT solver. As far as we know, MATH-
SAT also computes interpolants from the proof of unsatisfiability and uses in-
terpolation algorithm based on Farkas’ lemma for LRA conflicts. Comparing
to OPENSMT’s Itpp, we see that most probably due to the differences in the
implementation of the SMT solver, the version of SALLY using MATHSAT is
superior. However, using the portfolio of interpolation procedures available in
OPENSMT bridges the gap and allows SALLY to solve more benchmarks as can
be seen in Table[l] This also shows a potential improvement for MATHSAT if it
would offer the same portfolio of interpolation procedures as OPENSMT does.

Table [1| demonstrates the gain in the performance of the model checker from
expanding the interpolation portfolio to include Itppr and Itp),;. The results
are summarised by category with first column showing the name of the cate-
gory and the number of benchmarks in this category, and the two columns per
interpolation engine show how many benchmarks were successfully solved (vali-
dated/invalidated) within the limits and the total running time spent on solved
benchmarks. With the new interpolation algorithm added to the portfolio not
only is the model checker able to solve more instances, but it is also able to do
so in less time.

Table [2| answers the question how often in these model-checking benchmarks
the new interpolation procedure manages to decompose the Farkas coefficients,
thus returning a different interpolant than the original procedure would.

The statistics differ for Itppr and Itp,; due to the special nature of the
interpolation problems in the model checking algorithm from IC3 family, where
the B-part of the interpolation problem always contains only shared symbols.

Table 2: Interpolation statistics — pwd stands for “Number of problems with at
least one decomposition”. The numbers in parentheses denote “Decompositions
with trivial and with non-trivial elements” (trivial/non-trivial).

Itppr Itpp,
Problem set pwd ﬁgz“;s;"‘ #decomp. itps pwd fr‘{‘zr‘;f;is"' ﬁs:“"mp'
approxagree (9) |1 (1/0) 7 7 (7/0) 1 18 18
azadmanesh (20) (4 (0/4) 4,831 266 (0/266) 4 4,353 4,353
cavl2 (99) 31 (25/15)|1,368,187 7,399 (1,690/5,738)| 45| 204,036| 57,127
conc (6) 3 (3/3) 424,145 215,376 512’12457?20) 3 13 13
‘ (29,378
ctigar (110) 73 (56/70)(2,982,559| 826,621 J797,871) 77| 152,613| 152,612
hacms (5) 5 (5/5) 363,265 15,282 (532/14,750) 5 58,416 58,416
1fht (27) 13 (12/13)| 838,094 12,785 (169/12,616) | 14| 111,060/ 111,060
lustre (790) :()’556 J10g) |2571091{1,851,213 5??353??1 6 | 500|1,833310/1,833.310
misc (10) 5 (4/5) 195,819| 62,865 585’577%32) 6/ 35,131 35,108
om (9) 4 (4/3) 1,150 236 (206/30) 3 168 168
stastartup (3) |2 (2/2) 69,699 924 (16/908) 3| 11,528) 11,528
ttesynchro (6) |4 (4/0) 64 38 (38/0) 5 310 310
unifapprox (11) |0 (0/0) 0 0 (0/0) 2 25 25

Theoretically, this means there is no chance for Itp},; to discover any non-
trivial elements of decomposition as there are no B-local variables. On the other
hand, this means that decomposition to trivial elements is always possible, as all
B-inequalities contain only shared variables. In our implementation, however,
we consider the locality of a variable not from the global point of the whole
interpolation problem, but from of the local point of current theory conflict. As
a consequence, even if a variable is shared in the whole problem, it is sometimes
considered local in the interpolation problem for the current theory conflict and
the interpolant is not decomposed even if, from a global point of view, it could
have been.

For Itppr, we show first in how many benchmarks there was at least a sin-
gle decomposition (any vs. with at least one trivial element vs. with at least
one non-trivial element). Then, we counted how many interpolation problems
for theory conflict occurred during solving and removed those where there was
not even theoretical possibility for decomposition. These include the problems
where all inequalities were from one part of the problem (resulting in trivial in-
terpolants, either T or L) and also the problems with a single inequality in the
A-part (trivially yielding an interpolant equal to that inequality). After subtract-
ing these, we got the numbers in the column “#non-triv. LRA itps”. Finally,
the last column reports how many of these non-trivial interpolants were actu-
ally successfully decomposed (with at least one trivial element vs. with at least
one non-trivial element). Note that it can happen that a successful decomposi-

tion contains both trivial and non-trivial elements. For Itp},; we leave out the
statistics for decomposition with non-trivial elements, since they occur in these
benchmarks very rarely only. We see that at least one decomposition was possi-
ble in only roughly half of all the benchmarks. This explains why there are many
points on (or extremely close to) the diagonal in Fig. [I} On the other hand, it
shows that the test for the possibility of decomposition is very cheap and does
not present a significant overhead. Another conclusion we can draw is that when
the structure of the benchmark allows decomposition, the decomposition can
often be discovered in many of the interpolation problems for theory conflicts
that appear during the solving.

During the evaluation, we noticed that a small change in the solver sometimes
had a huge effect on the performance of the model checker for a particular
benchmark. It made previously unsolved instance solvable in tens of seconds
or the other way around. To confirm that on some benchmarks Itpp; is really
better than Itpr, we ran the model checker 100 times on chosen benchmarks,
each time with a different random seed set for the interpolating solver.

We found out that benchmark dillig03.c.mcmt from category ctigar is ex-
actly of the type where model checker using Itpr does not converge (in all 100
runs) while Itppr ensures convergence in 0.2 seconds (in all 100 runs). Other
benchmarks that Itpr was not able to solve at all are fib_bench_safe_v1.mcmt
from category conc and large_const_c.mcmt from category ctigar, while Itpp;
was able to solve them in 42 runs on average in 377 seconds, and in 80 runs on av-
erage in 97 seconds, respectively. Finally, the benchmark DRAGON_13.mcmt
from category lustre was solved by Itpp in 5 runs on average in 539 seconds,
while it was solved by Itppr in 23 runs on average in 441 seconds.

7 Conclusion

In this paper, we have presented a new interpolation algorithm for linear real
arithmetic that generalizes the interpolation algorithm based on Farkas’ lemma
used in modern SMT solvers. We showed that the algorithm is able to compute
interpolants in the form of a conjunction of inequalities that are logically stronger
than the single inequality returned by the original approach. This is useful in the
IC3-style model-checking algorithms where Farkas interpolants have been shown
to be a source of incompleteness. In our experiments, we have demonstrated that
the opportunity to decompose Farkas interpolants occurs frequently in practice
and that the decomposition often leads to (i) shortening of solving time and, in
some cases, to (ii) solving a problem not solvable by the previous approach.

As the next steps, we want to investigate how to automatically determine
what kind of interpolant would be more useful for the current interpolation query
in IC3-style model-checking algorithms. We also plan to investigate other uses
of interpolation in model checking where stronger (or weaker) interpolants are
desirable [32].

Acknowledgements. We would like to thank Dejan Jovanovié¢ for providing the
benchmarks and for the help with integrating OPENSMT into SALLY.

References

10.

11.

12.

13.

14.

15.

16.

17.

Albarghouthi, A., McMillan, K.L.: Beautiful interpolants. In: Proc. CAV 2013.
LNCS, vol. 8044, pp. 313-329. Springer (2013)

Alt, L., Hyvérinen, A.E.J., Sharygina, N.: LRA interpolants from no man’s land.
In: Strichman, O., Tzoref-Brill, R. (eds.) Proc. HVC 2017. LNCS, vol. 10629, pp.
195-210. Springer (2017)

Alt, L., Hyvérinen, A.E.J., Asadi, S., Sharygina, N.: Duality-based interpolation
for quantifier-free equalities and uninterpreted functions. In: Stewart, D., Weis-
senbacher, G. (eds.) Proc. FMCAD 2017. pp. 39-46. IEEE (2017)

Andrilli, S., Hecker, D.: Chapter 5 - linear transformations. In: An-
drilli, S., Hecker, D. (eds.) Elementary Linear Algebra (Fifth Edi-
tion), pp. 319 — 412. Academic Press, Boston, fifth edition edn. (2016).
https://doi.org/https://doi.org/10.1016/B978-0-12-800853-9.00005-0, http:
//www.sciencedirect.com/science/article/pii/B9780128008539000050
Barrett, C., de Moura, L.M., Ranise, S., Stump, A., Tinelli, C.: The SMT-LIB
initiative and the rise of SMT - (HVC 2010 award talk). In: Barner, S., Harris,
I.G., Kroening, D., Raz, O. (eds.) Proc. HVC 2010. LNCS, vol. 6504, p. 3. Springer
(2011)

Barrett, C., Sebastiani, R., Seshia, S., Tinelli, C.: Satisfiability modulo theories,
Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 825-885. 1 edn.
(2009). |https://doi.org/10.3233/978-1-58603-929-5-825

Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R.,
Schmidt, D.A. (eds.) Proc. VMCAI 2011. LNCS, vol. 6538, pp. 70-87. Springer
(2011)

Cimatti, A., Griggio, A., Schaafsma, B., Sebastiani, R.: The MathSAT5 SMT
Solver. In: Piterman, N., Smolka, S. (eds.) Proceedings of TACAS. LNCS, vol. 7795.
Springer (2013)

Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory
and proof theory. The Journal of Symbolic Logic 22(3), 269285 (1957)

Davis, M., Logemann, G., Loveland, D.W.: A machine program for theorem-
proving. Commun. ACM 5(7), 394-397 (1962)

Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM
7(3), 201-215 (1960)

Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: A theorem prover for program check-
ing. J. ACM 52(3), 365-473 (2005)

D’Silva, V., Kroening, D., Purandare, M., Weissenbacher, G.: Interpolant strength.
In: Proc. VMCALI 2010. LNCS, vol. 5944, pp. 129-145. Springer (2010)

Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) Computer-Aided Verification
(CAV’2014). Lecture Notes in Computer Science, vol. 8559, pp. 737-744. Springer
(July 2014)

Dutertre, B., de Moura, L.M.: A fast linear-arithmetic solver for DPLL(T). In:
Ball, T., Jones, R.B. (eds.) Proc. CAV 2006. LNCS, vol. 4144, pp. 81-94. Springer
(2006)

Farkas, G.: A Fourier-féle mechanikai elv alkalmazdsai (Hungarian) [On the appli-
cations of the mechanical principle of Fourier] (1894)

Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The SeaHorn verification
framework. In: Proc. CAV 2015. LNCS, vol. 9206, pp. 343-361. Springer (2015).
https://doi.org/10.1007/978-3-319-21690-4

https://doi.org/https://doi.org/10.1016/B978-0-12-800853-9.00005-0
http://www.sciencedirect.com/science/article/pii/B9780128008539000050
http://www.sciencedirect.com/science/article/pii/B9780128008539000050
https://doi.org/10.3233/978-1-58603-929-5-825
https://doi.org/10.1007/978-3-319-21690-4

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Huberman, B.A., Lukose, R.M., Hogg, T.: An economics approach to hard com-
putational problems. Science 275(5296), 51 — 54 (1997)

Hyvérinen, A.E.J., Marescotti, M., Alt, L., Sharygina, N.: OpenSMT2: An SMT
solver for multi-core and cloud computing. In: Proc. SAT 2016. LNCS, vol. 9710,
pp. 547-553. Springer (2016)

Janéik, P., Alt, L., Fedyukovich, G., Hyvéarinen, A.E.J., Kofron, J., Sharygina,
N.: Pvair: Partial variable assignment interpolator. In: FASE2016 (2016), http:
//verify.inf.usi.ch/sites/default/files/main-2.pdf

Jovanovié, D., Dutertre, B.: Property-directed k-induction. In: 2016 For-
mal Methods in Computer-Aided Design (FMCAD). pp. 85-92 (Oct 2016).
https://doi.org/10.1109/FMCAD.2016.7886665

Kenneth L. McMillan: Applications of Craig Interpolation in Model Checking. In:
Tools and Alg. for the Const. and Anal. of Systems (TACAS ’05). LNCS, vol. 3440,
pp. 1-12 (2005)

Komuravelli, A., Gurfinkel, A., Chaki, S.: SMT-based model checking for recursive
programs. In: Biere, A., Bloem, R. (eds.) Computer Aided Verification. pp. 17-34.
Springer International Publishing, Cham (2014)

Korovin, K., Tsiskaridze, N., Voronkov, A.: Conflict resolution. In: Gent, I.P.
(ed.) Principles and Practice of Constraint Programming - CP 2009. pp. 509-523.
Springer Berlin Heidelberg, Berlin, Heidelberg (2009)

Manna, Z., Pnueli, A.: Springer (1995)

McMillan, K.L.: Interpolation and SAT-based model checking. In: Proc. CAV 2003.
LNCS, vol. 2725, pp. 1-13. SV (2003)

McMillan, K.L.: Interpolation and SAT-Based Model Checking. In: Computer
Aided Verification (CAV ’03). LNCS, vol. 2725, pp. 1-13 (2003)

de Moura, L., Bjgrner, N.: Z3: An efficient smt solver. In: Ramakrishnan, C.R., Re-
hof, J. (eds.) Tools and Algorithms for the Construction and Analysis of Systems.
pp. 337-340. Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

Nieuwenhuis, R., Oliveras, A.: Proof-producing congruence closure. In: Proc. RTA
2005. LNCS, vol. 3467, pp. 453-468. Springer (2005)

Pudlék, P.: Lower bounds for resolution and cutting plane proofs and monotone
computations. Journal of Symbolic Logic 62(3), 981-998 (1997)

Rollini, S.F.; Alt, L., Fedyukovich, G., Hyvarinen, A.E.J., Sharygina, N.: PeRIPLO:
A framework for producing effective interpolants in sat-based software verification.
In: Proc. LPAR 2013. LNCS, vol. 8312, pp. 683-693. Springer (2013)

Rollini, S.F., Sery, O., Sharygina, N.: Leveraging interpolant strength in model
checking. In: Proc. CAV 2012. LNCS, vol. 7358, pp. 193-209. Springer (2012)
Rybalchenko, A., Sofronie-Stokkermans, V.: Constraint solving for interpolation.
In: Proc. VMCAI 2007. LNCS, vol. 4349, pp. 346-362. Springer (2007)

Schindler, T., Jovanovi¢, D.: Selfless interpolation for infinite-state model check-
ing. In: Dillig, I., Palsberg, J. (eds.) Verification, Model Checking, and Abstract
Interpretation. pp. 495-515. Springer International Publishing, Cham (2018)
Scholl, C., Pigorsch, F., Disch, S., Althaus, E.: Simple interpolants for linear arith-
metic. In: 2014 Design, Automation Test in Europe Conference Exhibition (DATE).
pp. 1-6 (March 2014). https://doi.org/10.7873/DATE.2014.128

Schrijver, A.: Theory of Linear and Integer Programming (1998)

http://verify.inf.usi.ch/sites/default/files/main-2.pdf
http://verify.inf.usi.ch/sites/default/files/main-2.pdf
https://doi.org/10.1109/FMCAD.2016.7886665
https://doi.org/10.7873/DATE.2014.128

	Decomposing Farkas Interpolants

