
Automatic Generation of Cost-Effective Test Oracles

Alberto Goffi
University of Lugano – Faculty of Informatics

via G. Buffi 13, 6904 Lugano, Switzerland
http://www.people.usi.ch/goffia – alberto.goffi@usi.ch

ABSTRACT
Software testing is the primary activity to guarantee some
level of quality of software systems. In software testing, the
role of test oracles is crucial: The quality of test oracles
directly affects the effectiveness of the testing activity and
influences the final quality of software systems. So far, re-
search in software testing focused mostly on automating the
generation of test inputs and the execution of test suites,
paying less attention to the generation of test oracles. Avail-
able techniques for generating test oracle are either effective
but expensive or inexpensive but ineffective. Our research
work focuses on the generation of cost-effective test oracles.

Recent research work has shown that modern software
systems can provide the same functionality through different
execution sequences. In other words, multiple execution
sequences perform the same, or almost the same, action.
This phenomenon is called intrinsic redundancy of software
systems.

We aim to design and develop a completely automated
technique to generate test oracles by exploiting the intrinsic
redundancy freely available in the software. Test oracles
generated by our technique check the equivalence between a
given execution sequence and all the redundant and suppos-
edly equivalent execution sequences that are available. The
results obtained so far are promising.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; D.2.5 [Software Engineering]: Testing and Debug-
ging

General Terms
Verification

Keywords
Software testing, intrinsic redundancy, cross-checking oracles

This paper describes a work at an initial stage.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14, May 31 – June 7, 2014, Hyderabad, India
Copyright 14 ACM 978-1-4503-2768-8/14/05 ...$15.00.

1. RESEARCH PROBLEM
Research in software testing has focused on automating

many aspects of the testing process such as creating the
scaffolding, generating and executing test cases, maintaining
and managing test suites. A neglected, although essential,
aspect of software testing is the oracle problem: the issue
of deciding whether the output of a test case is correct or
not [17]. While there are completely automated tools to
generate test inputs, only few techniques are available to
generate test oracles. In most of the cases designing and
implementing test oracles are still manual and expensive
activities [2, 3].

Approaches proposed so far to generate oracles are either
inexpensive and ineffective or effective but very costly. For
instance, implicit oracles [11] are easy to obtain at practi-
cally no cost. At the same time, implicit oracles are mostly
incomplete, since they are not able to identify semantic and
complex failures, but they can only reveal general errors
like system crashes, null pointer dereferences or unhandled
exceptions. On the other hand, specified oracles [11] can be
generated from several kind of specifications, such as alge-
braic specifications or formal models of the system behavior.
Specified oracles are effective in identifying failures, but defin-
ing and maintaining formal specifications is expensive to the
point that such specifications are very rare.

The research problem we investigate is how to generate
cost-effective test oracles: oracles that are, at the same time,
more complete than implicit oracles and less expensive than
specified oracles. We aim to address this problem exploiting
the redundancy intrinsically present in software systems.

Recent research work has shown that modern software
systems are somewhat redundant, in the sense that the same
functionality can be achieved through different execution
sequences [5, 6]. Informally, software is redundant when it
provides the same functionality through, at least slightly,
different code. We argue that this kind of redundancy is
an intrinsic characteristic of software and can be present
because of several reasons such as design for reuse, backward
compatibility, and performance optimization. Intrinsic re-
dundancy can be found at different abstractions levels in
software systems, from single statements to functions to en-
tire subsystems. In object-oriented systems, redundancy can
be found at method call level, when the user can obtain
the same functionality from the system through different
sequences of method calls called equivalent sequences.

The following equivalent sequences for a Java class imple-
menting the Map interface exemplify the concept of redun-

dancy at method call level:

map.containsValue(value) ≡
map.values().contains(value)

(1)

The method containsValue checks whether the given value

is present in the target map. The same functionality can be
obtained using the method values, that returns all the values
in the map, followed by the method contains. Notice that
the left side and the right side of the equivalence may execute
different code, like in the implementation of the methods
containsValue(value) and values().contains(value) in
the class ArrayListMultimap of the Google Guava library.

Intuitively, whenever two sequences of operations intended
to be equivalent do not produce the same result, we are facing
a faulty behavior. Our intuition is that equivalent sequences
can be used as test oracles. Given a test case, such test
oracles check the equivalence between the normal execution
of the test case and the execution of the test case where some
statements are replaced with equivalent ones. Figure 1 shows
how equivalent sequences can be used as test oracles. We
have a test case exercising the software under test and invok-
ing the method map.containsValue(value) that is equiv-
alent to map.values().contains(value) (Equivalence 1).
Before executing map.containsValue(value), we duplicate
the state, we execute both map.containsValue(value) and
the equivalent statement map.values().contains(value),
and we compare the results obtained by executing the two se-
quences. If the two sequences behaved differently, the oracle
signals a failure; otherwise, the test case execution continues
normally. To highlight the nature of the mechanism, we
call such test oracles cross-checking oracles, since we let the
system under test cross-check itself.

map.values().contains(1);

1 void testCase() {
2 Map map = ArrayListMultimap.create();
3 map.put(“Key1”, 1);
4 map.put(“Key2”, 2);
5 …
6 map.containsValue(1);

7 map.containsKey(“Key1”);
8 …
9 }

equivalence check

Figure 1: Test oracle from intrinsic redundancy.

Our research hypothesis is that the software is intrinsically
redundant, and such redundancy can be encoded as equiv-
alent sequences that can be used to generate cost-effective
test oracles.

The major contribution of our research will be the design,
the implementation and the validation of a technique to ex-
ploit the intrinsic redundancy for generating cost-effective
test oracles. This includes the definition of a mechanism to au-
tomatically generate and execute alternative and equivalent
sequences of operations, and the definition of a mechanism
to check the equivalence of the executions.

https://code.google.com/p/guava-libraries/

2. BACKGROUND AND RELATED WORK
The problem of the automatic generation of test oracles is

relatively less addressed than other testing problems such as
the generation of the test inputs.

In a recent survey, Harman et al. classify test oracles in
three categories: specified oracles, implicit oracles, and de-
rived oracles [11]. Specified oracles are test oracles generated
from formal specification of the system behavior. For exam-
ple, ASTOOT is a technique to generate test suites along
with test oracles from algebraic specifications [7]. Similarly
to our approach, ASTOOT generates oracles that check the
equivalence between two different execution scenarios. Unlike
our approach, ASTOOT requires the algebraic specifications
of the system under test. In general, specified oracles are
effective in identifying system failures, but a formal specifi-
cation of the system behavior must be available. Having and
maintaining formal specifications is expensive, and thus speci-
fications are rarely created and maintained. The applicability
of specified oracles is therefore limited.

As stated in Section 1, implicit oracles are inexpensive,
since they do not require any domain knowledge or any
kind of additional information. At the same time, implicit
oracles have a limited effectiveness, since they are incom-
plete. Implicit oracles are exploited by state of the art tools
for generating test suites for object-oriented programs like
EvoSuite [9] and Randoop [16].

Derived oracles are derived from properties of the systems
under test or artifacts other than specifications. For example,
in the context of regression testing oracles can be derived
from previous versions of the software under test. In this
case, the derived oracles will check that the new version of
the system behaves as the previous one [14, 15]. For the
test suites they generate, EvoSuite and Randoop derive test
oracles from previous versions of the system under test [9, 16].
Oracles can also be derived from invariants automatically
inferred from system executions [8]. Additionally, oracles can
be derived from properties of the system under test. For in-
stance, symmetric testing [10] and metamorphic testing [20]
are two techniques that generate test oracles by exploiting
symmetries and metamorphic relations of the system under
test. In particular, symmetric and metamorphic testing use
symmetries in the behavior of some operations with different
inputs or with a permutation of the input. When multiple
and independent versions of the system under test are avail-
able, pseudo-oracles can be used to check the correctness
of the system [19]. Pseudo-oracles are yet another kind of
derived oracles that check the consistency of the results of
the different versions of the systems, when the same func-
tionality is executed. An inconsistency can reveal a fault
in one or more versions of the system. Based on a similar
idea, techniques like N-version programming [1] and recov-
ery blocks [18] rely on redundancy intentionally added to
software systems to guarantee some level of reliability.

Our approach is rooted in the pseudo-oracles idea but,
instead of using different and independent implementations
of a system, we use the intrinsic redundancy already present
in software systems. In this way, our technique does not
incur major additional costs, and it is applicable even when
only one version of the system is available. This kind of
redundancy has been used to automatically recover from
runtime failures in JavaScript and Java systems [5, 6], and
this work aims to investigate how to use this redundancy to
effectively generate test oracles.

3. RESEARCH QUESTIONS
In this thesis, we plan to investigate the problem of gen-

erating effective test oracles without incurring high costs.
We intend to address this problem by exploiting the intrin-
sic redundancy of software systems to generate test oracles
automatically. In detail, we plan to address the following
research questions:

Q1 Can we exploit the intrinsic redundancy of software sys-
tems to generate cross-checking oracles automatically?

Q2 Are cross-checking oracles effective in revealing faults?

Q3 Can cross-checking oracles be generated at low cost?

4. APPROACH AND CHALLENGES
In the first part of our research, we studied the feasibil-

ity of the approach by designing a technique to generate,
deploy, and execute cross-checking oracles. The input of
our technique is a list of equivalent sequences that encode
the intrinsic redundancy of the system under test, and the
output is a test oracle for such system consisting in several
inline checks.

The technique works as follow: it examines the code of the
system under test and identifies the statements for which we
have at least one equivalent sequence. For each identified
statement, it instruments the system under test to enable
the execution of the original sequence along with the cor-
responding equivalent sequences. Also, it instruments the
system under test to activate the execution of a decision
procedure to check the equivalence of the sequences, once
they are executed.

To implement the technique we have to face several chal-
lenges. A first challenge is finding a suitable way to encode
the equivalent sequences. Since we aim to generate oracles
automatically from the equivalent sequences, they should be
easy to write for developers and, at the same time, easy to
use in the context of our technique.

A second challenge consists in executing the equivalent
sequences. Ideally, all the sequences equivalent to a given
statement should run in parallel and should not influence each
other. The readers should notice that all the executions are
required to start from the same system state. Furthermore,
the executions have to be transparent in the sense that they
should not affect the execution of the system under test. In
other words, the execution of cross-checking oracles should
not modify the behavior of the system under test.

Another challenge stems from the equivalence check. Cross-
checking oracles shift the complexity of verifying the correct-
ness of a particular output to verifying the equivalence of
different executions. We consider equivalent two executions
that produce an equivalent output and lead the system to an
equivalent state. In the context of object-oriented software,
the output is usually an object and the system state consists
of several objects. While comparing primitive values is fairly
easy, checking the semantic equivalence of two objects is way
more complex. The notion of equivalence we use is derived
from the observational equivalence defined by Hennessey and
Milner [12]. We consider equivalent two objects that are not
distinguishable through their public interfaces. In particular,
two objects are observational equivalent when we can not
find a sequence of method calls that produces one, or more,
different results when applied to the two objects. A precise
evaluation of the observational equivalence would require

sequences of calls up to infinite length. We approximate the
observational equivalence considering sequences of method
invocations of a finite length k.

5. CURRENT STATUS
We tackled the challenges described in Section 4 by im-

plementing a prototype of our technique targeting Java sys-
tems [4]. In the prototype, we use aspect-oriented program-
ming to instrument the system under test and execute the
equivalent sequences. Currently, equivalent sequences are
manually translated into aspects.

To execute the equivalent sequences starting from the same
system state, we implemented a deep-clone mechanism. In
a nutshell, the original sequence is executed starting from
the original system state, while the equivalent sequences
are executed starting from copies of the same system state.
The current mechanism is not completely safe, since the
deep-clone mechanism may not produce completely disjoint
objects. For example, static fields are shared between the
original object and the deep-cloned objects. The complex
structure of objects also affects the deep-clone mechanism.
As an example, let us consider a list containing several objects.
The deep-cloned list contains objects that are different from
the objects contained in the first list. Thus, all the operations
based on the hash code of an object work on the original list,
but not on the cloned one. For instance, if we try to remove a
given element from the lists, the element will be removed from
the original list, but not from the cloned list. To limit these
problems, we control the result of the deep-clone operation by
means of two checks. The first check verifies the equivalence
between the original and the cloned object right after its
creation. The second check verifies the equivalence between
the results of applying the original sequence both on the
original and on the cloned object. These checks significantly
reduce false positives due to the deep-clone mechanism.

For the equivalence check we rely on an hybrid approach.
Each Java object has a method called equals. This method
should check the equality of two objects, but the default
implementation checks the object identity (whether the two
references are actually referring the same object). There-
fore, we exploit the equals method only when developers
provided their own implementation overriding the default
one. When a useful implementation of the equals method is
missing, we rely on an implementation of the observational
equivalence. We implemented the observational equivalence
using sequences of methods calls of length 20, repeating the
checking process at most 10 times, each time with a different
sequence of method calls.

We evaluated our technique applying the prototype in the
context of unit testing of Java systems. We extracted the
intrinsic redundancy from a subset of the classes of Guava
and JodaTime, and we coded the equivalent sequences into
aspects. Then, we generated the oracles for the classes under
test. We evaluated the effectiveness of the cross-checking
oracles by means of mutation analysis. We seeded mutants
in the selected classes with Major [13], and we generated one
test suite for each mutated version with Randoop [16]. Then
we ran all the test suites with and without our oracles, and
we measured the amount of mutants killed by the test suites
in both cases. Cross-checking oracles turned out to be effec-
tive in revealing seeded faults, when applied to automatically

http://www.joda.org/joda-time/

generated test suites. In fact, cross-checking oracles detected
up to the 72% (30% on average) of the seeded faults with
very few false positives (0.7%). Oracles generated by Ran-
doop produced lots of false positives (due to uninteresting
violations of object-oriented contracts) and detected only a
small amount of the faults (11% on average).

We evaluated our technique also with hand-written test
suites. Cross-checking oracles resulted to be effective in
revealing seeded faults using the developers’ tests. Our
oracles found up to 53% of the faults, and improved the
effectiveness of the oracles written by developers in 4 out of
16 cases.

Currently, of our technique can not be applied to multi-
threaded programs, included all the programs that interact
with the graphical user interface. Also, programs with I/O
are problematic since the effects of a sequence can influence
the execution of the others.

Although the results are promising, there are several as-
pects of the approach that can be improved to achieve better
results. We aim to find a method to execute the equivalent
sequences in a safe way avoiding all the potential side-effects,
possibly including the side-effects related with multithreading
and I/O. We plan to improve the equivalence check, experi-
menting different types of heuristics for efficiently checking
the equivalence of objects. To date, discovering and encod-
ing the intrinsic redundancy have to be done manually. Our
research group is currently working on the design of an au-
tomated technique to discover the intrinsic redundancy of
software systems. This technique could further enhance the
automation level of our approach.

6. EVALUATION PLAN
We plan to validate our idea experimentally, by applying

the approach to a broad and representative set of software
systems. We will evaluate the effectiveness of cross-checking
oracles by measuring the soundness and completeness in a
series of experiments using both seeded and real faults.

We will compare the effectiveness of our approach with
both implicit oracles and hand-written oracles, as well as
other kinds of oracles. We expect cross-checking oracles to
be considerably more effective than implicit oracles and to
be not far from the effectiveness of hand-written oracles.

We plan to evaluate the overall cost of applying our tech-
nique. We will consider both the time required for the
instrumentation and the overhead on the execution time of
the test suites. So far, the main human cost derives from
discovering and encoding the intrinsic redundancy. The defi-
nition of a mechanism to automatically identify the intrinsic
redundancy will consistently reduce the already low cost of
the approach.

7. REFERENCES
[1] A. Avizienis. The N-Version Approach to

Fault-Tolerant Software. IEEE Transactions on
Software Engineering, 11(12), 1985.

[2] L. Baresi and M. Young. Test Oracles. Technical report,
University of Oregon, 2001.

[3] A. Bertolino. Software Testing Research: Achievements,
Challenges, Dreams. In 2007 Future of Software
Engineering, 2007.

[4] A. Carzaniga, A. Goffi, A. Gorla, A. Mattavelli, and
M. Pezzè. Cross-Checking Oracles From Intrinsic

Software Redundancy. In Proc. of the 36th
International Conference on Software Engineering,
2014.

[5] A. Carzaniga, A. Gorla, A. Mattavelli, M. Pezzè, and
N. Perino. Automatic Recovery from Runtime Failures.
In Proc. of the 35th International Conference on
Software Engineering, 2013.

[6] A. Carzaniga, A. Gorla, N. Perino, and M. Pezzè.
Automatic Workarounds for Web Applications. In Proc.
of the 18th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, 2010.

[7] R.-K. Doong and P. G. Frankl. The ASTOOT
Approach to Testing Object-Oriented Programs. ACM
Trans. on Soft. Engineering and Methodology, 3, 1994.

[8] M. D. Ernst, A. Czeisler, W. G. Griswold, and
D. Notkin. Quickly Detecting Relevant Program
Invariants. In Proc. of the 22nd International
Conference on Software Engineering, 2000.

[9] G. Fraser and A. Arcuri. EvoSuite: Automatic Test
Suite Generation for Object-Oriented Software. In Proc.
of the 19th ACM SIGSOFT Symposium and the 13th
European Conference on Foundations of Software
Engineering, 2011.

[10] A. Gotlieb. Exploiting Symmetries to Test Programs.
In Proc. of the 14th International Symposium on
Software Reliability Engineering, 2003.

[11] M. Harman, P. McMinn, M. Shahbaz, and S. Yoo. A
Comprehensive Survey of Trends in Oracles for
Software Testing. Technical report, University of
Sheffield, Rep. CS-13-01, 2013.

[12] M. Hennessy and R. Milner. On Observing
Nondeterminism and Concurrency. In Automata,
Languages and Programming, volume 85 of Lecture
Notes in Computer Science. Springer Berlin, 1980.

[13] R. Just, F. Schweiggert, and G. M. Kapfhammer.
MAJOR: An Efficient and Extensible Tool for
Mutation Analysis in a Java Compiler. In Proc. of the
26th International Conference on Automated Software
Engineering, 2011.

[14] L. Mariani, S. Papagiannakis, and M. Pezzè.
Compatibility and Regression Testing of COTS
component-based Software. In Proc. of the 29th Intl.
Conference on Software Engineering, 2007.

[15] C. Pacheco and M. D. Ernst. Eclat: Automatic
Generation and Classification of Test Inputs. In
Proc. of the 19th European Conference on
Object-Oriented Programming, 2005.

[16] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball.
Feedback-Directed Random Test Generation. In
Proc. of the 29th International Conference on Software
Engineering, 2007.

[17] M. Pezzè and M. Young. Software Testing and
Analysis: Process, Principles and Techniques. John
Wiley and Sons, 2008.

[18] B. Randell. System Structure for Software Fault
Tolerance. SIGPLAN Notes, 10(6), 1975.

[19] E. J. Weyuker. On Testing Non-Testable Programs.
The Computer Journal, 25(4), 1982.

[20] Z. Q. Zhou, D. H. Huang, T. H. Tse, Z. Yang,
H. Huang, and T. Y. Chen. Metamorphic Testing and
its Applications. In Proc. of the 8th International
Symposium on Future Software Technology, 2004.

