Duality-Based Interpolation for Quantifier-Free
Equalities and Uninterpreted Functions

Leonardo Alt, Antti E. J. Hyvirinen, Sepideh Asadi, and Natasha Sharygina
Universita della Svizzera italiana, Lugano, Switzerland
Email:firstname.lastname @usi.ch

Abstract—Interpolating, i.e., computing safe over-
approximations for a system represented by a logical formula,
is at the core of symbolic model-checking. One of the central
tools in modeling programs is the use of the equality logic
and uninterpreted functions (EUF), but certain aspects of
its interpolation, such as size and the logical strength, are
still relatively little studied. In this paper we present a
solid framework for building compact, strength-controlled
interpolants, prove its strength and size properties on EUF,
implement and combine it with a propositional interpolation
system and integrate the implementation into a model checker.
We report encouraging results on using the interpolants both
in a controlled setting and in the model checker. Based on
the experimentation the presented techniques have potentially
a big impact on the final interpolant size and the number of
counter-example-guided refinements.

I. INTRODUCTION

An important skill in constructing mathematical proofs is
to identify the aspects of the problem that are relevant. When
applied to formal reasoning about the correctness of software
this means ignoring the parts of the system that play no
role in its correctness. One such approach that works well in
automated software verification based on satisfiability modulo
theories (SMT) engines (see, e.g, [1]) is to employ the Equality
Logic and Uninterpreted Functions (EUF) when applicable: in
some cases it suffices to assume that a given function returns
the same value when invoked with the same arguments. This
technique is particularly useful, for example, when modeling
memory or arrays [2], proving program equivalence [3], or
as a technique for avoiding flattening in solving bit-vector
problems [4], [5].

Generalizing a formula over the states reachable by a
program is a natural subtask when summarizing the behavior
of a procedure [6], or computing a fixed-point of a tran-
sition function [7], [8]. These techniques are now popular
in software model-checking [9], [10], and together with the
theory-based abstraction result in a growing interest in an over-
approximation technique known as interpolation.

In this paper we present the EUF-interpolation system
which aims at specializing and tailoring interpolants for
the needs of interpolation-based model-checking. The paper
contributes to the state-of-the-art by (i) providing the first
approach for controlling the strengths of EUF interpolants;
(ii) identifying a strength lattice of interpolation algorithms;
and (iii) proving under certain assumptions the size order for
the interpolants produced by the system. In addition we (iv)

provide an implementation of the system; (v) integrate and
experiment with the system on a model checker; and (vi) study
the combination of labeled interpolation systems for EUF and
propostitional logic. The EUF-interpolation operates on the
proof of unsatisfiability in EUF based on a recursive algorithm
for building a final interpolant from partial interpolants and
uses duality of interpolants, a logical relation between an
interpolant and its negation discussed below, to control the
strength of the constructed partial and final interpolants.

The system is implemented in the SMT solver
OpenSMT2 [11], and used in a model-checking algorithm
based on the interpolating incremental C verifier HiFrog [6].
This gives us the advantage of making a direct connection
between the theoretical contributions and practice. We
evaluate the efficiency of the EUF-interpolation system with
two major experiments. In the first experiment we verify a set
of C software verification problems produced by HiFrog, and
in the second experiment we study different combinations of
propositional and EUF interpolation algorithms on a set of
instances from the SMT-LIB benchmark collection. Based
on the results the system has a big impact on the generated
interpolants, and the interpolants seem to be very useful
in our application to model-checking. To the best of our
knowledge our work is the first to consider the duality of
interpolants in constructing EUF interpolants recursively, and
to report experiments with EUF interpolation together with
incremental verification.

a) Related work : Recent work on labeled interpola-
tion systems (LIS) addresses interpolation in propositional
logic [12], [13], [14], [15] by providing control over fitting
the interpolant strength and size to particular model-checking
applications. Our approach extends the work on propositional
interpolation to SMT theories and in particular to EUF. In-
terpolation procedures for EUF have been introduced in [16],
[17]. The interpolation procedure given in [16] provides a way
of computing a single interpolant from a given proof. The
technique is extended in [17] to allow construction of several
interpolants through the coloring of congruence graphs edges.
Our work differs fundamentally from both these approaches by
using duality for controlling the interpolant strength, a feature
not available in earlier formalizations.

The parametric interpolation frameworks presented in [18]
and [19] generalize first-order interpolation procedures. The
former provides labeled interpolation systems for hyper-
resolution proofs which are then extended to first order in-



terpolation systems for local proofs; the latter generalizes the
former further to non-local proofs. Both of these techniques
provide control on the propositional level. Unlike ours, they
are not specialized and optimized for EUF and, to the best of
our knowledge, have not been implemented.

Other orthogonal procedures exist for the quantifier-free
fragments of the theories of linear integer arithmetics [20],
[21], linear real arithmetics [16], [22], [23], and Arrays [24],
while [25] provides a labeled interpolation system for Non-
linear Real Arithmetics. On a high level, we believe that the
duality-based approach followed in this work can be applied
also in these fields.

This paper is organized as follows: Sec. II presents a general
algorithmic framework for interpolation as a preliminary for
the EUF-interpolation system. The main result on the EUF-
interpolation system is presented in Sec. III The experiments
are reported in Sec. IV, and the paper concludes in Sec. V. For
lack of space we present most of the proofs of the theorems
in Appendix A. The implementation and more experimental
results are available at http://verify.inf.usi.ch/euf-interpolation.

II. PRELIMINARIES

This paper considers the extension of propositional logic
to Boolean variables that are interpreted as equalities over
uninterpreted functions. Following [26], we call the extension
the theory of equality logic and uninterpreted functions (EUF)
For example —(a = b) V f(a) = f(b) is an EUF formula
containing the uninterpreted functions a, b, and f, embedded
in a Boolean structure. Given an EUF formula F', we call the
equality (=), and the Boolean connectives (e.g. —, A, V) the
logical symbols, while the Boolean variables and uninterpreted
functions are its non-logical symbols, denoted by Vars(F).

Given an unsatisfiable conjunction A A B of EUF formulas
A and B, an interpolation instance is a pair (A, B), and
an interpolant for (A, B) is a formula I(A, B) such that (i)
A — I(A,B), (ii) I(A,B) A B is unsatisfiable, and (iii)
Vars(I(A, B)) C Vars(A) N Vars(B). In general several
interpolants can be computed for an instance (A, B). We
denote an algorithm computing an interpolant (A, B) by
Itp(A, B), and, with a slight abuse of the notation, use
Itp(A, B) to denote the interpolant I(A, B) when the inter-
polation algorithm needs to be specified. A concept central
to this paper is the duality between interpolation algorithms:
Given an interpolation algorithm Itp(A, B), also the algorithm
Itp~ (A, B) returning —Itp(B, A) computes an interpolant
for (A4, B), as can be seen from the following reasoning:
By definition, Itp~ (A, B) = —Itp(B,A). Itp(B, A) satis-
fies 1) B — Itp(B,A); (i) Itp(B,A) — —A; and (iii)
Vars(Itp(B, A)) C Vars(A) N Vars(B). By rewriting, from
(ii) follows that (iv) A — —Iip(B, A), and from (i) that
(v) -Itp(B,A) — B. From (iii), commutativity of inter-
section, and definition of non-logical symbols, follows (vi)
Vars(—Itp(B, A)) C Vars(B) N Vars(A).

In this work we consider algorithms that build interpolants
based on the unsatisfiability proof of A A B. We make this

Algorithm 1 Congruence closure

: procedure CONGRUENCECLOSURE(T, Eq)
Initialize E + 0 and G « (T, E)
repeat pick x,y € T such that (z % y)
if (@) (x =y) € Eq or
b) zis f(z1,...,zk), yis f(y,...
(x1 ~9y1),...,(xx ~ yi) then
E+ EU{(z,y)}
until no such z,y can be chosen so that £ would grow
return G

,Yk), and

R A U i s

explicit by denoting the interpolation algorithm (and the re-
sulting interpolant) by Itp(A, B, R), where R is the refutation
representing the proof of unsatisfiability. In this work we
are particularly interested in ordering interpolation algorithms
with respect to the strength of the interpolants they compute.
An interpolant [ is stronger than an interpolant I’ if T — I’.
We extend the strength relation to interpolation algorithms: if
Itp® (A, B, R) — Itp" (A, B, R) for algorithms Itp® and Itp"™
for all interpolation instances (A, B) with a fixed refutation
R for A A B, then Itp® is stronger than Itp™. If the strength
relation can be established between the algorithms Itp and
Itp™, we call the algorithm computing the stronger interpolant
the base and the weaker the dual interpolation algorithm and
denote them by Itp and Itp’, respectively.

A. EUF Preliminaries

This section describes our interpolation system for EUF. The
presentation is based on [17] and uses the congruence graph
as the refutation.

Many EUF solvers rely on the congruence closure algo-
rithm [27] to decide the satisfiability of a set of equalities
and disequalities. The algorithm, described in Alg. 1, takes as
input a finite set Fq of equalities, and the set 7' of subterm-
closed terms over which Ejq is defined. During the execution
the algorithm builds an undirected congruence graph G using
the set 7' as nodes. We write (x ~ y) if there is a path in G
connecting x and y and denote this path by Ty.

Theorem 1 (c.f. [27]): Let S be a set of EUF disequal-
ities x # y over the terms 7. The set S U Eq is satisfi-
able if and only if the congruence graph G constructed by
CONGRUENCECLOSURE(T, Eq) has no path (z ~ y) such
that (z #y) € S.

During the creation of G, an edge (x,y) is added only
if (z ~ y) does not hold, which ensures that G is acyclic.
Therefore, for any pair of terms x and y such that (z ~ y)
holds in G, the path Ty connecting these terms is unique.
Empty paths are represented by zz. For an arbitrary path 7,
we use the notation [r] to represent the equality of the terms
that 7w connects. If, for example, 7 = Ty, then [7] := (x = y).
We also extend this notation over sets of paths P so that
[P] := Aeplol-

An edge may be added to a congruence graph G because of
two different reasons in Alg. 1 at line 7. Edges added because
of Condition (a) are called basic, while edges added because
of Condition (b) are called derived. Let e be a derived edge



(f(x1,...,2x), fy1,.--,yk)). The k parent paths of e are
T1Y1,---,TkYk. Given a congruence graph G and two terms
x,y such that x ~ y we denote by G[Zy] the congruence graph
obtained from the graph G by including the edges and terms
that appear on the path Ty and recursively all its parent paths.

Let A and B be two sets of equalities and disequalities.
A coloring C of a congruence graph G = (E,T) created
over the equalities and terms of A U B is a function C :
E — {a,b}, that is, C assigns a color a or b to each edge,
considering two restrictions: (i) basic edges e must be colored
with a if e € A and with b if e € B; and (ii) if an edge has
color x € {a, b}, both its endpoints must be x-colorable. ab-
colorable derived edges can be colored arbitrarily. To compute
the interpolant the congruence graph needs to be annotated
with the information on which equalities and formulas belong
to which partition. Equalities and formulas are a-colorable if
all their non-logical symbols occur in A, and b-colorable if
all their non-logical symbols occur in B. They are colorable
if they are a or b-colorable, and ab-colorable if both. An edge
(z,y) of a congruence graph has the same color as the equality
(x = y). A path in a congruence graph is colorable if all its
edges are colorable, and a congruence graph is colorable if all
its edges are colorable.

While it is possible to construct a non-colorable congruence
graph, the following lemma and its constructive proof in [17]
state that we may assume without loss of generality that
congruence graphs are colorable.

Lemma 1 (c.f. [17]): Let (A, B) be an interpolation instance
over EUF. If z and y are colorable terms and if A, B = (x =
y), then there exist a term set 7' and a colorable congruence
graph over the equalities contained in A U B U T in which
(x ~y).

We denote a congruence graph G colored with a function C'
by G€. A path is called an a-path if all its edges are colored
a, and a b-path if all its edges are colored b. A factor of a path
in G¢ is a maximal subpath such that all its edges have the
same color. Notice that every path is uniquely represented as
a concatenation of the consecutive factors of opposite colors.

Example 1: Let A := {(v1 = f(y1)), (f(y2) = v2), (y1 =
t1), (t2 = y2), (51 = f(r1)), (f(r2) = s2), (r1 = w1), (u2 =
r2)} and B :={(z1 = v1), (v2 = 22), (t1 = f(21)), (f(22) =
ta), (z1 = s1),(s2 = 22), (u1 = w2), (r1 # x2)}. Figure 1
shows a colored congruence graph G built while proving
the unsatisfiability of A and B with Alg. 1. The curvy edges
with the labels s or w in G¢ are not relevant for this example
and are used later in Section III. The congruence graph G¢
demonstrates the joint unsatisfiability of A and B, since it
proves (x1 = x2) and (x1 # x2) is an original term. Edges
are represented by thick lines, and dotted arrows point to
the parents of derived edges. We present a-colorable nodes
(terms) and a-colored edges by black circles and solid lines,
b-colorable nodes and b-colored edges by white circles and
dashed lines, and ab-colorable nodes by gray circles. In the
first (top) path of G¢, we see that basic edges (original
equalities from A U B) are used to prove (r; = rg). This
fact is used to infer (f(r1) = f(r2)), which is in turn used

o_ o---0 K

. w- M w M w2
O~ —-—-0 [ ] [ ] ®---0
21 W 51 fr) w f(r2) 52 w 22
[ ] o---0---0---0 [ ]
VIS, h f@) , f) Lo TN
O---0 [ ] [ ] ®@---0
x| P fon)  fO2) vuoooon

— e

Figure 1. Congruence graph G that proves the unsatisfiability of A U B

as a derived edge in the path below, proving (21 = z3). The
equality (f(z1) = f(z2)) is then inferred and used to prove
(y1 = y2) in the path below. In the last (bottom) path of G,
the derived edge representing (f(y1) = f(y2)) is created and
finally (z1 = z2) is proved.

III. THE EUF INTERPOLATION SYSTEM

In this section we present the EUF-interpolation system
which extends the approach described in [17] with a modular
use of dual interpolants. The main novelty of the system the
control over the interpolant strength. Due to lack of space all
the proofs of the theorems in this section are presented in
Appendix A.

Intuitively, the approach computes partial interpolants with
either a base or a dual interpolation algorithm using the
structure of a congruence graph. We show that while inter-
polating on a fixed congruence graph the liberty in choosing
between the two interpolation algorithms allows computing
several interpolants that can be partially ordered with respect
to their strength. To make this choice explicit we introduce the
labeling functions L for the EUF-interpolation interpolation
system, and the algorithm I¢p; for computing the interpolants.

Definition 1 (Labeling function): Let G[Zy]¢ be a colored
congruence graph and W its factors. A labeling function
L : WU {zy} — {s,w} labels the factors and the path
corresponding to the conflict z # y as s or w.

We want to emphasize that colors, described in Sec. II-A,
and labels are different concepts. The colors a, b tell if a node
or edge in a congruence graph belongs to A or B, whereas
labels s, w are used while deciding whether to use the standard
or the dual interpolant.

Given an (unsatisfiable) interpolation instance (A, B), an
EUF interpolation algorithm Itp; (A, B, G[77]”) computes an
interpolant for (A, B); G[zy]“ is a congruence graph with
coloring C'; Ty a path such that (x ~ y) is in G and the
disequality (z # y) exists in AU B; and L is a labeling
function. We omit A, B, G and L when they are clear from
the context, referring to the interpolation algorithm and the
corresponding interpolant as Iip(Ty). We define separately
two constant labeling functions Ls;(c) = Ls = s and
L., (0) = Ly, = w that will be useful in the following analysis.

The interpolation algorithms in [16] and [17] essentially
compute an interpolant by collecting the A-factors that prove
(r = y) in G. To maintain the unsatisfiability with the B



part of the problem, the A factors will then be implied by their
B-premise set. A premise set for a color is the set of equalities
of the opposite color justifying the existence of a parent edge.
More technically, the B-premise set B for a path 7 is

U{B(0)|o is a factor of 7},if 7 has > 2 factors;

B(r) {n},if 7 is a B-path; and

)=
U{B(0o)|o is a parent path of an edge of 7},

if 7 is an A-path.

ey
As stated in Sec. II, it is also possible to compute a dual
interpolant for A as the negation of an interpolant for B. To
compute the dual interpolant we will need similarly to collect
the B-factors that prove (z = %) in G, implied by their
A-premise set. The A-premise set A for a path 7 is defined
as

U{A(e
{n},if w is an A-path; and
[U{A(0)|o is a parent path of an edge of 7},

)|o is a factor of m},if = has > 2 factors;
A(r) =

if 7 is a B-path.
2)
We extend the notation of A and B over a set S of paths as
A(S) := U,ecs Alo) and B(S) := |J,cg B(o). For any two
operators O, O’ such that domain of O contains the range of
O’ we define the composite operator OO’ (0) := O(O'(0));
and define recursively O°(o) := o, and O™ := O(O"~1).
The functions J4 and Jp give, respectively, the contribution
of an individual A-factor and an individual B-factor to the
interpolants.

Ja(m) = [B(x)] = [7] 3)
Jp(m) = [A(m)] = [r] €y

Let S be a set of paths. The notation S|, represents the
subset of S’ containing the paths o such that L(c) = v for
v € {s,w}. Let (A, B) be an EUF interpolation instance, G
the corresponding congruence graph, and = # y € AU B that
is in conflict with G. Let P = (A, B, G[zy]“). The algorithm
Itp; (P) computes the EUF interpolant over A for a path Z7.
It is defined using four sub-procedures I 4, Iy, I, and I} that
map congruence graphs to partial interpolants, and are invoked
depending on which partition the conflict  # y belongs to
and what label the path zy has:

Ia(zy) if (x #y) € B and L(zY) = s,
e 7)) —

Itp, (P) = IA(;v;ﬂ if (x#y)€ A and L(?) =s,

-Ip(@y) if (r#y) € Aand L(TY) = w, a

~I5(7y) if (r#y) € B and L(77) = w.
(5)

The sub-procedures for I4 and Ip are defined as
= N\ Jalo N Iae) A Ii (o)
o€ A(m) aeBA( )| cE€BA(T)|w

(6)

and
-1’y (0).

(7
For the cases where either the conflict z # y € A and L(zy) =
s, or the conflict z # y € B and L(Ty) = w, the path Tg = 7
needs to be decomposed for computing the partial interpolant
as m0pmo or m16,mo, where 6, is the longest subpath of 7
with k-colorable endpoints. Hence, I’y and I are

Iy () == I4(6,) A A L)
o€B(m1)UB(ms) 3

A ([B(m1) U B(m2)] = =[6]),

N Jse)n N\

oceB(m) o €EAB(T)|w

IB(O')/\ /\

o€ AB(m)|s

and

Ig@) A N Ig(0))
oEA(m)UA(r2) 9

AA(T1) U A(m2)] = —[6al).

Theorem 2: Given two sets of equalities and disequalities A
and B such that AU B is unsatisfiable, a colored congruence
graph G containing a path 7 := Ty such that (z # y) €
A U B, and a labeling function L, Eq. (5) computes a valid
interpolant for A using L over G°.

The following example shows how Eq. (5) can be used to
compute the interpolants from [17].

Example 2: Let A := {(x1 = f(x2)), (f(x3) = x4), (x4 =
f(w5)), (f(ze) = x7)} and B = {(z2 = w3),(z5 =
x6), (x1 # x7)}. Figure 2 shows a possible congruence graph
GC that proves the joint unsatisfiability of A and B (by
proving (z7 = x7) such that (z; # z7) € AU B) and its
tree representation, with each node annotated by its partial
interpolant. In this example we use the constant labeling
function Ly = s. From Eq. (5) we have that Itp(T1z7) =
I14(T1T7), because Ls(Tix7) = s and (x1 # z7) € B.
The call to I4(T1x7) is represented by the root node in the
tree in Figure 2. First we compute A(T177) = {ZTi77} and
BA(z177) = {Z2%3,T5Z6}. Then from Eq. (6) we have that
I4(Z1T7) = Ja(T1T7) A 14(T2T3) A 14(T5T6). The calls to
14(Z273) and 14(T5T6) are represented by the edges from the
leaf nodes to the root in the tree in Figure 2. We then proceed
computing A(Z273) = () and BA(Z273) = () which lead to
I4(T273) = T; and A(T576) = 0 and BA(T5T6) = () which
lead to I4(T5Zg) = T (the partial interpolants of the leaf
nodes). Finally we have that [4(Z177) = ((z2 = z3) A (25 =
x6)) — (x1 = x7) is the partial interpolant of the root node,
representing the final interpolant for A.

I(m) =

A. The Interpolant Strength

Let P = (A,B,G[r]°) and Ly and L, the weak and
the strong labeling functions. We will show in Th. 3 that
Itpy (P) — Itpy (P), and then in Ex. 3 that there are
cases where the strength relation is strict in the sense that
there are models that satisfy Itp; (P) but do not satisfy
Itpy, (P). Theorem 3 needs Lemma 4 which in turn is a
generalization of Lemma 2. We then show our main result
on EUF in Theorem 4, that is, we provide a way to compare



Figure 2. Computing partial interpolants for the EUF-interpolation system.

the strength of interpolants based on the labeling functions
used.

Lemma 2: Let G be a congruence graph with coloring C,
and w a factor from G. Then I4(w) A Ip(w) = [w].

Lemma 3: Let m be an arbitrary path in the congruence
graph, and ¢(7) the set of all factors in 7. Then I4(w) =
/\ae¢(w) I4(0) and Ig(m) = /\U@(ﬂ) Ig(o).

Lemma 4: Lemma 2 holds when w is a path containing
multiple factors.

Theorem 3: For fixed A, B, and G[zy|®, for the cor-
responding interpolants defined in Eq. (5) it holds that
ItpLs (A’ B’ G[@]C) - Itpr (A7 B7 G[Ty]c)

To show that the implication is not trivial in general, we
show by example that three different labeling functions being
applied to the congruence graph from Ex. 1 result in three
pairwais inequal interpolants.

Example 3: Consider again the sets A and B and the
congruence graph G¢ from Ex. 1 and Fig. 1. Let L. be
a custom labeling function mapping the paths to labels as
{Tizz — 5,701 = 5,010z — S, 2T = S, yit;
w,tity — w,lays — W,ZS1 — W,5153 — W,5223 >
w, iU — w, Utz — W, Uz — w}. We recall that the
labeling function only needs to be defined on the factors
and the path that contradicts the original disequality, in this
case Ti1x3. The labels are shown over curves representing
which path is being labeled. The labeling function L. rep-
resents the intent of generating stronger partial interpolants
closer to (r1 = z3), and weaker partial interpolants in the
inner explanations. Let Itp,, Itp,, and Itp. be, respectively,
the interpolants generated by Eq. (5) by using the labeling
functions L, L,, and L.. The computed interpolants are
Itp, = ((t1 = t2) = (v1 = v2)) A ((u1 = u2) = (51 = $2)),
Itp,, = =((u1 = u2)A((s1 = s2) = (t1 = t2)) A= (v1 = v2)),
and Itpc = ((tl = tg) — (’U1 = UQ)) A _‘(((81 = 82) — (tl =
t2))A(uy = ug)A—(t; = ta)). The reader is welcome to verify
that Itp, — Itp. — Itp,,, and none of them is equivalent to
another.

Finally we present our main result providing a way to
partially order interpolation algorithms into a lattice based
on their strength. From this follows that the constant labeling
functions L, and L,, give, respectively, the strongest and the
weakest interpolants within this framework.

Theorem 4: Let J be a strength relation defined over the
labels s and w such that s O s, w J w and s O w. Let
(A, B) be an interpolation instance, G a congruence graph

proving the unsatisfiability of AAB, and L and L’ two labeling
functions such that L(c) 3 L'(o) for all the factors o of G©.
Then Itp, (A, B,G%) — Itp,, (A, B,G).

B. Interpolant Size

The EUF-interpolation system presented above introduces a
way of computing interpolants of different strength by labeling
the factors of a congruence graph as s or w, depending on the
required strength. Each labeling function results potentially
in a different interpolant, and creating meaningful labeling
functions is a challenging task on its own. For the labeling
functions L and L,, we give the following results with respect
to their size.

Theorem 5: Let P = (A, B, GY). The interpolant with the
smallest number of equalities over all interpolants computable
with the EUF interpolation system is ltp; (P) if # € B and
Itpy, (P)if m € A.

The EUF interpolation system presented in this section pro-
vides a rich platform that allows the adjustment of interpolants
to particular tasks. In the following we will study how the
approach works in practice.

IV. EXPERIMENTS

We implemented and integrated the EUF interpolation
system together with propositional interpolation into the
OpenSMT2 solver and HiFrog, an interpolation-based in-
cremental model checker for C [6]. We report experiments
in two different settings in the implementation: running the
approach (i) integrated in HiFrog; and (ii) over unsatisfiable
EUF benchmarks from SMT-LIB (i.e., the QF_UF bench-
marks). The benchmarks and the software are available at
http://verify.inf.usi.ch/euf-interpolation. Before describing the
experiments we give a concise explanation on how EUF and
propositional interpolation are integrated.

A. Integration of Propositional and EUF Interpolation.

An SMT solver takes as input a propositional formula
where some atoms are interpreted as equalities or inequali-
ties over a theory, that in our experiments is the theory of
equalities over uninterpreted functions. If a satisfying truth
assignment for the propositional structure is found, a theory
solver is queried to determine the consistency of its equalities.
In case of inconsistency the theory solver adds a reason-
entailing clause to the propositional structure. The process
ends when either a theory-consistent truth assignment is found
or the propositional structure becomes unsatisfiable. The SMT
framework provides a natural integration for the theory and
propositional interpolants. The clauses provided by the theory
solver are annotated with their theory interpolant and are
used as partial interpolants in the propositional interpolation
system (see, e.g., [15]). Similar to EUF, the propositional
interpolation algorithms control the strength of the resulting
interpolant by choosing the partition for the shared variables
through labeling [15]. The labeling has to be followed then
by the theory interpolation algorithm to preserve interpolant
soundness. In the following experiments we use instances



function

sources + summaries
assertions SMT encoder - . storage
— pmmmmm—m——mmmmmmeen BOOL|
N - > assertions ! QF_UF QF BOOL
traversal U WA B bt \.,J

sum.mary SAT Interpolating SMT solver
refiner - -
[ theory JP’O"’[ proof ]
C r

solvers OmMpressol
N itp for » %
QF_BOOL
itp for / interpolation-
QF_UF based

ies

assertion violated
& error trace

X

V UNSAT
assertion holds

Figure 3. HiFrog overview

of the propositional labeled interpolation system [28], [15]
supported by OpenSMT2, and in particular the McMillan’s
algorithms M and M, [7], the Pudlak’s algorithm P [29], and
the proof-sensitive algorithms PS, PS, and PS,, [15] that use
the proof structure to optimize the labeling. Fig. 4 shows the
algorithms ordered with respect to the logical strength of the
interpolants they compute.

B. Interpolation-Based Incremental Verification

We integrated the EUF-interpolation system with the in-
cremental model checker HiFrog as part of OpenSMT?2, and
used it to verify a set of C benchmarks from SV-COMP
(https://sv-comp.sosy-lab.org/) and other sources. In total we
checked 973 verification conditions over these problems in the
experiments.

We use both purely propositional logic and QF_UF to
model the programs. The incremental C model checker HiFrog
attempts to prove or refute the validity of a sequence of
verification conditions using an SMT solver and an encoding
in EUF or in bit-precise propositional logic. Figure 3 shows
HiFrog’s verification flow. The problem instance is first pre-
processed and then encoded into an instance of a decision
problem in SMT. An SMT solver computes whether the
assertion holds by determining the satisfiability of the instance.
If the instance is unsatisfiable, the assertion holds, and inter-
polation is used to extract function summaries from the proof.
These summaries are then stored and used in lieu of the precise
encoding of a function to incrementally verify the consequent
assertions. If the instance is satisfiable, the witnessing truth
assignment corresponds to an execution violating the assertion.
However, due to the over-approximative nature of both EUF
and the function summaries, the execution might be spurious.
In this case the model checker uses the precise encoding
instead of the summaries to decide the correct answer.

Table I gives an overview of our results. In parentheses
after the names we mark the total number of assertions
in the instance. The table shows the verification time for
HiFrog with propositional logic in the column Bool; and
with EUF in the columns marked EUF Time. Unlike the bit-
precise propositional model, the EUF model provides an over-
approximation of the program behavior. If HiFrog reports that
a safety property is true under EUF it is also true for the
propositional model. However, if a property is reported false,

Table 1
SUMMARY OF VERIFICATION RESULTS ON A SET OF C BENCHMARKS.

EUF Results EUF Time (s)

Name (asrts) Corr SAT Sp Bool EUF Sp Full
floppy1 (18) 15 3 3 69.6 8.3 34.7 34.7
floppy2 (21) 18 3 3 192.1 42.8 1225 122.5
kbfiltrl (10) 10 0 0 4.1 1.3 1.3 1.3
diskperfl1 (14) 11 3 3 193.7 20.5 67.8 67.8
floppy3 (19) 16 4 3 76.2 9.6 36.4 43.7
kbfiltr2 (13) 13 0 0 10.2 3.1 3.1 3.1
floppy4 (22) 19 4 3 207.3 46.7 127.9 144.1
kbfiltr3 (14) 14 1 0 18.7 5.6 5.6 14.6
tcas_asrt (162) 149 145 13 86.0 16.7 21.6 100.0
cafe (115) 100 100 15 19.2 4.2 5.8 14.7
s3 (131) 123 112 8 1.5 1.6 1.8 3.0
mem (149) 146 52 3 446 599 60.0 78.5
ddv (152) 56 105 96 260.3 11.6  122.0 122.9
token (54) 54 20 0 9623 1506 150.6  998.6
disk (79) 62 72 17 8195.0 237.6 6382 8151.2
Table IT
INTERPOLATION ALGORITHM COMPARISON ON A SET OF C BENCHMARKS.
Ms + Itps Ms + Itpw My 4+ Itps Mw + Itpw
Name t refs t refs t refs t refs
floppyl 10.9 28672 9.8 27648 83 24320 127 32256
floppy2 58.9 37120 64.8 41216 46.7 37632 59.6 40704
kbfiltrl 1.5 4864 1.5 4864 1.3 4864 1.5 4864
diskperfl 30.1 45568 20.5 44544 29.7 47104 26.0 48384
floppy3 9.6 28928 13.6 34304 9.6 26624 10.8 29952
kbfiltr2 3.0 48064 3.1 4864 3.1 4864 3.0 4864
floppyd 572 41472 467 43008 48.6 40704 58.6 43776
kbfiltr3 5.7 10240 6.5 10496 5.6 10240 6.3 10496
tcas_asrt 17.2 59648 168 60160 16.7 59648 17.3 60160
cafe 42 6656 4.3 6656 4.2 6656 4.3 6656
s3 1.7 0 1.7 0 1.6 0 1.6 0
mem 60.1 23808 59.9 25088 60.7 23808 60.1 25088
ddv 1.2 7936 11.6 7936 11.6 7936 11.7 7936
token 151.4 15616 151.0 13568 152.8 15616 150.6 13568
disk 237.6 9472 2413 38912 240.4 9472 2464 38912
Total 660.3 324684 653.1 363264 640.9 319488 670.5 367616

it may indicate either a real or a spurious counterexample
introduced by the EUF abstraction. In case of false properties
the model checker can for instance consult the propositional
encoding to get the correct result. The three columns under the
label EUF Results list, from left to right, the number of cor-
rectly identified assertions using EUF encoding, the number of
reachable assertions, and how many of the reachable assertions
were spurious. The table reports run times for three variations
of the model checker. Column EUF reports the time used only
by the EUF check. Column Sp reports the time when HiFrog
is allowed to query the spuriousness of the counter-example
from an oracle and only needs to consult the propositional
encoding if the answer is yes. Column Full reports the time
when HiFrog needs to resort to the propositional encoding
always in case of a failure to verify. Notably the use of EUF
as an abstraction technique usually speeds up the solving even
in the case of the full overhead.

Finally we report the effect of interpolation algorithm
strength to the number of required refinements and the run time
for the four combinations M, + Itp_, M, + Itp,,, M, + Itp,
and M, + Itp, in Table II. We note that the number of
summary refinements varies sometimes considerably over the



combinations, demonstrating the advantage of the flexibility
our framework provides for the EUF-interpolation. The num-
ber of summary refinement shows the total number of function
summaries that were used in whole verification process, did
not work, and were replaced by precise encoding of functions,
hence the smaller number is, the more efficient is the solving
process. The best-performing algorithm in this benchmark set
is M,, + Itp, with both lowest total run time and the lowest
total number of refinements. We note that the run time and
the number of refinements do not always correlate, and that
in particular the combination M + Itp, works very well with
respect to refinements while losing nevertheless clearly in total
run time.

Our experiments with a model checker solving real life
problems shows two main results. The first is that using EUF
to represent software instead of only Boolean formulas is
beneficial, and leads to an impressive speed up in verifica-
tion time. The second result, is that it is important to fine
tune the interpolation algorithms used for Boolean and EUF
interpolation in order to ultimately optimize convergence in
the model checker.

C. Interpolation over SMT-LIB Benchmarks

In addition to integrating the EUF interpolation into the
model checker, we also report a more controlled set of ex-
periments on generating interpolants of different strength and
size. We computed interpolants from over 2000 benchmarks
from the QF_UF category of SMT-LIB, and report here
the results of 106 benchmarks that resulted in non-trivial
interpolation instances having complex EUF proofs with large
congruence graphs. In total this set contains over two and
a half million individual EUF interpolants. Following [17],
[30], we randomly split the assertions in each benchmark to
partitions A and B.

a) Logical strength: The theory interpolation algorithms
use three labeling functions Lg, L,, (see Sec. IIl), and L,, a
labeling function that labels all components randomly as either
s or w. The algorithms are called, respectively, Itp,, Itp,,, and
Itp,. We use the proof-sensitive interpolation algorithm [15]
in the propositional structure. This results in three final inter-
polants I, I,, and I, for each benchmark.

We computed the strength relationship for each theory
partial interpolant as well as the final SMT interpolants. Even
though the EUF interpolants are often simple, in 71% of
them it was possible to generate at least two interpolants
of different strength, and 5.7% resulted in all three having
different strength.

After solving and interpolating, we ran extra experiments
to check the strength relations of the final interpolants I, I,,
and I,.. Since the final interpolants are much more complex, of
the 106 benchmarks, 55 ran out of memory while computing
the strength relations. For the remaining 51, all the three final
interpolants were pairwise inequivalent, confirming that the
framework is able to generate interpolants of different strength.

b) Interpolant size: Since the propositional and EUF
interpolation algorithms are to a large degree independent,

Figure 4.
rithms [15].

The relative strength

A A

X \S‘
S, Sx
% 4 e
9 2% %

\g \g‘\
% 5 " %%
(2 % %
s A

Figure 5. Comparison between interpolation combinations with respect to the
number of Boolean connectives in the final interpolant

it is natural to ask what combination of the algorithms is
most efficient. This experiment studies the question using the
interpolant size as a measure of efficiency. The six propo-
sitional and three EUF interpolation algorithms result in 18
combinations. We measure the sizes of the final interpolants
both in (i) the number of Boolean connectives (Fig. 5); and (ii)
the number of EUF equalities (Fig. 6). Excluding the instances
where we encountered memory outs we report the results
on 82 of the original 106 benchmarks. For each benchmark,
we computed the smallest number of Boolean connectives or
equalities in the interpolant among all the configurations (best)
and the ratio combination/best for each possible combination,
which shows us how much worse each combination did
compared to the best combination for that benchmark. Notice
that the ratio of the best combination for a benchmark is one
and therefore no ratio can be less than one. The bars present
the average and the crosses the median of those ratios among
all the benchmarks for each combination.

In Fig. 5 the combination M,, + Itp, gives the smallest
number of Boolean connectives, and M + Itp, appears in the
second place. The median of M,, + Itp,, is 1, which means
that it was responsible for the smallest number of connectives
in at least half of the benchmarks, and its average of 1.2 shows
that even when this was not the case, the combination was
still close to the optimum. On the losing side, we make two
observations. The EUF interpolation algorithm Itp,. leads to a
larger number of Boolean connectives, and the propositional
interpolation algorithm P leads to larger interpolants.

><|>< | | | |
X
1

w

N

IS ,o,o,o,o,o,o,o,o,o

%x /zx 47~5‘>< *4 ></ x/ 42 /7; DO N M M MR N NSEEN
/go/go/;o(fo Y % x/, Ko e s s s % % X T T X
2 BRI AT R R R TR Y

Figure 6. Comparison between interpolation combinations with respect to the
number of equatilies in the final interpolant

%



Interestingly the combinations PS + Itp, and PSs + Itp,
have low medians and average, which are good, but not
the best. This seemingly contradicts our earlier observation
in [15] that PS and PS consistently lead to small number of
connectives in the interpolant. Based on the experiments the
likely reason is the soundness restriction in integration (see
Sec. IV-A), since the results get gradually worse when the
propositional and the EUF interpolation algorithms disagree
more on the labeling, best being PS, + Itp, and the worst
PS,, + Itp,.

The same trend is seen in Fig. 6 in the number of EUF
equalities. A strong propositional interpolation algorithm (M,
PS) combined with Itp, leads to smaller interpolants com-
pared to their combination with Itp,,; and a weak propositional
interpolation algorithm (M,,, PS,,) combined with Itp,, leads
to smaller interpolants compared to their combination with
Itp,. Interestingly PS, a propositional interpolation algorithm
that tends to balance the distribution of variables [15], leads
to very similar results when combined with Itp, and Itp,,.

Our experiments with interpolation over complex SMT
benchmarks show that the interpolants generated by the EUF
system presented in this work indeed have strictly different
logical strength. Moreover, in the combination of Boolean and
EUF interpolants, it is important to match the strength of the
used interpolation algorithms in order to reduce the size of the
generated interpolants.

V. CONCLUSIONS

We present and analyse a new interpolation framework for
the theory of Equalities and Uninterpreted Functions, capable
of generating interpolants of different strength and small size
in a controlled way. The technique bases on the use of dual
partial interpolants parameterized by a labeling function. We
confirm the analysis with experiments and show the feasibility
of generating multiple interpolants of different strengths. In
addition, we report on the size of the created interpolants,
comparing different combinations of propositional and EUF
interpolation algorithms. Our major contribution work is the
integration of a complete interpolation-based model checker to
the system, and showing the significant impact the interpolant
strength has on both run time and convergence.

In the future we intend to generalize the approach to be
applicable to other theories, and study the effects of different
labeling functions on fix-point computation in other model-
checking applications.

REFERENCES

[1] D. Detlefs, G. Nelson, and J. B. Saxe, “Simplify: A theorem prover for
program checking,” vol. 52, no. 3, pp. 365-473, 2005.

[2] A. Stump, C. W. Barrett, D. L. Dill, and J. R. Levitt, “A decision
procedure for an extensional theory of arrays,” in Proc. LICS 2001.
IEEE Computer Society, 2001, pp. 29-37.

[3] B. Godlin and O. Strichman, “Regression verification: proving the
equivalence of similar programs,” Softw. Test., Verif. Reliab., vol. 23,
no. 3, pp. 241-258, 2013.

[4] R.Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, Z. Hanna, A. Nadel,
A. Palti, and R. Sebastiani, “A lazy and layered SMT(3))) solver for
hard industrial verification problems,” in Proc. CAV 2007, ser. LNCS,
vol. 4590. Springer, 2007, pp. 547 — 560.

[5]

[6]

[7]

[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

L. Hadarean, K. Bansal, D. Jovanovié, C. Barret, and C. Tinelli, “A tale
of two solvers: Eager and lazy approaches to bit-vectors,” in Proc. CAV
2014, ser. LNCS. Springer, 2014, pp. 680 — 695.

L. Alt, S. Asadi, H. Chockler, K. E. Mendoza, G. Fedyukovich,
A. E. J. Hyvirinen, and N. Sharygina, “HiFrog: SMT-based function
summarization for software verification,” in Proc. TACAS 2017, ser.
LNCS, vol. 10206, 2017, pp. 207-213.

K. L. McMillan, “Interpolation and SAT-based model checking,” in
Proc. CAV 2003, ser. LNCS, vol. 2725. SV, 2003, pp. 1-13.

A. R. Bradley, “SAT-based model checking without unrolling,” in Proc.
VMCAI 2011, ser. LNCS, vol. 6538. Springer, 2011, pp. 70-87.

D. Beyer and M. E. Keremoglu, “CPAchecker: A tool for configurable
software verification,” in Proc. CAV 2011, ser. LNCS, vol. 6806.
Springer, 2011, pp. 184-190.

A. Gurfinkel, T. Kahsai, A. Komuravelli, and J. A. Navas, “The SeaHorn
verification framework,” in Proc. CAV 2015, ser. LNCS, vol. 9206.
Springer, 2015, pp. 343-361.

A. E. J. Hyvidrinen, M. Marescotti, L. Alt, and N. Sharygina,
“OpenSMT2: An SMT solver for multi-core and cloud computing,” in
Proc. SAT 2016, ser. LNCS, vol. 9710. Springer, 2016, pp. 547-553.
V. D’Silva, “Propositional interpolation and abstract interpretation,” in
Proc. ESOP 2010, ser. LNCS, vol. 6012. Springer, 2010, pp. 185-204.
S. F. Rollini, O. Sery, and N. Sharygina, “Leveraging interpolant strength
in model checking,” in Proc. CAV 2012, ser. LNCS, vol. 7358. Springer,
2012, pp. 193-209.

S. F. Rollini, L. Alt, G. Fedyukovich, A. E. J. Hyvérinen, and N. Shary-
gina, “PeRIPLO: A framework for producing effective interpolants in
sat-based software verification,” in Proc. LPAR 2013, ser. LNCS, vol.
8312. Springer, 2013, pp. 683-693.

L. Alt, G. Fedyukovich, A. E. J. Hyvirinen, and N. Sharygina, “A proof-
sensitive approach for small propositional interpolants,” in Proc. VSTTE
2015, ser. LNCS, vol. 9593.  Springer, 2016, pp. 1-18.

K. L. McMillan, “An interpolating theorem prover,” Theor. Comput. Sci.,
vol. 345, no. 1, pp. 101-121, 2005.

A. Fuchs, A. Goel, J. Grundy, S. Krstic, and C. Tinelli, “Ground
interpolation for the theory of equality,” Logical Methods in Computer
Science, vol. 8, no. 1, 2012.

G. Weissenbacher, “Interpolant strength revisited,” in Proc. SAT 2012,
ser. LNCS, vol. 7317. Springer, 2012, pp. 312-326.

L. Kovdcs, S. F. Rollini, and N. Sharygina, “A parametric interpolation
framework for first-order theories,” in Proc. MICAI 2013, ser. LNCS,
vol. 8265, 2013, pp. 24-40.

A. Brillout, D. Kroening, P. Riimmer, and T. Wahl, “An interpolating
sequent calculus for quantifier-free Presburger arithmetic,” Journal of
Automated Reasoning, vol. 47, no. 4, pp. 341-367, 2011.

A. Griggio, T. T. H. Le, and R. Sebastiani, “Efficient interpolant
generation in satisfiability modulo linear integer arithmetic,” in Proc.
TACAS 2011, ser. LNCS, vol. 6605. Springer, 2011, pp. 143-157.

A. Rybalchenko and V. Sofronie-Stokkermans, “Constraint solving for
interpolation,” in Proc. VMCAI 2007, ser. LNCS, vol. 4349. Springer,
2007, pp. 346-362.

A. Albarghouthi and K. L. McMillan, “Beautiful interpolants,” in Proc.
CAV 2013, ser. LNCS, vol. 8044. Springer, 2013, pp. 313-329.

R. Bruttomesso, S. Ghilardi, and S. Ranise, “Quantifier-free interpolation
of a theory of arrays,” Logical Methods in Computer Science, vol. 8,
no. 2, 2012.

S. Gao and D. Zufferey, “Interpolants in nonlinear theories over the
reals,” in Proc. TACAS 2016, ser. LNCS, vol. 9636.  Springer, 2016,
pp. 625-641.

D. Kroening and O. Strichman, Decision Procedures - An Algorithmic
Point of View, Second Edition, ser. Texts in Theoretical Computer
Science. An EATCS Series. Springer, 2016.

R. Nieuwenhuis and A. Oliveras, “Proof-producing congruence closure,”
in Proc. RTA 2005, ser. LNCS, vol. 3467. Springer, 2005, pp. 453—468.
V. D’Silva, D. Kroening, M. Purandare, and G. Weissenbacher, “Inter-
polant strength,” in Proc. VMCAI 2010, ser. LNCS, vol. 5944. Springer,
2010, pp. 129-145.

P. Pudldk, “Lower bounds for resolution and cutting plane proofs and
monotone computations,” Journal of Symbolic Logic, vol. 62, no. 3, pp.
981-998, 1997.

A. Cimatti, A. Griggio, and R. Sebastiani, “Efficient interpolant genera-
tion in satisfiability modulo theories,” in Proc. TACAS 2008, ser. LNCS,
vol. 4963. Springer, 2008, pp. 397-412.



APPENDIX

Theorem 2. Given two sets of equalities and disequalities
A and B such that A U B is unsatisfiable, G¢ a colored
congruence graph containing a path 7 := Ty such that (x #
y) € AU B and a labeling function L, Eq. (5) computes a
valid interpolant for A using L over G€.

Proof: In order to analyze Eq. (5) we have to analyze
Eq. (8), Eq. (9), Eq. (6) and Eq. (7).

(i) I)y(m)

Eq. (8) is the same presented in [17], and computes inter-
polants for A when the disequality (z # y) is in A.

(ii) ~ I ()

Eq. (9) is the dual of Eq. (8), and clearly computes interpolants
for B when the disequality is in B. We can transform it into
an interpolant for A by negating it, as it is done in Eq. (5).

(iii) 14 ()

Eq. (6) behaves similarly to the interpolation procedure pre-
sented in [17], with the addition of dual interpolants and la-
beling functions. First J; computes the individual contribution
of the A-factors that prove 7 in G¢ (A(r)) to the interpolant,
and then conjoins it with the interpolants of their B-premise
sets (BA(m)).

(iv) =Ip(m)

Eq. (7) is the dual of Eq. (6) and computes an interpolant
for B, which can be transformed into an interpolant for A by
negating it.

|

Definition 2: Let G be a congruence graph, and ¢ an
arbitrary factor from G. We say that o is relevant to w if
either J4 (o) or Jp(o) is called during the computation of
I4(w) or Ig(w).

Lemma 2. Let GC be a congruence graph with coloring C,
and w a factor from G. Then I4(w) A Ip(w) — [w].

Proof: Let R“ be the set of factors relevant (Def. 2) to w
in a congruence graph, R% the subset of ¥ containing only
A-factors and R%, the subset of R“ containing only B-factors.

From Eq. (6) we can clearly see that

“ = Aw) UABAW))U...UA(BA!w)U..., (10)
and from Eq. (7) that
@ = B(w) UB(AB(W)) U...UB((AB)k(w)U.... (11)

Because congruence graphs are acyclic and finite, for any
w there exists an integer n such that A((BA)"(w)) = 0 and
B((AB)™(w)) = 0, which allows us to rewrite the previous
equations as

R4 = Alw)UABAW))U...UA(BA)™(w)),
R% = B(w) UB(AB(w)) U ... UB((AB)"(w)).

(12)
13)

If w is an A-factor, we have that A(w) = {w} and therefore
we can write B(w) = BA(w). Using that we can infer that
A((BA)"(w)) = 0 (by the definition of n), and we can
change Eq. (13) to

@ = BAW) U (BA?(W) U...U(BA™ (). (14)

We follow the proof assuming that w is an A-factor, using
Eq. (12) and Eq. (14) to represent 24 and R% respectively,
and then argue that the proof is symmetrical for the case where
w is a B-factor.

From Eq. (12) and Eq. (14), we can then see that
R¥ := A(w) UBA(w) UA(BA(w))U...U 15)
A((BA)" (w)) U (BA)" (w)

and therefore

Li@) M pw)=( /\ Jal@)A( N Js0)).

ocERY oc€RY

(16)

When J4 and Jp are computed over a set that has an empty
premise set, the result is not a conjunction of implications, but
a conjunction of equalities. In this case, Jg((BA)"*!(w)) =
[(BA)™ 1 (w)] because A((BA)"*1(w)) = (. Thus, after
applying the functions J4 and Jp we have that

La(@) A (@) = (Ao Aveagsay o ([B@)] = [o])

A (Ao Avetway oy [A@] = [D)
A[(BA) (w)].
(17)
We know that formulas of the form ((a; — b1) A... A (a, —
bn)) — ((/\,L.el__n a;) — (/\,L.el__n b;)) are tautologies. Using
that and Eq. (17), we can then show that

Ia(w) ANp(w) = (Ao ([(BA)™ (w)] = [A((BA) (w))]))

A (Ai=o ([A(BA) (@))] = [(BA)' (w)]))
N(BA) H(w)]

(18)
Because [(B.A)""!(w)] has no implicant, it has to be true in
the formula, starting a chain that satisfies the antecedents of all
the implications in Eq. (18), since (BA)"*!(w) is the premise
set of A((BA)™(w)), which is the premise set of (B.A)"(w)

and so on. Because of that, we can simplify the formula to

Ta(w)Ap(w) — </\ [[A((BA)i(w))ﬂ> A < /\ [[(BA)i(w)]]> :

i=0
(19)

Therefore, we have that
Vr € RY.(Ia(w) A Ipg(w)) — [r]- (20)

For the case where w is a B-factor, we have that B(w) =
{w}, which implies that AB(w) = A(w). Using that, we
can infer that B((AB)""1(w)) = () and we can also change
Eq. (12) to

“ = AB(w) U (AB)*(w) U... U (AB)"(w). (1)

Using Eq. (21) and Eq. (13) to represent R and R% respec-
tively, the same reasoning is followed and we can show that
Eq. (20) holds also if w is a B-factor.

If w is an A-factor, then A(w) = {w} and J4 is called for
w in the first iteration of Eq. (6). On the other hand, if w is a
B-factor, then B(w) = {w} and Jg is called for w in the first
iteration of Eq. (7). This shows that w is a relevant factor and
by Eq. (20) we conclude the proof. [ ]



Lemma 3. Let m be an arbitrary path in the congruence
graph, and ¢() the set of all factors in w. Then I5(mw) =
Nocpiny 1a(0) and Ip(m) = N, cp(r) 1B(0).

Proof: By the definition of A in Eq. (2), we know
that A(m) = U,eg(r) A(o). By the definition of 14, we
can see that J4 is computed individually for each element
of A(m) in I4(m), and I, is called recursively for the B-
premise sets of each individual element of .A(r). Therefore,
Noecsiry La(0) = Nyca(xy La(o), which has the same effect
of IAE’/T). The result is analogous for I (7). [ |
Lemma 4. Lemma 2 holds when w is a path containing
multiple factors.

Proof: Let w be a path built by multiple factors and ¢(w)
the set containing these factors. By Lemma 3 we know that
L4(w) = Aseoiy 1a(0) and Ip(@) = A,y I8(0); by
Lemma 2 we know that Vo € ¢(w).(La(0) A 1380)) = [o].
Because the elements of ¢(w) are factors linking nodes to
prove w, we know that (A, ¢, [o]) — [w]. Therefore we
have that (I4(w) A Ip(w)) — [[wﬁ [ |
Theorem 3. For fixed A,B,G¢, and T3, for the cor-
responding interpolants defined in Eq. (5) it holds that
Itp(A, B,G% 77, Ly) — Itp(A, B,GY, 77, Ly,).

Proof: We only consider the case where (v # y) € B
and note that the case where (z # y) € A is completely
symmetrical. Let 7 := Ty and ¢ = I4(m) Al (7). By Eq. (9)
we have that

v= In(a)A

(/\UGA(m)UA(m) Ip (0)) A
([A(m1) U A(m2)] = =[0a]) A La(m),

(22)

where 7 is decomposed as w647, and 04 is the largest
subpath of 7 with A-colorable endpoints. In order to show
that T4(w) — —I(w), we prove that ¢ — L, which leads
to the theorem. In Iz(m), 7 is split into 716 472. From the
definition of 64, we know that 7; and mwy are B-factors.
Therefore, using Lemma 3, we can say that 14 (7) = I4(m1) A
I4(04) A I4(m2). Because 71 and 7o are subpaths of m, we
know that A(m), A(m2) C A(m). Using Lemma 3, we have
that (L4 (m1) ATa(72)) = Ageain) La(0) ANsea(ny) La(0).
We can now see that both A, c 4(r)uA(r,) IB(0) and
NoeA(my)uA(ry) La(0) are contained in 3. From Lemma 2 we
know that (i) ¢ — [A(m1) U A(m2)]. 14(604) and I5(64) are
also contained in 1), therefore from Lemma 2 we have that (ii)
1 — [0.4]. From (i) and (ii) we see that ¢p — ([0a] A—[04])-
|
Theorem 4. Let J be a label strength operator such that
s ds wdwand s J w. Let Itp, = (A, B,G[7y]°)
and Itp;, = (A, B, G[xy]|) be two interpolation algorithms
where L and L' are two labeling functions such that L(c) 3
L'(o) for all the factors o of G€. Then Itp; — Itp;,.
Proof: If (x # y) € B, we can either use I4 or —Ig to
create an interpolant for A. On the other hand, if (x # y) € A,
we can use either I’y or ~Iz. Since only Eq. (6) and Eq. (7)
use labeling functions, we analyze only those equations in this
proof.

From Eq (6) we can see that when a factor ¢ has label a
a weakening step is applied, using —I}; (o) instead of I4 (o).
Let Itp be the interpolant generated without weakening, and
Itp’ the interpolant generated having applied the weakening
step. We know that 14(0) C Itp and —Iz(o) C Itp’. From
Theorem 3 we know that I4(0) — —I;(0), therefore we have
that Itp — Itp’.

Following the same reasoning, from Eq. (7) we can see that
when a factor o has label b a strengthening step is applied,
using -1 (o) instead of Ip(c). Let Itp be the interpolant
generated without strengthening, and Itp’ the interpolant gen-
erated having applied this strengthening step. We know that
=Ig(o) C Itp and ~—1'y (o) C Itp'. From Theorem 3 we have
that I’y (o) — —Ip(o). Therefore we have that Itp" — Itp. B
Theorem 5. Let Itp, = (A,B,G[x]°). If t € B, L = L,
leads to the interpolant that contains the smallest number of
equalities, and if m € A, L = L, leads to the interpolant that
contains the smallest number of equalities.

Proof: Consider the labeling function L, and the compu-
tation of I4(w). The usage of this labeling function makes
the formula be entirely computed by I4, never using Ip.
Now let 14(0) be some arbitraty subcomputation of I4 (7).
First, A\, ¢ a(s5) Ja(0) is computed. From Eq. 3 we know that
this formula contains the equality [o 4] for every o4 € A(9)
and the equality [og] for every o € B.A(J). Suppose then
that a factor v from B.A(J) has label w, which results in
the computation of —I(y). We know that v is a B-factor
because it came from B.A(§), therefore (i) 64 = ~; and (ii)
B(v) = {v}. From (i) we have that I5(vy) computes Ig(7),
and from (ii) we have that B(y) = {~} and Jg(v) is then
computed. This reintroduces [v] in the interpolant (as the
implicated part of Jp(7)), since 14(d) already introduced it
in the implicant part of some implication in A\, 45 Ja(0).
Notice that if + had label s this equality would not be
reintroduced. The reasoning is symmetrical for the case where
L,, is used for the computation of Ip. Therefore we have that
I4(m) and Ip(w) contain exactly the same equalities, with
the difference being the side of the implication (implicant or
implicated) that an equality appears in (because of Eq. 3 and
Eq. 4). We can also see that any other labeling function L
will introduce at least one equality in the interpolant more
than once (when it changes from I4 to —I} or from Ip to

If 7 € B, an interpolant can be computed by either I ()
or =I5z (m). The interpolant I 4(m) has less equalities because
it does not introduce the conflict in the interpolant, as =1 ()
does with the term ([A(m1) U A(mz2)] — —[04]). Therefore,
L, leads to the interpolant with the least number of equalities.

If 7 € A, an interpolant can be computed by either =I5 ()
or I'y(m). Symmetrically, the interpolant —Ip(7) has less
equalities because it does not introduce the conflict in the
interpolant, as I’y (7) does with the term ([B(m1) U B(m2)] —
—[0g]). Therefore, L,, leads to the interpolant with the least
number of equalities. [ ]



