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Abstract—Interpolating, i.e., computing safe over-
approximations for a system represented by a logical formula,
is at the core of symbolic model-checking. One of the central
tools in modeling programs is the use of the equality logic
and uninterpreted functions (EUF), but certain aspects of
its interpolation, such as size and the logical strength, are
still relatively little studied. In this paper we present a
solid framework for building compact, strength-controlled
interpolants, prove its strength and size properties on EUF,
implement and combine it with a propositional interpolation
system and integrate the implementation into a model checker.
We report encouraging results on using the interpolants both
in a controlled setting and in the model checker. Based on
the experimentation the presented techniques have potentially
a big impact on the final interpolant size and the number of
counter-example-guided refinements.

I. INTRODUCTION

An important skill in constructing mathematical proofs is
to identify the aspects of the problem that are relevant. When
applied to formal reasoning about the correctness of software
this means ignoring the parts of the system that play no
role in its correctness. One such approach that works well in
automated software verification based on satisfiability modulo
theories (SMT) engines (see, e.g, [1]) is to employ the Equality
Logic and Uninterpreted Functions (EUF) when applicable: in
some cases it suffices to assume that a given function returns
the same value when invoked with the same arguments. This
technique is particularly useful, for example, when modeling
memory or arrays [2], proving program equivalence [3], or
as a technique for avoiding flattening in solving bit-vector
problems [4], [5].

Generalizing a formula over the states reachable by a
program is a natural subtask when summarizing the behavior
of a procedure [6], or computing a fixed-point of a tran-
sition function [7], [8]. These techniques are now popular
in software model-checking [9], [10], and together with the
theory-based abstraction result in a growing interest in an over-
approximation technique known as interpolation.

In this paper we present the EUF-interpolation system
which aims at specializing and tailoring interpolants for
the needs of interpolation-based model-checking. The paper
contributes to the state-of-the-art by (i) providing the first
approach for controlling the strengths of EUF interpolants;
(ii) identifying a strength lattice of interpolation algorithms;
and (iii) proving under certain assumptions the size order for
the interpolants produced by the system. In addition we (iv)

provide an implementation of the system; (v) integrate and
experiment with the system on a model checker; and (vi) study
the combination of labeled interpolation systems for EUF and
propositional logic. The EUF-interpolation operates on the
proof of unsatisfiability in EUF based on a recursive algorithm
for building a final interpolant from partial interpolants and
uses duality of interpolants, a logical relation between an
interpolant and its negation discussed below, to control the
strength of the constructed partial and final interpolants.

The system is implemented in the SMT solver
OpenSMT2 [11], and used in a model-checking algorithm
based on the interpolating incremental C verifier HiFrog [6].
This gives us the advantage of making a direct connection
between the theoretical contributions and practice. We
evaluate the efficiency of the EUF-interpolation system with
two major experiments. In the first experiment we verify a set
of C software verification problems produced by HiFrog, and
in the second experiment we study different combinations of
propositional and EUF interpolation algorithms on a set of
instances from the SMT-LIB benchmark collection. Based
on the results the system has a big impact on the generated
interpolants, and the interpolants seem to be very useful
in our application to model-checking. To the best of our
knowledge our work is the first to consider the duality of
interpolants in constructing EUF interpolants recursively, and
to report experiments with EUF interpolation together with
incremental verification.

a) Related work : Recent work on labeled interpola-
tion systems (LIS) addresses interpolation in propositional
logic [12], [13], [14], [15] by providing control over fitting
the interpolant strength and size to particular model-checking
applications. Our approach extends the work on propositional
interpolation to SMT theories and in particular to EUF. In-
terpolation procedures for EUF have been introduced in [16],
[17]. The interpolation procedure given in [16] provides a way
of computing a single interpolant from a given proof. The
technique is extended in [17] to allow construction of several
interpolants through the coloring of congruence graphs edges.
Our work differs fundamentally from both these approaches by
using duality for controlling the interpolant strength, a feature
not available in earlier formalizations.

The parametric interpolation frameworks presented in [18]
and [19] generalize first-order interpolation procedures. The
former provides labeled interpolation systems for hyper-
resolution proofs which are then extended to first order in-



terpolation systems for local proofs; the latter generalizes the
former further to non-local proofs. Both of these techniques
provide control on the propositional level. Unlike ours, they
are not specialized and optimized for EUF and, to the best of
our knowledge, have not been implemented.

Other orthogonal procedures exist for the quantifier-free
fragments of the theories of linear integer arithmetics [20],
[21], linear real arithmetics [16], [22], [23], and Arrays [24],
while [25] provides a labeled interpolation system for Non-
linear Real Arithmetics. On a high level, we believe that the
duality-based approach followed in this work can be applied
also in these fields.

This paper is organized as follows: Sec. II presents a general
algorithmic framework for interpolation as a preliminary for
the EUF-interpolation system. The main result on the EUF-
interpolation system is presented in Sec. III The experiments
are reported in Sec. IV, and the paper concludes in Sec. V. For
lack of space the proofs are available in the extended version
of the paper, available with the implementation and more
experimental results at http://verify.inf.usi.ch/euf-interpolation.

II. PRELIMINARIES

This paper considers the extension of propositional logic
to Boolean variables that are interpreted as equalities over
uninterpreted functions. Following [26], we call this extension
the theory of equality logic and uninterpreted functions (EUF).
For example ¬(a = b) ∨ f(a) = f(b) is an EUF formula
containing the uninterpreted functions a, b, and f , embedded
in a Boolean structure. Given an EUF formula F , we call the
equality (=), and the Boolean connectives (e.g. ¬,∧,∨) the
logical symbols, while the Boolean variables and uninterpreted
functions are its non-logical symbols, denoted by Vars(F ).

Given an unsatisfiable conjunction A∧B of EUF formulas
A and B, an interpolation instance is a pair (A,B), and
an interpolant for (A,B) is a formula I(A,B) such that (i)
A → I(A,B), (ii) I(A,B) ∧ B is unsatisfiable, and (iii)
Vars(I(A,B)) ⊆ Vars(A) ∩ Vars(B). When B is clear
from context, we refer to I(A,B) as an interpolant for A. In
general several interpolants can be computed for an instance
(A,B). We denote an algorithm computing an interpolant
I(A,B) by Itp(A,B), and, with a slight abuse of the no-
tation, use Itp(A,B) to denote the interpolant I(A,B) when
the interpolation algorithm needs to be specified. A central
concept to this paper is the duality between interpolation
algorithms: Given an interpolation algorithm Itp(A,B), also
the algorithm Itp−(A,B) returning ¬Itp(B,A) computes an
interpolant for (A,B), as can be seen from the following rea-
soning: By definition, Itp−(A,B) = ¬Itp(B,A). Itp(B,A)
satisfies (i) B → Itp(B,A); (ii) Itp(B,A) → ¬A; and
(iii) Vars(Itp(B,A)) ⊆ Vars(A) ∩ Vars(B). By rewriting,
from (ii) follows that (iv) A → ¬Itp(B,A), and from (i)
that (v) ¬Itp(B,A) → ¬B. From (iii), commutativity of
intersection, and definition of non-logical symbols, follows (vi)
Vars(¬Itp(B,A)) ⊆ Vars(B) ∩Vars(A).

In this work we consider algorithms that build interpolants
based on the unsatisfiability proof of A ∧ B. We make this

Algorithm 1 Congruence closure
1: procedure CONGRUENCECLOSURE(T,Eq)
2: Initialize E ← ∅ and G← (T,E)
3: repeat pick x, y ∈ T such that (x 6∼ y)
4: if (a) (x = y) ∈ Eq or
5: (b) x is f(x1, . . . , xk), y is f(y1, . . . , yk), and
6: (x1 ∼ y1), . . . , (xk ∼ yk) then
7: E ← E ∪ {(x, y)}
8: until no such x, y can be chosen so that E would grow
9: return G

explicit by denoting the interpolation algorithm (and the re-
sulting interpolant) by Itp(A,B,R), where R is the refutation
representing the proof of unsatisfiability. In this work we
are particularly interested in ordering interpolation algorithms
with respect to the strength of the interpolants they compute.
An interpolant I is stronger than an interpolant I ′ if I → I ′.
We extend the strength relation to interpolation algorithms: if
Itps(A,B,R)→ Itpw(A,B,R) for algorithms Itps and Itpw

for all interpolation instances (A,B), then Itps is stronger
than Itpw. If the strength relation can be established between
the algorithms Itp and Itp−, we call the algorithm computing
the stronger interpolant the base and the weaker the dual
interpolation algorithm and denote them by Itp and Itp′,
respectively.

A. EUF Preliminaries

This section describes our interpolation system for EUF. The
presentation is based on [17] and uses the congruence graph
as the refutation.

Many EUF solvers rely on the congruence closure algo-
rithm [27] to decide the satisfiability of a set of equalities
and disequalities. The algorithm, described in Alg. 1, takes as
input a finite set Eq of equalities, and the subterm-closed set T
over which Eq is defined. During the execution the algorithm
builds an undirected congruence graph G using the set T as
nodes. We write (x ∼ y) if there is a path in G connecting x
and y and denote this path by xy.

Theorem 1 (c.f. [27]): Let S be a set of EUF disequal-
ities x 6= y over the terms T . The set S ∪ Eq is satisfi-
able if and only if the congruence graph G constructed by
CONGRUENCECLOSURE(T,Eq) has no path (x ∼ y) such
that (x 6= y) ∈ S.

During the creation of G, an edge (x, y) is added only
if (x ∼ y) does not hold, which ensures that G is acyclic.
Therefore, for any pair of terms x and y such that (x ∼ y)
holds in G, the path xy connecting these terms is unique. The
path xx is called an empty path. For an arbitrary path π, we
use the notation JπK to represent the equality of the terms that
π connects. If, for example, π = xy, then JπK := (x = y).
We also extend this notation over sets of paths P so that
JP K :=

∧
σ∈P JσK.

An edge may be added to a congruence graph G because of
two different reasons in Alg. 1 at line 7. Edges added because
of Condition (a) are called basic, while edges added because
of Condition (b) are called derived. Let e be a derived edge



(f(x1, . . . , xk), f(y1, . . . , yk)). The k parent paths of e are
x1y1, . . . , xkyk. Given a congruence graph G and two terms
x, y such that x ∼ y we denote by G[xy] the congruence graph
obtained from the graph G by including the edges and terms
that appear on the path xy and recursively all its parent paths.

To compute an interpolant for (A,B), the congruence graph
needs to be annotated with the information on which equalities
and terms belong to A and which to B. This information
is encoded using colors. Let F be a set of equalities and
disequalities, A ∪ B a partition of F , and (x ./ y) ∈ F
an equality or a disequality over the terms x and y (i.e.,
./∈ {=, 6=}). A term is a-colorable if all its non-logical
symbols occur in A; b-colorable if all its non-logical symbols
occur in B; and ab-colorable if both a and b-colorable.
Given a set of edges E of a congruence graph, a coloring
C : E → {a, b} assigns a color a or b to each edge in E
considering two restrictions: (i) basic edges e = (x, y) must
be colored a if (x = y) ∈ A and b if (x = y) ∈ B; and (ii) if
an edge (x, y) has color κ ∈ {a, b}, both x and y must be κ-
colorable. In particular a derived or basic edge e = (x, y) such
that both x and y are ab-colorable can be coloured arbitrarily.
A path in a congruence graph is colorable if all its edges are
colorable, and a congruence graph is colorable if all its edges
are colorable.

While it is possible to construct a non-colorable congruence
graph, the following lemma and its constructive proof in [17]
state that we may assume without loss of generality that
congruence graphs are colorable.

Lemma 1 (c.f. [17]): Let (A,B) be an interpolation instance
over EUF. If x and y are colorable terms and if A,B |= (x =
y), then there exist a term set T and a colorable congruence
graph over the equalities contained in A ∪ B ∪ T in which
(x ∼ y).

We denote a congruence graph G colored with a function C
by GC . A path is called an a-path if all its edges are colored
a, and a b-path if all its edges are colored b. A factor of a path
in GC is a maximal subpath such that all its edges have the
same color. Notice that every path is uniquely represented as
a concatenation of the consecutive factors of opposite colors.

Example 1: Let A := {(v1 = f(y1)), (f(y2) = v2), (y1 =
t1), (t2 = y2), (s1 = f(r1)), (f(r2) = s2), (r1 = u1), (u2 =
r2)} and B := {(x1 = v1), (v2 = x2), (t1 = f(z1)), (f(z2) =
t2), (z1 = s1), (s2 = z2), (u1 = u2), (x1 6= x2)}. Figure 1
shows a colored congruence graph GC built while proving
the unsatisfiability of A and B with Alg. 1. The curvy edges
with the labels s or w in GC are not relevant for this example
and are used later in Section III. The congruence graph GC

demonstrates the joint unsatisfiability of A and B, since it
proves (x1 = x2) and (x1 6= x2) is an original term. Edges
are represented by thick lines, and dotted arrows point to
the parents of derived edges. We present a-colorable nodes
(terms) and a-colored edges by black circles and solid lines,
b-colorable nodes and b-colored edges by white circles and
dashed lines, and ab-colorable nodes by gray circles. In the
first (top) path of GC , we see that basic edges (original
equalities from A ∪ B) are used to prove (r1 = r2). This

x2

w ww
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Figure 1. Congruence graph GC that proves the unsatisfiability of A ∪B

fact is used to infer (f(r1) = f(r2)), which is in turn used
as a derived edge in the path below, proving (z1 = z2). The
equality (f(z1) = f(z2)) is then inferred and used to prove
(y1 = y2) in the path below. In the last (bottom) path of GC ,
the derived edge representing (f(y1) = f(y2)) is created and
finally (x1 = x2) is proved.

III. THE EUF INTERPOLATION SYSTEM

In this section we present the EUF-interpolation system
which extends the approach described in [17] with a modular
use of dual interpolants. Our main novelty is the control over
the interpolant strength. Due to lack of space all the proofs of
the theorems in this section are presented in Appendix ??.

Intuitively, the approach computes partial interpolants with
either a base or a dual interpolation algorithm using the
structure of a congruence graph. We show that while inter-
polating on a fixed congruence graph the liberty in choosing
between the two interpolation algorithms allows computing
several interpolants that can be partially ordered with respect
to their strength. To make this choice explicit we introduce the
labeling functions L for the EUF-interpolation system, and the
algorithm ItpL for computing the interpolants.

Definition 1 (Labeling function): Let G[xy]C be a colored
congruence graph and W its factors. A labeling function
L : W ∪ {xy} → {s, w} labels the factors and the path
corresponding to the conflict x 6= y as s or w.

We emphasize that colors, described in Sec. II-A, and labels
are different concepts. The colors a, b tell if an edge belongs
to A or B, whereas labels s, w determine whether to use the
primal or the dual interpolant.

Given an (unsatisfiable) interpolation instance (A,B), an
EUF interpolation algorithm ItpL(A,B,G[xy]

C) computes an
interpolant for (A,B); G[xy]C is a congruence graph with
coloring C; xy a path such that (x ∼ y) is in G and the
disequality (x 6= y) exists in A ∪ B; and L is a labeling
function. We omit A, B, GC and L when they are clear
from the context, referring to the interpolation algorithm and
the corresponding interpolant as Itp(xy). Given an arbitrary
path σ we define separately two constant labeling functions
Ls(σ) = Ls = s and Lw(σ) = Lw = w that will be useful in
the following analysis.

The interpolation algorithms in [16] and [17] essentially
compute an interpolant by collecting the A-factors that prove
(x = y) in GC . To maintain the unsatisfiability with the B



part of the problem, the A factors will then be implied by their
B-premise set. A premise set for factor of a given color is the
set of equalities of the opposite color justifying the existence
of the factor’s parent edges. More technically, the B-premise
set B for a path π is

B(π) :=


⋃{B(σ)|σ is a factor of π}, if π has ≥ 2 factors;
{π}, if π is a B-path; and⋃{B(σ)|σ is a parent path of an edge of π},

if π is an A-path.
(1)

As stated in Sec. II, it is also possible to compute a dual
interpolant for A as the negation of an interpolant for B. To
compute the dual interpolant we similarly collect the B-factors
that prove (x = y) in GC , implied by their A-premise set. The
A-premise set A for a path π is defined as

A(π) :=


⋃{A(σ)|σ is a factor of π}, if π has ≥ 2 factors;
{π}, if π is an A-path; and⋃{A(σ)|σ is a parent path of an edge of π},

if π is a B-path.
(2)

We extend the notation of A and B over a set S of paths as
A(S) := ⋃

σ∈S A(σ) and B(S) := ⋃
σ∈S B(σ). We also write

AB(π) = A(B(π)) etc. to denote compositions of operators.
The functions JA and JB give, respectively, the contribution
of an individual A-factor and an individual B-factor to the
interpolants.

JA(π) := JB(π)K→ JπK (3)

JB(π) := JA(π)K→ JπK (4)

Let S be a set of factors. S|ν is the subset of S containing
the factors σ such that L(σ) = ν for ν ∈ {s, w}. Let
(A,B) be an EUF interpolation instance, G the corresponding
congruence graph, and x 6= y ∈ A∪B that is in conflict with
G. Let P = (A,B,G[xy]C). The algorithm ItpL(P ) computes
the EUF interpolant over A for a path xy. It is defined using
four sub-procedures IA, I ′A, IB , and I ′B that map congruence
graphs to partial interpolants, and are invoked depending on
which partition the conflict x 6= y belongs to and what label
the path xy has:

ItpL(P ) :=


IA(xy) if (x 6= y) ∈ B and L(xy) = s,

I ′A(xy) if (x 6= y) ∈ A and L(xy) = s,

¬IB(xy) if (x 6= y) ∈ A and L(xy) = w, and
¬I ′B(xy) if (x 6= y) ∈ B and L(xy) = w.

(5)
The sub-procedures for IA and IB are defined as

IA(π) :=
∧

σ∈A(π)

JA(σ)∧
∧

σ∈BA(π)|s

IA(σ)∧
∧

σ∈BA(π)|w

¬I ′B(σ)

(6)
and

IB(π) :=
∧

σ∈B(π)

JB(σ)∧
∧

σ∈AB(π)|w

IB(σ)∧
∧

σ∈AB(π)|s

¬I ′A(σ).

(7)

f (x6)

x6x5x3x2

f (x2) f (x3) x4 f (x5) x7x1

x2 = x3
[⊤][⊤] x5 = x6

x1 = x7 [x2 = x3∧ x5 = x6 → x1 = x7]

Figure 2. Computing partial interpolants for the EUF-interpolation system.

For the cases where either the conflict x 6= y ∈ A and L(xy) =
s, or the conflict x 6= y ∈ B and L(xy) = w, the path xy = π
needs to be decomposed for computing the partial interpolant
as π1θbπ2 or π1θaπ2, where θκ is the longest subpath of π
with κ-colorable endpoints. Hence, I ′A and I ′B are

I ′A(π) := IA(θb) ∧
∧

σ∈B(π1)∪B(π2)

IA(σ)

∧ (JB(π1) ∪ B(π2)K→ ¬JθbK),
(8)

and
I ′B(π) := IB(θa) ∧ (

∧
σ∈A(π1)∪A(π2)

IB(σ))

∧(JA(π1) ∪ A(π2)K→ ¬JθaK).
(9)

Theorem 2: Given two sets of equalities and disequalities A
and B such that A∪B is unsatisfiable, a colored congruence
graph GC containing a path π := xy such that (x 6= y) ∈
A ∪ B, and a labeling function L, Eq. (5) computes a valid
interpolant for A using L over GC .

The following example shows how Eq. (5) can be used to
compute the interpolants from [17].

Example 2: Let A := {(x1 = f(x2)), (f(x3) = x4), (x4 =
f(x5)), (f(x6) = x7)} and B := {(x2 = x3), (x5 =
x6), (x1 6= x7)}. Figure 2 shows a possible congruence graph
GC that proves the joint unsatisfiability of A and B by
proving (x1 = x7) such that (x1 6= x7) ∈ A ∪ B. We
denote the proof as a tree with each node annotated by its
partial interpolant. In this example we use the constant labeling
function Ls = s. From Eq. (5) we have that Itp(x1x7) =
IA(x1x7), because Ls(x1x7) = s and (x1 6= x7) ∈ B.
The call to IA(x1x7) is represented by the root node in the
tree in Fig. 2. First we compute A(x1x7) = {x1x7} and
BA(x1x7) = {x2x3, x5x6}. Then from Eq. (6) we have that
IA(x1x7) = JA(x1x7) ∧ IA(x2x3) ∧ IA(x5x6). The calls to
IA(x2x3) and IA(x5x6) are represented by the edges from the
leaf nodes to the root in the tree in Fig. 2. We then proceed
computing A(x2x3) = ∅ and BA(x2x3) = ∅ which lead to
IA(x2x3) = >; and A(x5x6) = ∅ and BA(x5x6) = ∅ which
lead to IA(x5x6) = >, the partial interpolants of the leaf
nodes. Finally we have that IA(x1x7) = ((x2 = x3) ∧ (x5 =
x6)) → (x1 = x7) is the partial interpolant of the root node,
representing the final interpolant for A.

A. The Interpolant Strength
Let P = (A,B,G[π]C) and Ls and Lw the strong and

the weak labeling functions. We will show in Th. 3 that



ItpLs
(P )→ ItpLw

(P ), and then in Ex. 3 that there are cases
where the strength relation is strict in the sense that there
are models that satisfy ItpLw

(P ) but do not satisfy ItpLs
(P ).

Theorem 3 needs Lemma 4 which in turn is a generalization of
Lemma 2. We then show our main result on EUF in Theorem 4
on comparing the strength of interpolants based on the labeling
functions used.

Lemma 2: Let GC be a congruence graph with coloring C,
and ω a factor from G. Then IA(ω) ∧ IB(ω)→ JωK.

Lemma 3: Let π be an arbitrary path in the congruence
graph, and φ(π) the set of all factors in π. Then IA(π) =∧
σ∈φ(π) IA(σ) and IB(π) =

∧
σ∈φ(π) IB(σ).

Lemma 4: Lemma 2 holds when ω is a path containing
multiple factors.

Theorem 3: For fixed A,B, and G[xy]C , for the cor-
responding interpolants defined in Eq. (5) it holds that
ItpLs

(A,B,G[xy]C)→ ItpLw
(A,B,G[xy]C).

We demonstrate that the implication is not trivial in general
by constructing three different labeling functions for the con-
gruence graph from Ex. 1 that result in three pairwise unequal
interpolants.

Example 3: Consider again the sets A and B and the
congruence graph GC from Ex. 1 and Fig. 1. Let Lc be
a custom labeling function mapping the paths to labels as
{x1x2 7→ s, x1v1 7→ s, v1v2 7→ s, v2x2 7→ s, y1t1 7→
w, t1t2 7→ w, t2y2 7→ w, z1s1 7→ w, s1s2 7→ w, s2z2 7→
w, r1u1 7→ w, u1u2 7→ w, u2r2 7→ w}. We recall that the
labeling function only needs to be defined on the factors
and the path that contradicts the original disequality, in this
case x1x2. The labels are shown over curves representing
which path is being labeled. The labeling function Lc rep-
resents the intent of generating stronger partial interpolants
closer to (x1 = x2), and weaker partial interpolants in the
inner explanations. Let Itps, Itpw and Itpc be, respectively,
the interpolants generated by Eq. (5) by using the labeling
functions Ls, Lw and Lc. The computed interpolants are
Itps = ((t1 = t2)→ (v1 = v2)) ∧ ((u1 = u2)→ (s1 = s2)),
Itpw = ¬((u1 = u2)∧((s1 = s2)→ (t1 = t2))∧¬(v1 = v2)),
and Itpc = ((t1 = t2)→ (v1 = v2)) ∧ ¬(((s1 = s2)→ (t1 =
t2))∧(u1 = u2)∧¬(t1 = t2)). The reader is welcome to verify
that Itps → Itpc → Itpw, and none of them is equivalent to
another.

Finally we present our main result providing a way to
partially order interpolation algorithms into a lattice based
on their strength. From this follows that the constant labeling
functions Ls and Lw give, respectively, the strongest and the
weakest interpolants within this framework.

Theorem 4: Let w be a strength relation defined over the
labels s and w such that s w s, w w w and s w w. Let
(A,B) be an interpolation instance, GC a congruence graph
proving the unsatisfiability of A∧B, and L and L′ two labeling
functions such that L(σ) w L′(σ) for all the factors σ of GC .
Then ItpL(A,B,G

C)→ ItpL′(A,B,GC).

B. Interpolant Size

The EUF-interpolation system presented above introduces a
way of computing interpolants of different strength by labeling
the factors of a congruence graph as s or w, depending on the
required strength. Each labeling function results potentially
in a different interpolant, and creating meaningful labeling
functions is a challenging task on its own. For the labeling
functions Ls and Lw we give the following results with respect
to their size.

Theorem 5: Let P = (A,B,G[π]C). The interpolant with
the smallest number of equality occurrences over all inter-
polants computable with the EUF interpolation system is
ItpLs

(P ) if π ∈ B and ItpLw
(P ) if π ∈ A.

IV. EXPERIMENTS

We integrated the EUF interpolation system together with
propositional interpolation to the OpenSMT2 solver and
HiFrog, an interpolation-based incremental model checker
for C [6], [28]. We report experiments in two different
settings in the implementation: running the approach (i) in-
tegrated in HiFrog; and (ii) over unsatisfiable EUF bench-
marks from SMT-LIB (i.e., the QF UF benchmarks). The
benchmarks and the software are available at http://verify.inf.
usi.ch/euf-interpolation. Before describing the experiments we
give a concise explanation on how EUF and propositional
interpolation are integrated.

A. Integration of Propositional and EUF Interpolation.

An SMT solver takes as input a propositional formula where
some atoms are interpreted over the theory of equalities over
uninterpreted functions. If a satisfying truth assignment for
the propositional structure is found, a theory solver is queried
to determine the consistency of its equalities. In case of
inconsistency the theory solver adds a reason-entailing clause
to the propositional structure. The process ends when either
a theory-consistent truth assignment is found or the proposi-
tional structure becomes unsatisfiable. The SMT framework
provides a natural integration for the theory and propositional
interpolants. The clauses provided by the theory solver are
annotated with their theory interpolant and are used as partial
interpolants in the propositional interpolation system (see,
e.g., [15]). Similar to EUF, the propositional interpolation
algorithms control the strength of the resulting interpolant
by choosing the partition for the shared variables through
labeling [15]. The labeling has to be followed then by the
theory interpolation algorithm to preserve interpolant sound-
ness. In the following experiments we use instances of the
propositional labeled interpolation system [29], [15] supported
by OpenSMT2, and in particular the McMillan’s algorithms
Ms and Mw [7], the Pudlák’s algorithm P [30], and the proof-
sensitive algorithms PS ,PS s, and PSw [15] that use the proof
structure to optimize the labeling. Fig. 4 shows the algorithms
ordered with respect to the logical strength of the interpolants
they compute.
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Figure 3. HiFrog overview

B. Interpolation-Based Incremental Verification

We integrated the EUF-interpolation system with the in-
cremental model checker HiFrog as part of OpenSMT2, and
used it to verify a set of C benchmarks from SV-COMP
(https://sv-comp.sosy-lab.org/) and other sources. In total we
checked 973 verification conditions.

We use both purely propositional logic and QF UF to
model the programs. The incremental C model checker HiFrog
attempts to prove or refute the validity of a sequence of
verification conditions using an SMT solver and an encod-
ing in EUF or in bit-precise propositional logic. Figure 3
shows HiFrog’s verification flow; see [28] for a more detailed
description on function refinement. The problem instance is
pre-processed and encoded into an SMT instance. An SMT
solver computes whether the assertion holds by determining
the satisfiability of the instance. If the instance is unsatisfiable,
the assertion holds, and interpolation is used to extract function
summaries from the proof. These summaries are then stored
and used in lieu of the precise encoding of a function to
incrementally verify the consequent assertions. If the instance
is satisfiable, the witnessing truth assignment corresponds to
an execution violating the assertion. However, due to the over-
approximative nature of both EUF and the function summaries,
the execution might be spurious. In this case the model checker
uses the precise encoding instead of the summaries to decide
the correct answer.

Table I overviews of our results. The numbers in parentheses
after the names report the number of assertions in the instance.
The table shows the verification time for HiFrog with proposi-
tional logic in the column Bool; and with EUF in the columns
marked EUF Time. Unlike the bit-precise propositional model,
the EUF model provides an over-approximation of the program
behavior. If HiFrog reports that a safety property is true under
EUF it is also true for the propositional model. However, if
a property is reported false, it may indicate either a real or a
spurious counterexample introduced by the EUF abstraction.
In the spurious case the model checker should, for instance,
consult the propositional encoding. The three columns under
the label EUF Results list, from left to right, the number of cor-
rectly identified assertions using EUF encoding, the number of
reachable assertions, and how many of the reachable assertions
were spurious. The table reports run times for three variations

Table I
SUMMARY OF VERIFICATION RESULTS ON A SET OF C BENCHMARKS.

EUF Results EUF Time (s)
Name (asrts) Corr SAT Sp Bool EUF Sp Full

floppy1 (18) 15 3 3 69.6 8.3 34.7 34.7
floppy2 (21) 18 3 3 192.1 46.7 122.5 122.5
kbfiltr1 (10) 10 0 0 4.1 1.3 1.3 1.3
diskperf1 (14) 11 3 3 193.7 20.5 67.8 67.8
floppy3 (19) 16 4 3 76.2 9.6 36.4 43.7
kbfiltr2 (13) 13 0 0 10.2 3.0 3.1 3.1
floppy4 (22) 19 4 3 207.3 46.7 127.9 144.1
kbfiltr3 (14) 14 1 0 18.7 5.7 5.6 14.6
tcas asrt (162) 149 145 13 86.0 16.7 21.6 100.0
cafe (115) 100 100 15 19.2 4.2 5.8 14.7
s3 (131) 123 112 8 1.5 1.7 1.8 3.0
mem (149) 146 52 3 44.6 59.9 60.0 78.5
ddv (152) 56 105 96 260.3 11.2 122.0 122.9
token (54) 54 20 0 962.3 150.6 150.6 998.6
disk (79) 62 72 17 8195.0 237.6 638.2 8151.2

total (973) 806 624 167 10340.8 623.7 1399.3 9900.7

Table II
INTERPOLATION ALGORITHM COMPARISON ON A SET OF C BENCHMARKS.

Ms + Itps Ms + Itpw Mw + Itps Mw + Itpw

Name t refs t refs t refs t refs

floppy1 10.9 28672 9.8 27648 8.3 24320 12.7 32256
floppy2 58.9 37120 64.8 41216 46.7 37632 59.6 40704
kbfiltr1 1.5 4864 1.5 4864 1.3 4864 1.5 4864
diskperf1 30.1 45568 20.5 44544 29.7 47104 26.0 48384
floppy3 9.6 28928 13.6 34304 9.6 26624 10.8 29952
kbfiltr2 3.0 4864 3.1 4864 3.1 4864 3.0 4864
floppy4 57.2 41472 46.7 43008 48.6 40704 58.6 43776
kbfiltr3 5.7 10240 6.5 10496 5.6 10240 6.3 10496
tcas asrt 17.2 59648 16.8 60160 16.7 59648 17.3 60160
cafe 4.2 6656 4.3 6656 4.2 6656 4.3 6656
s3 1.7 0 1.7 0 1.6 0 1.6 0
mem 60.1 23808 59.9 25088 60.7 23808 60.1 25088
ddv 11.2 7936 11.6 7936 11.6 7936 11.7 7936
token 151.4 15616 151.0 13568 152.8 15616 150.6 13568
disk 237.6 9472 241.3 38912 240.4 9472 246.4 38912

Total 660.3 324684 653.1 363264 640.9 319488 670.5 367616

of the model checker. Column EUF reports the time used only
by the EUF check. Column Sp reports the time when HiFrog
is allowed to query the spuriousness of the counter-example
from an oracle (see [31] for heuristics for implementing such
an oracle) and only needs to consult the propositional encoding
if the answer is yes. Column Full reports the time when HiFrog
needs to resort to the propositional encoding always in case of
a failure to verify. Notably the use of EUF as an abstraction
technique usually speeds up the solving even in the case of
the full overhead.

Finally we report the effect of interpolation algorithm
strength to the number of required refinements and the run time
for the four combinations Ms+Itps, Ms+Itpw, Mw+Itps and
Mw + Itpw in Table II. The number of summary refinements
varies sometimes considerably over the combinations, demon-
strating the advantage of the flexibility our framework provides
for the EUF-interpolation. The number of summary refinement
shows the total number of function summaries that were used
in whole verification process, did not work, and were replaced
by precise encoding of functions, hence the smaller number is,
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Figure 4. The relative strength of the propositional interpolation algo-
rithms [15].

the more efficient is the solving process. The best-performing
algorithm in this benchmark set is Mw+Itps with both lowest
total run time and the lowest total number of refinements.
We note that the run time and the number of refinements do
not always correlate, and that in particular the combination
Ms + Itps works very well with respect to refinements while
losing nevertheless clearly in total run time. Finally, the worst
approach has 15% more refinements and 5% higher run-time
compared to the best approach.

Our experiments show two main results. First, using EUF
to represent software instead of only Boolean formulas is
beneficial, and leads to an impressive speed up in verification
time. Second, it is possible to obtain further speed-up by fine
tuning the interpolation algorithms used for Boolean and EUF
interpolation in order to ultimately optimize convergence in
the model checker.

C. Interpolation over SMT-LIB Benchmarks

We also report a more controlled set of experiments on
generating interpolants of different strength and size. We
computed interpolants from over 2000 benchmarks from the
QF UF category of SMT-LIB, and report here the results
of 106 benchmarks that resulted in non-trivial interpolation
instances having complex EUF proofs with large congruence
graphs. In total this set contains over two and a half million in-
dividual EUF interpolants. Following [17], [32], we randomly
split the assertions in each benchmark to partitions A and B.

a) Logical strength: The theory interpolation algorithms
use three labeling functions Ls, Lw (see Sec. III), and Lr, a
labeling function that labels all components randomly as either
s or w. The algorithms are called, respectively, Itps, Itpw, and
Itpr. We use the proof-sensitive interpolation algorithm [15]
in the propositional structure. This results in three final inter-
polants Is, Iw and Ir for each benchmark.

We computed the strength relationship for each theory
partial interpolant as well as the final SMT interpolants. Even
though the EUF interpolants are often simple, in 71% of
them it was possible to generate at least two interpolants
of different strength, and 5.7% resulted in all three having
different strength.

After solving and interpolating, we ran extra experiments
to check the strength relations of the final interpolants Is, Iw
and Ir. Since the final interpolants are much more complex, of
the 106 benchmarks, 55 ran out of memory while computing
the strength relations. For the remaining 51, all the three final
interpolants were pairwise inequivalent, confirming that the
framework is able to generate interpolants of different strength.

b) Interpolant size: Since the propositional and EUF
interpolation algorithms are to a large degree independent,
it is natural to ask what combination of the algorithms is

 1

 2

 3

 4

 5

M
s +

Itp
s

M
s+

Itp
w

M
s+

Itp
r

P+
Itp

s

P+
Itp

w

P+
Itp

r

M
w +

Itp
s

M
w +

Itp
w

M
w +

Itp
r

PS+
Itp

s

PS+
Itp

w

PS+
Itp

r

PS
w +

Itp
s

PS
w +

Itp
w

PS
w +

Itp
r

PS
s+

Itp
s

PS
s+

Itp
w

PS
s+

Itp
r

Figure 5. Comparison between interpolation combinations with respect to the
number of Boolean connectives in the final interpolant

most efficient. This experiment studies the question using the
interpolant size as a measure of efficiency. The six propo-
sitional and three EUF interpolation algorithms result in 18
combinations. We measure the sizes of the final interpolants
both in (i) the number of Boolean connectives (Fig. 5); and (ii)
the number of EUF equalities (Fig. 6). Excluding the instances
where we encountered memory outs we report the results
on 82 of the original 106 benchmarks. For each benchmark,
we computed the smallest number of Boolean connectives or
equalities in the interpolant among all the configurations (best)
and the ratio combination/best for each possible combination,
which shows us how much worse each combination did
compared to the best combination for that benchmark. Notice
that the ratio of the best combination for a benchmark is one
and therefore no ratio can be less than one. The bars present
the average and the crosses the median of those ratios among
all the benchmarks for each combination.

In Fig. 5 the combination Mw + Itpw gives the smallest
number of Boolean connectives, and Ms + Itps appears in the
second place. The median of Mw + Itpw is 1, which means
that it was responsible for the smallest number of connectives
in at least half of the benchmarks, and its average of 1.2 shows
that even when this was not the case, the combination was
still close to the optimum. On the losing side, we make two
observations. The EUF interpolation algorithm Itpr leads to a
larger number of Boolean connectives, and the propositional
interpolation algorithm P leads to larger interpolants.

Interestingly the combinations PS + Itps and PS s + Itps
have low medians and averages. This seemingly contradicts
our earlier observation in [15] that PS and PS s consistently
lead to small number of connectives in the interpolant. The
likely reason is the soundness restriction in integration (see
Sec. IV-A), since the results gradually worsen as the proposi-
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Figure 6. Comparison between interpolation combinations with respect to the
number of equalities in the final interpolant



tional and the EUF interpolation algorithms disagree more on
the labeling, best being PS s+Itps and the worst PSw+Itps.

The same trend is seen in Fig. 6 in the number of EUF
equalities. A strong propositional interpolation algorithm (Ms,
PS s) combined with Itps leads to smaller interpolants com-
pared to their combination with Itpw; and a weak propositional
interpolation algorithm (Mw, PSw) combined with Itpw leads
to smaller interpolants compared to their combination with
Itps. Interestingly PS , a propositional interpolation algorithm
that tends to balance the distribution of variables [15], leads
to very similar results when combined with Itps and Itpw.

Our experiments with interpolation over complex SMT
benchmarks show that the interpolants generated by the EUF
system presented in this work indeed have strictly different
logical strength. Moreover, in the combination of Boolean and
EUF interpolants, it is important to match the strength of the
used interpolation algorithms in order to reduce the size of the
generated interpolants.

V. CONCLUSIONS

We present and analyse a new interpolation framework for
the theory of Equalities and Uninterpreted Functions, capable
of generating interpolants of different strength and small size
in a controlled way. The technique bases on the use of dual
partial interpolants parameterized by a labeling function. We
confirm the analysis with experiments and show the feasibility
of generating multiple interpolants of different strengths. In
addition, we report on the size of the created interpolants,
comparing different combinations of propositional and EUF
interpolation algorithms. Our major contribution work is the
integration of a complete interpolation-based model checker to
the system, and showing the significant impact the interpolant
strength has on both run time and convergence.

In the future we intend to generalize the approach to be
applicable to other theories, and study the effects of different
labeling functions on fix-point computation in other model-
checking applications.
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