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Abstract—Code quality metrics are widely used to identify
design flaws (e.g., code smells) as well as to act as fitness functions
for refactoring recommenders. Both these applications imply
a strong assumption: quality metrics are able to assess code
quality as perceived by developers. Indeed, code smell detectors
and refactoring recommenders should be able to identify design
flaws/recommend refactorings that are meaningful from the
developer’s point-of-view. While such an assumption might look
reasonable, there is limited empirical evidence supporting it.

We aim at bridging this gap by empirically investigating
whether quality metrics are able to capture code quality im-
provement as perceived by developers. While previous studies
surveyed developers to investigate whether metrics align with
their perception of code quality, we mine commits in which
developers clearly state in the commit message their aim of
improving one of four quality attributes: cohesion, coupling, code
readability, and code complexity. Then, we use state-of-the-art
metrics to assess the change brought by each of those commits
to the specific quality attribute it targets. We found that, more
often than not the considered quality metrics were not able to
capture the quality improvement as perceived by developers (e.g.,
the developer states “improved the cohesion of class C”, but no
quality metric captures such an improvement).

Index Terms—code quality; metrics; empirical study

I. INTRODUCTION

Code quality metrics are at the core of many approaches
supporting software development and maintenance tasks. They
have been used to automatically detect code smells [1], [2],
to recommend refactorings [3], [4], and to predict the code
fault- and change-proneness [5], [6], [7]. Some of these
applications assume that a strong link between code quality
as assessed by metrics and as perceived by developers exists.
For instance, many refactoring recommenders use metrics as
fitness functions to identify sequences of refactorings able to
maximize cohesion and minimize coupling (e.g., [3], [8], [4]).
The final users of these tools are software developers. This
means that the recommended refactorings should be meaningful
from a developer’s point-of-view, and this is only possible if
the metrics are actually able to capture cohesion and coupling
as perceived by developers.

Previous studies only partially investigated this phenomenon.
Revelle et al. [9] and Bavota et al. [10] surveyed developers
to investigate whether their perception of code coupling aligns
with the strength of coupling as assessed by quality metrics.
Counsell et al. [11] performed a similar study, but focusing on
cohesion. While the problem investigated in these studies is
similar to the one we tackle, we adopt a different methodology

and we investigate four code quality attributes (i.e., cohesion,
coupling, readability, and complexity).

Instead of surveying software developers, we analyzed real
changes they implemented with the stated purpose of improving
one of the four considered quality attributes.

We mined over 300M commits performed on GitHub and
used a simple “keyword matching mechanism” to identify
commit notes reporting one of the following four words:
cohesion, coupling, readability, or complexity. Then, we ex-
cluded commits performed on non-Java systems, and manually
analyzed the remaining ones with the goal of identifying those
in which developers state in the commit note the intention
to improve the corresponding quality attribute. Examples
of those commits are: “Removed write() method – higher
cohesion” and “Refactoring TexasHoldEmHandFactory to
reduce cyclomatic complexity.”.A final set of 1,282 commits
was considered in our study.

For each of the selected commits c, we extracted the list of
files F impacted by c before (Fbefore) and after (Fafter) c’s
changes. Then, we use quality metrics designed to assess the
quality attribute c aims at improving (e.g., for class cohesion
we exploit the Lack of Cohesion of Methods [12] and the
Conceptual Cohesion of Classes [6]) to measure such attributes
on Fbefore and Fafter. This allows us to investigate whether
the quality improvement expected by the developer is also
reflected in the metrics’ values. Our results show that, more
often than not, the studied quality metrics are not able to capture
the quality improvements as perceived by the developers.

The contribution of our paper is threefold. First, we
provide insights into better understanding the completeness
of the considered quality metrics in capturing the quality
improvements as perceived by the developers. This is an
important step in understanding the practical implications of
software measurement theory and identifying future directions.
Second, we do not limit our results discussion to numbers
and statistics, but report many qualitative examples allowing
to better understand the causes behind cases of disagreement
between quality metrics and developers’ perception of code
quality. Finally, the data used in our study is made publicly
available [13] for replication purposes.

Structure of the paper. Section II presents the study design,
while its results are reported in Section III. Section IV discusses
the threats that could affect the validity of our results. Finally,
Section VI concludes the paper after a discussion of the related
literature (Section V).



II. STUDY DESIGN

The goal of the study is to investigate whether code quality
improvements, as subjectively perceived by developers, can
be objectively captured with code quality metrics. The context
consists of 1,282 commits performed in Java systems, in which
developers state their intention of improving a specific quality
attribute. The study addresses the following research question:

RQ1: To what extent do quality metrics capture code quality
improvement as perceived by developers? Given a commit in
which the developer explicitly states her goal to improve a
specific quality attribute Q (e.g., cohesion) we use metrics
aimed at measuring Q (e.g., the LCOM) to verify whether the
improvement perceived by the developer is also reflected in the
metrics’ value. Note that by answering RQ1 we will indirectly
provide insights on the impact of refactoring operations on
code quality as assessed by quality metrics. Indeed, in our
experimental design, the commits in which developers claim to
improve code quality can be seen as refactoring operations1. As
we discuss in Section V, previous works already investigated
the impact of refactoring on code quality [15], [16], [17], [18],
but with a different focus and study design.

A. Code Quality Attributes and Metrics

Given the general formulation of RQ1, we need to clarify
what “code quality” means in this context. We assess code
quality at class level, and consider four quality attributes of
classes with corresponding metrics to automatically measure
them. In the following we describe each quality attribute as well
as the metrics we selected for it. All metrics’ implementation
only work for the Java language. This impacted our selection
of the commits subject of this study. For the computation of all
metrics but the ones related to code readability, we used our
own implementation. For readability, we relied on the original
tools provided by the authors (details follow).

Cohesion. The first quality attribute we consider is class
cohesion, assessing the degree to which the responsibilities
implemented in a class belong together [19]. High cohesion is
desirable, since it promotes the single responsibility principle,
fostering code maintainability. We use two metrics to assess the
cohesion of classes. The first is the Henderson-Sellers revised
Lack of COhesion of Methods (LCOM) [12], considering the
shared variables among the methods of a class as a proxy for
its cohesion. The LCOM for a class C is computed as:

LCOM(C) =
( 1a

∑a
j=1 µ(Aj))−m
1−m

where a is the number of C’s variables, µ(Aj) is the number of
C’s methods accessing the variable Aj , and m is the number of
methods in C. The Henderson-Sellers revised LCOM addresses
many of the limitations of the original LCOM [12] and it has
the advantage of being normalized between 0 (highest cohesion)
and 1 (lowest cohesion), thus easing its interpretation.

1Note that these refactorings may or may not fall in the catalogue of
refactoring operations generally used in the literature [14].

The second cohesion metric we use is the Conceptual
Cohesion of Classes (C3) [6]. The C3 exploits Latent Se-
mantic Indexing (LSI) [20] to compute the overlap of textual
information in a class expressed in terms of textual similarity
among methods. The C3 is computed as the average textual
similarity between all pairs of methods in a class. The metric
is defined in [0 . . . 1], and higher values of C3 indicate higher
class cohesion. In our implementation we apply preprocessing
to the text representing the class methods in order to (i) remove
English stop words and reserved Java keywords, (ii) stem words
to their root form, and (iii) split identifiers in the source code
based on CamelCase and the underscore separator.

Coupling. It is defined as the strength of the dependencies
existing between classes [19]. Low coupling is desirable, since
it helps in isolating changes. Also in this case we use two
metrics to compute it. The first is the Coupling Between Object
(CBO) [21], counting the number of dependencies a class has
(i.e., the number of other classes it depends on). The higher
the CBO the higher the class coupling.

The second metric is the Response for a Class (RFC) [21],
calculated as the number of distinct methods and constructors
invoked by a class. The RFC can act as a proxy for complexity
as well as for coupling. Since the definition of RFC includes
methods called from outside of the class, we consider it as a
coupling metric: the higher the RFC the higher the coupling.

Code complexity. Keeping the complexity of code low is
one of the main goals of refactoring. We use the Weighted
Methods per Class (WMC) [21] to assess class complexity.
WMC for a given class is computed as the sum of the McCabe’s
cyclomatic complexity [22] of its methods. Being a direct
metric, the higher WMC the higher the class complexity.

Code readability. Finally, we focus on code readability,
a quality attribute that has recently attracted interest in the
software engineering community, mostly due to the challenges
in automatically measuring it. Readable code is clearly prefer-
able, since it is supposed to foster code comprehensibility. To
measure this quality attribute, we exploit two state-of-the-art
metrics. The first one was presented by Buse and Weimer [23]
(from now on we refer to this metric as B&W), and exploits
source code structural aspects (e.g., number of branches, loops
etc.) to model the readability of code. We use the original
implementation made available by the authors2.

The second metric is the one proposed by Scalabrino et al.
[24], and exploits a set of features based entirely on source
code lexicon analysis (e.g., consistency between source code
and comments, specificity of the identifiers, textual coherence,
comments readability, etc.). Their model was evaluated on a
dataset composed by 200 Java snippets and the results indicated
its accuracy in assessing code readability as perceived by
developers. For computing this metric (from now on, SRead)
we used the original implementation provided by the authors.

2http://www.arrestedcomputing.com/readability
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Fig. 1. Metric values before (ci−1) and after (ci) commits aimed at improving a specific quality attribute. Results are reported when considering “all files”
(i.e., added, deleted, and modified) and only “modified files”.

B. Data Extraction

As a first step to answer RQ1 we had to identify code
commits in which developers clearly state their aim of
improving one of the four quality attributes we considered.
To this aim, we mined over 300M commits performed on
GitHub between March 2011 and March 2018. We used GitHub
Archive, a project recording public GitHub events and making
them accessible in JSON format. We used a simple keyword
matching mechanism to identify commit notes reporting one
of the following four words: cohesion, coupling, readability,
or complexity. This resulted in 35,239 candidate commits.

Then, we excluded all commits:
1) Related to non-Java repositories. This was needed since

the tools we use to measure the selected quality metrics
are designed to work on Java code. After this filtering
4,221 commits were left.

2) Modifying more than five Java files. Such a filtering
was applied to reduce the chances of including in our
dataset tangled changes [25], meaning commits in which
developers implemented changes related to different tasks,
one of which being quality improvement. While this
is clearly an arbitrary threshold, we only use it as a
preliminary automatic filtering step preceding a manual
analysis aimed at excluding problematic commits (see
step 3). This filtering step resulted in the exclusion of
1,668 commits, leaving 2,459 for manual analysis.

3) Not having as their main focus code quality improvement.
One of the authors manually inspected the 2,459 remaining
commits with the goal of only selecting for the study those
in which developers clearly stated their goal of improving
one of the four considered quality aspects. The inspector
read the commit note and, if needed, inspected the code
change by using the Unix diff. In case of doubt, the
commit was excluded. Then, a second author double-

checked only the 1,661 commits classified by the first
evaluator as relevant for our study, further excluding 8 of
them. This filtering step left 1,653 commits.

4) Only modifying files implementing test classes. Since most
of the metrics we use are designed to assess code quality
on production code, we excluded commits only impacting
files implementing test classes. We identified these files by
using naming conventions, marking as “test files” those
having their name beginning or ending with “Test”.

We ended up with 1,282 valid commits exctracted from 986
Java systems: 81 commits related to class cohesion, 493 to
coupling, 268 to code complexity, and 440 to code readability.

For each of the selected commits ci related to a specific qual-
ity attribute (e.g., cohesion), we checkout the files impacted by
ci at their snapshots ci−1 (i.e., before the changes implemented
by ci) and ci (i.e., after the changes implemented by ci). We
consider as impacted files added, deleted, and modified in ci.
Note that added files are only available in snapshot ci, deleted
files are only available in snapshot ci−1, while modified files
are available in both snapshots. We refer to the files in ci−1 as
Fci−1 and to the ones in ci as Fci . Files implementing tests
are ignored in both sets for the same reason explained in the
commits selection process.

For each production file in Fci−1
(Fci), we measure the

quality metric(s) selected for the specific quality attribute ci
aims at improving (see Section II-A). For example, if the ci’s
commit note states “improving the class cohesion”, we measure
the LCOM and the C3 of all classes in Fci−1 and Fci . The
goal is to compare the distribution of values for classes in
Fci−1

and Fci to check whether there is alignment between
the quality improvement as perceived by the developer and the
assessment provided by quality metrics. One may argue that
comparing metric values in two potentially different sets of
files (i.e., Fci−1 and Fci ) might introduce noise in the data.



Indeed, the files in the two sets are the same only if ci does
not add/delete any file, but limits its action to modify existing
files. While we analyze the results by taking this potential
source of noise into consideration (details in Section II-C)
it is important to clarify why only focusing on commits
do not adding/deleting any file is not an option. Several
refactoring operations may require the deletion/addition of
files. For example, extract class refactoring splits a God class
into many classes, possibly distributed into several different
files. Thus, this refactoring could result in the deletion of the
file implementing the god class and in the addition of many
new classes (i.e., disjointed sets of files in Fci−1

and Fci ). Still,
comparing the cohesion of the deleted class in Fci−1

to the one
of the added classes in Fci provides an indication of whether
the commit ci reached its goal of increasing class cohesion as
assessed by quality metrics.

C. Data Analysis

We compare the boxplots of the distribution of the selected
quality metrics before and after each of the 1,282 commits.
For example, we compare the distribution of the LCOM and
of the C3 metric for classes impacted in commits stating the
intention of improving class cohesion. To account for the
possible noise introduced by files added and deleted in commits,
we present this data both when considering all files impacted
in the commits (i.e., added, deleted, modified) as well as when
only focusing on modified files. This latter scenario guarantees
that the set of files before and after each commit is exactly the
same. We also statistically analyze differences in the metrics’
distributions in both scenarios. We use the Mann-Whitney test
[26] with results intended as statistically significant at α = 0.05.
When considering all files impacted in the commits we use
the unpaired version of the test. Instead, when focusing only
on modified files, we employ the paired version to increase
the statistical power. Moreover, since the same files are being
repeatedly compared using different metrics, we adjusted our
p-values using the Holm’s correction procedure [27].

We also estimate the magnitude of the differences by using
the Cliff’s Delta (d), a non-parametric effect size measure [28].
We follow well-established guidelines to interpret it: negligible
for |d| < 0.10, small for 0.10 ≤ |d| < 0.33, medium for
0.33 ≤ |d| < 0.474, and large for |d| ≥ 0.474 [28].

Finally, we qualitatively analyze interesting cases of agree-
ment and disagreement between the improvement in quality
as perceived by developers and as assessed by quality metrics.
To this aim, one of the authors (from now on “inspector”)
manually inspected all commits, looking at the code diff
and at the metrics profile of the impacted code components
before/after the commit. The goal was to identify commits
suitable and interesting for qualitative analysis. With “suitable”,
we refer to commits for which the inspector was able to
fully understand the context of the commit, meaning the
impacted code components. This is not trivial considering
that the inspector was not familiar with the analyzed code.
With “interesting”, we indicate cases that could lead to lessons
learned according to the authors.

D. Replication Package

The data used in our study are publicly available in our
replication package [13]. We provide: (i) the raw-data reporting
the distribution of metrics pre-/post-commits for each quality
attribute, and (ii) the R script used to produce the tables and
figures reported in this paper.

III. RESULTS DISCUSSION

Fig. 1 reports the box plots depicting the distribution of
metric values before (ci−1) and after (ci) commits aimed at
improving the specific quality attribute a metric assesses. The
box plots are shown both when considering all files impacted
in a commit (i.e., the files added, deleted, and modified) as
well as when only focusing on modified files. Table I shows the
results of the Mann-Whitney test (p-value) and of the Cliff’s
Delta (d) when comparing the same distributions depicted in
Fig. 1. Significant results are reported in bold.

TABLE I
METRICS BEFORE/AFTER COMMITS AIMED AT IMPROVING A QUALITY

ATTRIBUTE: MANN-WHITNEY TEST (p-VALUE) AND CLIFF’S DELTA (d).

All files
Attribute Metric p-value d

Cohesion LCOM 1.00 -0.02 (Negligible)
C3 1.00 0.01 (Negligible)

Coupling CBO 0.14 -0.05 (Negligible)
RFC 0.07 -0.06 (Negligible)

Complexity WMC 0.41 0.07 (Negligible)
Readability B&W 1.00 0.01 (Negligible)

Sread 1.00 0.02 (Negligible)

Modified files
Attribute Metric p-value d

Cohesion LCOM 1.00 -0.01 (Negligible)
C3 1.00 0.01 (Negligible)

Coupling CBO 0.10 0.01 (Negligible)
RFC 0.11 -0.01 (Negligible)

Complexity WMC <0.01 0.07 (Negligible)
Readability B&W 1.00 -0.01 (Negligible)

Sread 1.00 -0.01 (Negligible)

A. Cohesion

Fig. 1 shows an interesting trend for the LCOM metric
when changes from commits aimed at improving cohesion are
implemented. Remember that the LCOM is an inverse cohesion
metric: the lower its value the higher the class cohesion.
The third quartile is lower for the ci commits, indicating
that developers at least tried to fix the classes having very
high values of LCOM (i.e., low cohesion). However, this also
resulted in an increase of the first quartile, thus showing some
side effect decreasing the cohesion of some of the impacted
classes. When comparing the distributions of values before
and after the changes, no statistically significant difference is
observed (see Table I) both when considering all files as well
as when only focusing on modified files.

The second cohesion metric, the C3 (the higher the better),
shows a similar trend: the first quartile slightly increases,
showing an improvement for classes having a low cohesion.



However, also in this case there is a small drop of cohesion
for the highly-cohesive classes, manifested through a lower
third quartile. The differences are not statistically significant.

When only considering the modified classes, for which we
can compute the metrics both before and after the commit, we
found that only 26% and 40% of them improve their LCOM
and C3 values, respectively, thanks to the implemented changes.

To better understand cases of agreement and disagreement
between what claimed by the developers in the commit message
(i.e., their intention of increasing class cohesion) and what
reflected in the quality metric values, we qualitatively analyzed
some interesting cases. Each case is introduced by a figure
summarizing the involved quality attribute (e.g., cohesion),
whether the discussed case represents a case of agreement or
disagreement, the name of the system and the commit id, the
commit note, and the percentage increase/decrease of the quality
metrics used to assess the quality attribute. The percentage
variation in metrics values is computed by considering the
average of all impacted files before and after the commit.

Commit note LCOM C3
Extract HashProgress to increase 
cohesion of StateGenerator +27%-17%

Cohesion | Agreement | fim@ccf57e72

Fig. 2. Class cohesion: agreement case

Fig. 2 summarizes a case of agreement between what claimed
by the developer (i.e., the intention of increasing class cohesion)
and what assessed by quality metrics. This commit implements
an extract class refactoring operation, to extract from the
StateGenerator class a new class named HashProgress,
isolating a well-defined responsibility.

This resulted in a strong increase in cohesion for
StateGenerator, with its LCOM dropping from 0.83 to
0.69 and the C3 metric increasing from 0.26 up to 0.33.
The extracted class (i.e., HashProgress) also shows a bet-
ter metrics’ profile as compared to the original version of
StateGenerator, with LCOM=0.71 and C3=0.41. In this case,
the structural and semantic cohesion assessed by the LCOM
and by the C3 metric, respectively, capture the improvement
in class cohesion as perceived by the developer.

Commit note LCOM C3
higher cohesion - move utc 
calculation from MctsTreeNode to 
Mcts

+6%+9%

Cohesion | Disagreement | mcts@9598830

Fig. 3. Class cohesion: partial disagreement case

Fig. 3 reports instead a case of (partial) disagreement between
the goal claimed for commit 9598830 and what reflected
in quality metrics, with an average increase of the LCOM
(i.e., decrease of class cohesion) of 9%. The average value
for the C3 metric among the files impacted by the commit
increases instead by 6%, supporting the increase of cohesion
targeted by the developer. While we also observed cases of
complete disagreement (i.e., both metrics confirm a worsening

of class cohesion), this commit is interesting when looking at
the effect of its changes on each impacted file. The commit
modifies the classes Mcts and MctsTreeNode, with the goal
of moving one responsibility, i.e., the computation of the Upper
Confidence bound applied to Trees (UCT) for a Monte Carlo
search algorithm, from MctsTreeNode to Mcts. This operation
increases the structural cohesion of MctsTreeNode, with its
LCOM going from 0.82 to 0.79 (-4%) while its semantic
cohesion (C3) remains stable. The increase of cohesion obtained
for the MctsTreeNode class is payed back with a decrease
of structural cohesion for Mcts, having its LCOM increasing
by 22% (from 0.68 to 0.83). The C3 metric provides instead
a different assessment, reporting an increase of cohesion for
Mcts as well (+10%). This case provides us with a number
of lessons learned. First, different cohesion metrics provide
different hints into code quality variations. This confirms that
structural and semantic (i.e., textual) metrics are orthogonal
[6], [29] and capture different information in the code. Thus,
considering both might provide a more comprehensive view
into code quality. Second, the specific formulation of the
LCOM metric makes it missing important relationships between
methods that should be considered to properly assess class
cohesion. Indeed, methods in the same class are considered as
related (and thus, as positively contributing to class cohesion)
only if they use the same local data. However, two methods
could implement strongly related responsibilities without
the need for accessing/modifying the same local instance
variables. For example, in the discussed case a method moved
from MctsTreeNode to Mcts is calculateUctValue, do not
accessing any instance variable of its new class (i.e., Mcts).

However, this method is clearly related to other methods in
Mcts, such as uctSearchWithExploration or getNodes-
BestChildConfidentlyWithExploration. The lat-
ter invokes calculateUctValue twice, but these types of
structural relationships are simply ignored by the LCOM metric.
On the other side, the C3 metric, being computed accordingly to
the textual similarity between the pairs of methods in a class,
rewards the cohesion of Mcts, thanks to the terms shared
between the methods (i.e., uct, with, and exploration).

The two above observations also raise a warning for the
design of refactoring recommender systems. These tools
generally identify refactoring opportunities (e.g., extract class,
move method, etc.) by looking for code transformations able
to improve some quality indicators, such as the quality metrics
we adopted. However, these metrics might not always capture
code quality improvement as perceived by developers. This is
why semi-automatic techniques putting the developer in the
loop while generating refactoring recommendations (see e.g.,
[30], [31], [32]) could be more effective and identify more
meaningful refactorings.

Finally, we discuss an example of complete disagreement
between developer’s perception and quality metrics (see Fig. 4).

We focus our attention only on a single class modified in
the commit (i.e., TaskLoader) that was clearly the target of
the refactoring (see commit note in Fig. 4). In this case, both
metrics report a decrease of class cohesion for TaskLoader.



Commit note LCOM C3
Improved cohesion for TaskLoader 
[…] -22%+89%

Cohesion | Disagreement | dooyit@fc054e6

Fig. 4. Class cohesion: disagreement case

Similarly to what observed for the previous case (Fig. 3),
this discrepancy is due to the different interpretation that
the developer and the quality metrics give to the concept of
class cohesion. The developer targets the increase of cohesion
by moving into TaskLoader methods contained in other
classes but closely related to the responsibilities grouped by
TaskLoader (e.g., the method loadTask). Again, the LCOM
fails in capturing the relationship existing between the added
methods and the ones already present in TaskLoader due to the
missing sharing of local variables. The C3 is instead penalized
by the total lack of comments in the class, representing a
precious source of information for textual metrics such as the
C3. In cases like this, both metrics fail in capturing the increase
of cohesion as perceived by the developer.

By inspecting the code, we noticed that something that could
have helped in capturing the relationship between the methods
moved into TaskLoader and the ones already present in it are
the used types. For example, loadTask uses objects of type
TaskManager and JsonObject, also used by five of the other
eight methods in the class3. However, this type of relationship
(i.e., shared usage of types) is not exploited by the metrics
we used to capture class cohesion. Again, this highlights the
many forms that class cohesion can have and the difficulty in
capturing all of them with code quality metrics.

B. Coupling

There is a positive trend for what concerns both the CBO
and the RFC metrics, with their value decreasing (i.e., lower
coupling) after the changes implemented by developers. When
considering all files, the CBO median drops from 10 to 9,
while the RFC goes from 19 to 17. When considering only the
modified files, the difference can not be observed. Although,
we can see that there is a decrease in the classes with very high
coupling (see top whisker). Only 16% and 22% of modified
classes improve their CBO and RFC values, respectively, thanks
to the changes implemented in the commits.

Commit note CBO RFC
Refactored […] to remove coupling 
between DropboxSource/Fragment 
from the MusicSourceFragment

-27%-15%

Coupling | Agreement | Mezzo@11e404d

Fig. 5. Class coupling: agreement case

Fig. 5 shows a case of agreement on the class coupling
improvement between developer’s perception and what assessed
by the CBO and RFC quality metrics. The commit implements
refactoring operations involving the MusicSourceFragment

3Four methods use TaskManager, one JsonObject.

class and its subclass DropboxFragment to reduce the cou-
pling between them. This was realized through the removal
of three methods from MusicSourceFragment and a push
down method refactoring (i.e., method downloadAll) from
MusicSourceFragment to its subclass. These changes resulted
in a coupling reduction for the DropboxFragment class,
with a drop of its CBO from 13 to 11 and its RFC from 33 to 24,
supporting the developer’s aim. Moreover, the downloadAll

method was only used by the DropboxFragment subclass,
thus justifying the performed refactoring.

Commit note CBO RFC
Decoupling fragment and activity

+54%+16%

Coupling | Disagreement | CrowingMiment@0baed82

Fig. 6. Class coupling: disagreement case

Fig. 6 reports data about a case of disagreement between
developer’s perception and quality metrics. The developer
summarizes the commit as aimed at decoupling fragment and
activity. The commit modifies three classes: MainActivity,
MomentFragment, and MomentListFragment. All three
classes exhibit worsening of their CBO (on average, +16%)
and RFC (on average, +54%). While this may look like a
strong case of disagreement, the problem here is in the type
of coupling meant by the developer in the commit message as
opposed to the one assessed by the metrics.

Indeed, the developer aims at reducing the coupling between
MainActivity and MomentFragment by replacing in the
former the creation of an object of type MomentFragment

though its constructor with an invocation to a factory method
returning an instance of MomentFragment. Here, the coupling
reduction as intended by the developer seems to be mostly
related to isolating future changes, but does not reduce the
number of dependencies (CBO) nor the message flow (RFC)
of the involved classes. Such a form of coupling reduction
could be captured, after the change has been implemented, by
analyzing the logical coupling between classes [33] and, in
particular, by measuring how frequently the involved pair of
classes (i.e., MainActivity and MomentFragment) co-change
before and after the changes introduced by this commit.

Most of the cases of disagreement we identified for the
coupling metrics can be represented by the commit we just
discussed: The developers targets the isolation of future changes
by performing refactoring operations aimed at decoupling a
pair of classes and/or two application layers.

However, these refactorings do not always result in an
improvement in terms of CBO and/or RFC, since the overall
number of dependencies does not decrease and the message
flow of the application logic is not simplified.

C. Complexity

Surprising are the results we achieved for what concerns code
complexity. Indeed, the distributions depicted in Fig. 1 indicate
an overall increase of the complexity after the commits in
which developers claimed to target a code complexity reduction.



This is also confirmed by the fact that only 13% of classes
modified in these commits exhibit a WMC reduction. Moreover,
this is the only case in which the differences are assessed as
statistically significant even thought with a negligible effect
size (see Table I). Before moving to the qualitative analysis,
it is worth remembering that the WMC metric we used to
assess complexity is computed as the sum of the McCabe’s
cyclomatic complexity of its methods, meaning the number of
linearly independent paths in all its methods.

Given the achieved results, we focus our attention only on
a case of disagreement. Indeed, we only find a few cases
of agreement between the reduction of code complexity as
perceived by the developers and what indicated by the WMC.
These cases are mostly the result of the removal of unneeded
selection statements (e.g., if branches) in the code. Fig. 7
summarizes an extreme case of disagreement we found.

Commit note WMC
[..] Moved all else if code in expression 
evaluator to methods to reduce 
cyclomatic complexity […]

+492%

Complexity | Disagreement | intellij-haxe@8aab776

Fig. 7. Class complexity: disagreement case

The developer explicitly refers to the reduction of cyclomatic
complexity as the goal of the commit and also reports the target
of this operation being the class HaxeExpressionEvaluator
(referred to as “expression evaluator”). Before explaining the
performed refactoring and its consequences on the WMC
quality metric, it is important to better clarify the context,
and in particular the system in which this commit has been
performed. Intellij-haxe is a plugin to develop Haxe programs
with Intellij IDEA. Thus, some of its classes implement parsing
functionalities and are expected to exhibit high complexity.

The focus of the refactoring performed in commit 8aab776
is the _handle method having, in the pre-refactoring version,
834 lines of code, making it a good candidate for extract method
refactoring. The complexity of this method is due to the fact that
it is used to “handle” different types of Haxe code statement
(e.g., HaxeForStatement, HaxeSwitchCaseBlock, etc.). Its
cyclomatic complexity is negatively affected by the need for
implementing two “responsibilities”. First, the _handle method
has to identify the type of statement to handle (e.g., for,
throw, etc.), thus requiring a long list of if statements e.g., if
(element instanceof HaxeThrowStatement) do something.
Second, the logic required to handle each type of statement is
implemented in the same method.

In this commit the developer extracted from the _handle
method 42 new methods, each one focused on the han-
dling on a specific Haxe statement type. For example,
handleReturnStatement is in charge of handling statements
of type HaxeReturnStatement, and it is invoked by the
_handle method when needed:

if (element instanceof HaxeReturnStatement) {
return handleReturnStatement(...)

}

This series of extract method refactorings is likely to improve
the readability and reusability of the code, removing a very
long method and extracting from it small methods focused on a
precise responsibility. However, based on the WMC assessment,
this did not help in terms of complexity, with the WMC for
HaxeExpressionEvaluator increasing from 25 to 173. This
was due to the creation of the 42 new methods and to the modest
reduction in cyclomatic complexity of the refactored method
(i.e., _handle), still in charge of delegating the handling of
the different types of statements to the newly created methods
(thus, still requiring a high number of if statements).

This disagreement case highlights how broad the concept
of code complexity is and how difficult it is to distill such a
concept inside a metric value. From the developer’s point-of-
view, the goal was to reorganize the code in order to make it
simpler working with it. Looking at the code this goal seems to
be fully achieved. However, the overall number of independent
paths in the code is increased, leading the WMC metric to
assess an increase in code complexity. This further stresses that
the blind use of metrics as quality indicators (e.g., to detect
code smells, to assess the impact of refactorings, etc.) might
lead to questionable conclusions.

D. Readabilty

Code readability is the quality attribute for which we
observed the less perceivable changes in the metrics’ values
(see bottom part of Fig. 1). This holds for both metrics we
employed, despite they use totally different features when
assessing code readability. The two metrics report only 28%
(B&W) and 38% (Sread) of the modified classes as improving
their readability after the changes implemented in the commits.

Commit note B&W Sread
Increase code readability

+24%+9%

Readability | Agreement | json-flattener@dc23d2c

Fig. 8. Code readability: agreement case

Fig. 8 shows a case of agreement between the developer’s
perception of code readability improvement and the indications
provided by both quality metrics. The developer states the
intention of increasing the code readability and pursues this
goal by working on a single class named JsonUnflattener.

In particular, she tries to simplify the unflatten method by
extracting from it six new methods, thus reducing its size from
82 to 45 ELOC. This results in an overall increase of readability
for the class as assessed by the two employed quality metrics.

The B&W metric increases by 9% (from 0.77 to 0.86) thanks
to improvements in several of the code features exploited
by it. For example, the average indentation level of the
code statements is decreased (i.e., less statements exhibit
high indentation) and the number of comments in the class
is increased (thanks to the new methods). The metric by
Scalabrino et al. reports an increase of readability of 24%
(from 0.32 to 0.56), mostly due to the high Textual Coherence
(TC) [24] of the newly introduced methods.



The textual coherence estimates the number of “concepts”
implemented by a method by computing the vocabulary overlap
between the syntactic blocks of the method. Given the narrow
responsibility implemented by the extracted methods, their TC
is very high, thus increasing the overall class readability.

Commit note B&W Sread
Use constants for code readability 
in alignment functions unchanged

Readability | Disagreement | batch@e0a5802

Fig. 9. Code readability: disagreement case

Fig. 9 summarizes what happened in commit e0a5802 with
the developer targeting an increase of readability through the
introduction of constants instead of “magic numbers”. This
refactoring is performed when a literal number in the code has
a specific meaning and, thus, can be replaced with a constant
having a name making an explicit reference to its meaning.
In this case, many magic numbers valued “0” in the code
have been replaced with the StringUtil.LEFT_ALIGNMENT
constant. Such a change, while representing an improvement
in code readability for the developer, did not affect the value
of the two employed metrics. The reason in this case is fairly
simple: none of the two metrics penalizes the readability of a
snippet using magic numbers.

E. Quality-related commits vs general-commits

While we compared the metric values before/after commits
in which developers state their intention of improving specific
quality attributes, we did not show what happens in commits
where developers do not state the goal of improving code
quality (from now one “general-commits”).

For this reason, we performed the same analyses adopted in
our experimental design for 300 randomly selected commits
that were excluded in the manual validation process since
not explicitly reporting in the commit note references to code
quality improvement. Our results show that for all quality
metrics there was no statistically significant difference in the
distribution of metrics before/after the commits (adjusted p-
value always equal 1.0 and d effect size always lower than
0.02). We observed the same trend both when considering all
files as well as when only focusing on the modified ones.

Then, we compared the changes in quality metrics (deltas)
obtained in quality-related commits to that achieved in general-
commits. This means, for example, computing the LCOM
values for all classes modified in each commit ci before and
after ci and, then compute the delta (e.g., LCOM before=0.8,
LCOM after=0.6, delta=0.2). Clearly, this analysis is possible
when focusing on modified files only, since we need the
metric values of the classes before/after the commits. We found
significant difference (adjusted p-value lower than 0.05) for the
LCOM, CBO, WMC, and Sread, in all cases accompanied
by a negligible or small effect size. No statistically significant
differences were observed for C3, RFC, and B&W. Interestingly,
while the LCOM, CBO and Sread achieves better deltas in
commits targeting their improvement, the WMC deltas are
better in general-commits.

These results strengthen our findings highlighting that the
considered quality metrics are not “complete”, meaning that
they are not always able to capture code quality improvement
as perceived by developers.

IV. THREATS TO VALIDITY

Threats to construct validity concern the relation between
the theory and the observation, and in this work are mainly due
to the collected data and to the measurements we performed.
This is the most important kind of threat for our study, and is
related to:

Misclassification of commits in which developers claimed
the intention to improve a specific code quality attribute. One
of the authors manually analyzed 2,459 pre-filtered commits to
identify the ones in which developers clearly stated the intention
to improve one of the four quality attributes considered in our
study (i.e., cohesion, coupling, complexity, and readability). In
case of doubt, the commit was excluded to reduce the chances
of including false positives in our study. On top of that, a
second author double-checked the commits selected by the first
evaluator as relevant for our study. However, as in any manual
process errors are possible, and we cannot completely exclude
the presence of false positives in our dataset.

Imprecision due to tangled code changes [25]. We cannot
exclude that some of the commits we considered grouped
together tangled code changes, of which only a subset aimed at
improving the quality attribute claimed in the commit. At least,
we mitigated such a threat by excluding commits impacting
more than five Java files, more likely to represent tangled
code changes. Still, this does not exclude the presence in our
dataset of commits including multiple edits, only one of which
targeting code quality improvement.

Quality metrics considered in the study. We selected metrics
widely adopted in the literature to assess the quality attributes
considered in our study. However, it is possible that other
metrics could lead to different results, showing a higher/lower
alignment with the code quality improvement as perceived by
developers. For example, “comprehension metrics” built on top
of findings reported in previous studies [34], [35], [36] could
be used to complement the employed readability metrics.
Some studies indicated the need for considering both the WMC
and the SLOC when assessing the cyclomatic complexity of a
class [37], [38], [39]. However, due to contradicting evidences
in the literature [40], [41], we decided to only use the WMC
in the assessment of code complexity.

The considered quality metrics might not have been designed
to capture incremental differences of the same code artefact.
Our study assesses whether quality metrics are able to capture
code quality improvement as perceived by developers. However,
this assumes that quality metrics are able to capture also
“incremental differences” in code quality (i.e., small changes
implemented by the developers) occurring to the same code
component. Such an assumption might not hold for the
considered metrics, since some of them were designed to
compare the quality of different code artifacts.



Identification of test classes. We used a heuristic based
on naming conventions to identify test classes and exclude
them from our study. Such a heuristic works only if naming
conventions are followed by developers.

Thus, it is possible that some test classes have been included
in our dataset. However, we did not find any of them during
our qualitative analysis.

Threats to internal validity concern external factors we did
not consider that could affect the variables and the relations be-
ing investigated. As opposed to similar studies in the literature
investigating the developers’ perception of code quality (see
Section V), we did not survey developers but preferred to mine
real refactorings they performed over the change history of
software systems. A drawback of our experimental design is that
we do not have demographic information about the developers
that performed the considered refactorings. In other words, we
cannot assess their programming experience nor whether they
are really aware of the four code quality attributes considered
in our study. For this reason, our findings cannot be considered
representative of a specific population of developers. Also, we
did not control for the quality of projects in our dataset. As
described in Section II-B, our data extraction process did not
include filtering criteria aimed at assessing the “quality level”
of the projects from which we mined the commits subject
of our study. This means that our dataset could include both
commits from students’ projects as well as from well-known
open source communities. Future work will be devoted to
control for these confounding factors.

Threats to conclusion validity concern the relation between
the treatment and the outcome. Although this is mainly an
observational study, wherever possible we used support of
statistical procedures, integrated with effect size measures that,
besides the significance of the differences found, highlight the
magnitude of such differences. When comparing the quality
metrics of the files impacted in the commits we use the Mann-
Whitney test, which assumes independence of the two groups
of compared samples. Such an assumption is not supported in
our data, since we considered the quality of code components
before/after refactoring.

Threats to external validity concern the generalization of
results. Our study is performed on a set of 1,282 commits
impacting a total of 2,767 classes. Yet, a different dataset and
different quality metrics could lead to different conclusions.

V. RELATED WORK

We discuss the literature studying the (i) developers’ percep-
tion of code quality, and (ii) impact of refactoring on quality.
While our work is mostly related to (i), our experimental design
is close to the one adopted in previous study investigating (ii).

On the developers’ perception of code quality. Counsell
et al. [11] approached the issue of investigating the developers’
perception of class cohesion asking 24 experienced and novice
IT professionals to evaluate the cohesion of 10 Java classes.
They found that the perceived cohesion (i) is not correlated
with the class size, (ii) is correlated to comments density, and
(iii) does not depend on the developers’ experience.

Revelle et al. [9] presented a new coupling metric named
Hybrid Feature Coupling (HFC), combining structural and
textual features. As part of the HFC evaluation, they surveyed
31 developers asking their assessment of the coupling strength
between 16 pairs of classes. Then, they measured the correlation
between the developer’s responses and the HFC metric, showing
that the HFC is able to capture coupling similarly to what
assessed by developers.

Bavota et al. [10] studied the developers’ perception of
software coupling. They focused the attention on four different
coupling metrics, namely structural [42], dynamic [43], seman-
tic [44], and logical coupling [33]. They asked 76 developers
to look into pairs of classes reported as strongly/weakly
coupled by each of these metrics and determine the extent
to which they were coupled. Then, the authors investigated
the level of agreement between the four metrics and the
developers’ perception of coupling. Their findings highlight
that the semantic coupling is the one that better aligns with
developers’ perception of coupling.

While the goal of our study is similar to the three above
described works, we: (i) focus on four different quality
attributes (i.e., cohesion, coupling, readability, and complexity),
and (ii) adopt a totally different experimental design do not
surveying software developers.

Palomba et al. [45] focused the attention on the developers’
perception of code smells. They surveyed 34 developers
showing them code snippets affected and not affected by code
smells, and asked whether, in the respondents’ opinion, the code
component exhibited quality issues. They found that smells
related to complex/long source code are generally perceived
as an important threat by developers as opposed to those
related to good object-oriented programming practices. Our
work complements [45] focusing on the developers’ perception
of software quality from a different perspective.

On the impact of refactoring on code quality. Stroggylos
and Spinellis [15] studied the impact of refactoring on the
values of eight object-oriented code quality metrics. The
refactoring operations were identified by looking in the commit
messages for mentions of words stemming from the verb
“refactor”. Their results show the possible negative effects
that refactoring can have on some quality metrics.

Moser et al. [16] investigated the impact of refactoring on the
productivity of an agile team and on the quality of the code they
produce. They achieved results show that refactoring increases
both software quality but also developers’ productivity.

Alshayeb [17] investigated the impact of refactoring on
five quality attributes, namely adaptability, maintainability,
understandability, reusability, and testability. Their study is
performed on three systems they refactored, measuring the
five attributes on each system pre- and post-refactoring. Their
findings highlight that benefits brought by refactoring on some
code classes are often counterbalanced by a decrease of quality
in some other classes.



Szoke et al. [18] investigated the relationship between
refactoring and code quality. They show that small refactoring
operations performed in isolation rarely impact software quality.
On the other side, a high number of refactoring operations
performed in block helps in substantially improving code
quality (as assessed by a quality model considering different
attributes). This is the study mostly related to the one presented
in this paper. Indeed, Szoke et al. also analyzed the impact
on quality of 32 commits explicitly targeting the improvement
of a specific quality metric (e.g., lines of code). Our study is
performed on a different and larger dataset (1,282 commits).
Also, while Szoke et al. exploit a single score provided by a
quality model to asses the changes in quality, we use specific
metrics related to the quality attributes developers aim at
improving in the analyzed commits. Despite these differences,
the findings reported in the two studies (i.e., [18] and ours)
point in the same direction: minor refactoring changes (such as
the ones implemented in the commits considered in our study),
rarely impact software quality as assessed by metrics.

Finally, Bavota et al. [46] mined refactoring operations using
the Ref-Finder [47] tool, and showed that 42% of refactoring
operations are performed on code entities affected by code
smells and only in 7% of cases the refactoring was able to
remove the code smell.

In this paper, we looked for commits explicitly reporting the
developers’ intention of improving a specific quality attribute
(e.g., coupling), ignoring whether refactoring operations were
actually performed. Then, we studied the impact of that change
on quality metrics measuring that specific attribute. The goal
was to assess whether the considered quality metrics are able to
capture code quality improvement as perceived by developers.

VI. CONCLUSION

We presented a study aimed at investigating whether the
increase of code quality as perceived by software developers can
be captured by code quality metrics. To do that, we identified
a set of 1,282 commits in which the developer explicitly states
her intention to improve one of four quality attributes (i.e.,
cohesion, coupling, code complexity, or code readability). Then,
for each commit c, we used quality metrics designed to capture
the quality attribute improved by c (e.g., cohesion) to verify
whether the improvement was also reflected in the metrics’
values. We found that, more often than not, the considered
quality metrics are not able to capture the quality improvement
as perceived by developers.

Our analysis provided us with a number of lessons learned:
It is far from trivial to distill a code quality attribute inside

a single metric value. Several of the cases we discussed
highlighted limitations of metrics when assessing the
quality attribute they are designed for. For example, when
discussing the case in Fig. 4, we noticed that something
that could have helped in capturing the improvement of
cohesion as perceived by the developer was the sharing of
object types used by the methods in the class. However,
this information was not considered by both metrics used
in our study. A similar observation holds for the code

readability case presented in Fig. 9, in which the developer
tried to increase readability by replacing magic numbers
with constants, an aspect ignored by both state-of-the-art
metrics. In general, our analysis suggests that a single
metric can only provide a very partial view on a code
quality attribute, and that the combination of many quality
metrics should be preferred, when possible.

There might be inconsistency between a code quality attribute
as interpreted by developers and as assessed by quality
metrics. The interpretation of a code quality attribute might
be very subjective, as demonstrated by the cases discussed
for coupling and complexity. In the latter case, while the
developer clearly made the code easier to work with, the
WMC metric did not capture such an improvement, due
to the very specific aspect of code complexity it focuses
on. This leads to the next lesson learned.

Applications of software engineering built on top of qual-
ity metrics should be aware of their limitations. This
is especially true for recommender systems aimed at
identifying design flaws (e.g., code smells) and suggesting
refactorings. Indeed, while a refactoring might make total
sense from the quality metrics point-of-view, it might be
meaningless for developers (or vice versa). This is why
semi-automatic techniques putting the developer in the
loop while generating recommendations (see e.g., [30],
[32]) could be more effective.

Experimentations based on code quality metrics can provide
hints about code quality, but should be complemented
by qualitative feedback provided by developers. Such
experimentations are typical of refactoring recommenders:
the quality of the refactored code pre- and post-refactoring
is assessed by using quality metrics (e.g., cohesion and
coupling metrics for an extract class recommender). While
quality metrics can provide some hints about code quality,
our findings stress the importance of also involving
developers in such evaluations, since their view on code
quality might be different and, at the end, they are the
users of such recommenders.

Future work will be devoted to further investigate the relation-
ship between code quality as perceived by developers and as
assessed by metrics. This will be mostly done by combining the
results of our study with qualitative insights collected from the
developers who authored the commits. In addition to that, we
also plan to include new metrics in our study and to enrich our
analysis with the goal of defining a taxonomy of “disagreement
reasons” for each of the considered metrics (i.e., explain why a
disagreement is observed between the developer’s perspective
of quality improvement and what assessed by a quality metric).
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