
Implementing parallel algorithms of MapReduce

Grigory Fedyukovich1, Vladimir Safonov1
1Department of Mathematics and Mechanics, Saint Petersburg State University, Saint Petersburg, Russia

Abstract— In this paper we present the implementing of
parallel algorithms of MapReduce problem in C++, C# and
F# languages with technologies OpenMP, MPI, TPL, PPL,
Threading. Firstly we describe the algorithm and introduce
the basics of its parallelization. At the last section we show
the execution results of parallelized programs.

Keywords: MapReduce, parallelization, optimization, perfor-
mance

1. Introduction
The papers "Future of Computer Architecture" by David

Paterson [1] and "The Landscape of Parallel Computing
Research: A View From Berkeley" of Berkeley University
professors [2] were chosen as a prerequisite for the inves-
tigation. These papers propose the list of well-known and
widely-applicable problems, also called "dwarfs", which use
pattern-based computations and parallel processes commu-
nication technologies in their implementation. MapReduce
[3] is one of such dwarfs.

The basic part of the research was done
during the "Parallel Dwarfs" [4] project
(http://paralleldwarfs.codeplex.com/). This
project is based on two above mentioned papers. Its goals is
to get academic and industrial software developers familiar
with dwarfs and to implement the dwarfs concurrently in
different programming languages, platforms, using different
parallel programming technologies, and to compare the
results in terms of performance and convenience of use.

2. The MapReduce method
Stable operation of a multiprocessor system requires to

balance the workload of the processors. The first thing to
be done is to find the key states in the algorithm - such
ones that saving of intermediate data in those states is not
only reasonable but also convenient. This data is already
structured and there is not necessary to spend extra resources
for the restructuring.

Such design improves the ability of the system to be fail-
safe. In case of a program execution crash, it is necessary to
start the execution again, i.e. to repeat some first actions for
the source data. Now, if we group some actions logically,
and collect their intermediate results, then there is no need
any more to execute the corresponding actions next time -
it is enough to start execution from the last saved point.

The second step after finding the key states is the analysis
of technologic properties of the system: the performance of

the processors, the speed of data transfer. We need to create a
correspondence between the processors and sub-tasks of our
algorithm, i.e. to start the execution of any part of algorithm,
bounded by two neighbour states for each processor.

The MapReduce method consists of two parts: Map and
Reduce. The source data of the method is a finite set S. It
is the first key state. As a result of the method, we should
obtain a set of pairs D = { (S′, c) | S′ ⊆ S }. Here S′ is a
subset of S, satisfied by the condition P , c is the count of
S′′ (subsets of S), such as S′′ = S′. The functionality of the
Map sub-method is to apply P for each subset of S. The
set of P -subsets (the list) is the saved intermediate data after
performed termination of the Map. This storage indicates the
second key state. Reduce, the sub-method that runs the next,
finds and counts all equal sets. Its result represented by the
dictionary is the last key state.

There are many interpretations of the problem where the
MapReduce method is applicable. The area of data search
has a classical problem of words counting in a given text.
The input data set S for the problem in question is an ordered
and indexed set of symbols, where the symbols with equal
values but different indexes are not the same by definition.
Words are connected subsets of S, containing only the letters
as elements. Letters are elements of a pre-defined alphabet.
The Map sub-function finds words in the text and returns
the set of words represented as a list. Then Reduce sorts
the list that leads to grouping of the words. It is enough
for the algorithm exit to create the list of pairs (word, its
entries count). This action can be performed just by one list
traversal. The processes interaction scheme for the above is
shown in Figure 1.

Fig. 1: MapReduce architecture



3. MapReduce implementation
3.1 OpenMP use with C++

Serial implementation of MapReduce can run on every
N -processor system, where each i-processor contains Ki

kernels. But the termination of a program will use only
one kernel of one processor. Source data is not divided into
sub-parts, Map produces only one list, and Reduce - one
dictionary. In case of source data partitioning into n pieces
and running for Map and then Reduce for each one, all of
them will be compiled to the sequence of n calls.

OpenMP is the programming interface allowing us to
use parallelism without changes of already written code. It
offers a set of directives for parallelizing loops, locking and
using private data structures. The specification of OpenMP
is published in [5]. The code of parallelized implementation
is shown below.

list<string> ptStringEntries;
// the result of Map

map<string, int> ptStringTotal;
// the result of Reduce

omp_lock_t lk;
// new lock declaration

omp_init_lock( &lk );
// lock initialization (common for all)

#pragma omp parallel
for private (ptStringTotal, ptStringEntries)

// directive for loop parallelization
for (int i = 0; i < n; i++){

Map(ptStringEntries, i);
// run Map

Reduce(ptStringTotal, ptStringEntries);
// run Reduce

omp_set_lock( &lk );
// lock

SumThreadResult(ptStringTotal);
// summarize method

omp_unset_lock( &lk );
// unlock

}
omp_destroy_lock( &lk );

// destroy lock (common)

For each i-iteration, a thread is created. Every thread
operates with its own substring parallelly. First of all,
it fills the list ptStringEntries and then the dictionary
ptStringTotal. It is illustrated in Figure 2.

The use of #pragma omp parallel for private(...)
ensures the isolation of local objects for each loop iteration.

Fig. 2: Parallel data processing

The particular dictionary results have to be united together.
This process should not be simultaneous, because it can
cause conflicts. For prevention of it the synchronization
mechanism is used. In OpenMP, there are locking operators
- objects of the class omp_loct_t. There is only one lock
for all threads. The initialization and destroy have to be
terminated outside of the loop.

3.2 PPL use with C++
The Parallel Patterns Library (PPL) looks similar to

OpenMP, from the viewpoint of its use. It was included into
MS Visual Studio 2010. Basic classes, structures and oper-
ators of the library are defined in Concurrency namespace
specified in ppl.h header file. The implementation principles
of MapReduce are similar to the OpenMP ones, except for
lambda-expressions use in parallel-executed loop body.

There are no locks used - this is yet another difference
with OpenMP. We declare the subsidiary object of class
combinable, which stores the local results of each thread
(method combinable.local()) and then somehow unites
(method combinable.combine_each()). The refinement of
unification method is also anonymous lambda-function. But
note that it is possible to define the method outside and just
call it from lambda:

combinable<map<string, int>> combinator;
parallel_for (0, n, [&](int i)
{

list<string> localMapResult;
map<string, int> ptStringTotal;
Map(ptStringEntries, i);
Reduce(ptStringTotal, ptStringEntries);
combinator.local() = ptStringTotal;

// store of intermediate results
});
combinator.combine_each

([&] (map<string, int>& local)
{ // unite the local results

SumThreadResult(local);
});

3.3 TPL use with C#
The Task Parallel Library (TPL) is analogue of PPL for

.Net. Let’s look for the C# example. The delegates of this
languages are used as lambdas:

System.Threading.Parallel.For
(0, n, delegate(int i)

{
var ptStringTotal = Reduce (Map(i));
lock(commonResult)
{

SumThreadResult(ptStringTotal);
}

}

The synchronization here is achieved through clas-
sic locks, which were introduced far earlier than
TPL itself. Monitors: Monitor.Enter(Object o) and



Monitor.Exit(Object o) can be used here as the guards for
operation with the Object o as well.

3.4 System.Threading.Thread use with C#
The classical approach to the concurrent programming

in .NET is the use of System.Threading.Thread objects.
This is a more complicated process, but the results show
(see Testing section) that it is the most effective way of
parallelization for the problem. The general approach of
thread creation and run is presented below.

var threadStart =
new ThreadStart(MapReduceMethod);

var mapReduceThread =
new Thread(threadStart);

mapReduceThread.Start();

The body of the method executed by a thread is
implemented separately in C# - in our case there is
void MapReduceMethod(). This method is passed to
the thread using the ThreadStart delegate. However
MapReduceMethod does not accept any parameters, there-
fore there is no possibility to pass additional data through
them. It means that for creating of n threads, we have to
implement n methods, where everyone uses unique data.
That is the reason of using of object models here. Let’s create
the class MapReduceBaseMethod - the encapsulation of
fields (input string, list of words, dictionary) and methods
(Map, Reduce, BeginMethod). BeginMethod here is just
a sequence of calls of Map and Reduce.

var currentMapReduce =
new MapReduceBaseMethod(mainContent);

currentMapReduce.BeginMethod();
Dictionary<String, int> stringTotal =

currentMapReduce.GetStringTotal();

We defined void BeginMethod() as a dynamic
method, therefore it depends on particular
MapReduceBaseMethod object. It is enough to pass
BeginMethod to the ThreadStart delegate while creating
a new instance of this. Next, create an array of size n
for the objects of MapReduceBaseMethod, where the
mainContent field will contain different strings. As a
result we will have n different methods:

var currentData = new MapReduceBaseMethod[n];
for (int i = 0; i < n; i++){

currentMapReduce[i] =
new mapReduceBaseMethod

(mainContent.GetPart(i)));
// new object with i-part of mainContent

var threadStart =
new ThreadStart

(currentMapReduce[i].BeginMethod);
// particular delegate creation

var mapThread = new Thread(threadStart);
// thread creation

mapThread.Start();
// thread run

}

3.5 System.Threading.ThreadPool use with C#
Thread pool is a methodology to support operations with

threads. It does not require creation of each of the threads
since it is possible to pass the parameters to the Map
and Reduce methods. Therefore it is not necessary to use
MapReduceBaseMethod class. Methods of each thread
can be defined using the delegates inside the pool.

var results[] = new Dictionary<String, int>[n];
// array for local results storage

var signal = new AutoResetEvent(false);
// new signal for synchronize

int counter = n;
// threads counter

for (int threadCurrent = 0;
threadCurrent < n;

threadCurrent++){
ThreadPool.QueueUserWorkItem

(delegate(Object o){
// addition of a thread

int i = (int)o;
// get the number of current thread

results[i] = Reduce (Map(i));
// run sequentially Map and Reduce
// and strore the result

if (Interlocked.Decrement
(ref counter) == 0){

// while the counter more than 0,
signal.Set();

// pool is waiting for termination
}

}, threadCurrent); // loop iterator
}
signal.WaitOne();

// main is waiting for termination signal
SumThreadResult(results);

// summarization without locking

Signals are used for synchronization between threads. It
is simple events that operate by changing of the value of
a subsidiary Boolean variable. A signal is initialized in
the main thread by setting the false value to this variable.
While the variable has not become true, the execution of
main thread is sleeping. Therefore, the execution inside pool
may take as long time as necessary, because changing the
variable value occurs at the end of a thread. It is evident that
if all threads execute independently, then the value should
be changed by the last thread. Who it will be, the thread
counter decides. After the termination of each thread body,
the counter decrements. Since it is an atomic operation, we
do not need to use heavyweight locking mechanisms. There
is static class System.Threading.Interlocked which contains
atomic operations and guarantees the synchronization, as a
consequence, makes the performance more efficient.

3.6 TPL use with F#
One more innovation in Microsoft Visual Studio is support

of the novel F# functional programming language. Its the
most important feature is the opportunity to use objects and
import all necessary namespaces of .NET. It is possible to



use the same data structure as for C# implementations and
the same parallelization techniques. Here we consider the
TPL example. The principles of the usage are completely
the same as for C#. The concurrency is entered the loop by
the use of the operator Parallel.For(), the locks - by the
operator lock, and the delegate of the thread body - by an
instance of class Action. The iterator for the parallel loop
(an integer variable) points to the corresponded part of pre-
partitioned source data. We apply function Map (| > map)
to these data and Reduce (| > reduce) to the results of the
Map.

let ParallelTask i =
// a tpl task declaration

let ptStringTotal =
sourceData.[i] |> map |> reduce

lock commonResult
(fun () ->

sumThreadResult(ptStringTotal))
Parallel.For

(0, n, new Action<int>(ParallelTask))
// tasks creation and run

3.7 Async use with F#
The Async technology is a classical approach to create and

run threads in F#. It can be compared to the threading in C#.
But in our particular problem there is no so difference with
the TPL usage. Like in previous example firstly we define
the thread body and then create instances of threads based
on this definition and run all of them.

let task i = async {
// an async task declaration

let ptStringTotal =
currentDataArray.[i] |> map |> reduce

lock commonResult
(fun () ->

sunThreadResult(ptStringTotal))
}
let tasks =

[for i in 0 .. n - 1 -> task i]
// tasks creation

Async.RunSynchronously(Async.Parallel tasks)
// tasks run

3.8 Use of Message Passing Interface
The approach to use parallelism in systems without shared

memory differs from the shown one. In general, we need to
distinguish between concurrent computations and distributed
systems. But in practice we can model multiprocessor sys-
tems on a single host and execute parallelized program
on it. In Section 4, the performance results of execution
of both concurrent and distributed programs performed on
one host are presented. In this section we consider parallel
implementation of the task in a cluster using Message
Passing Interface (MPI).

MPI defines an API for the data exchange between pro-
cessors, that does not depend on a platform. For Windows
we use MPI.Net SDK 0.5.0 (for C# and F#) and MS.MPI

(for C++). For example, for sending an array from one
node of a cluster (A1) to another (A2), we need to call a
command that depends on the node: schematically on A1:
Send(array,A2), and on A2: Receive(A1, array).

In order to solve the MapReduce problem on the system of
N processors, basically we need to define the functionality
for each of the processor, and to perform the compiled
programs separately on each processor. MPI allows to
combine all the methods in one program and to run the
same program on every processor in the system. The MPI
environment assigns the identical numbers to the nodes and
allows manipulating by the data between nodes using these
identifiers.

For our algorithm, first of all, we choose the "main" node
that gets the input string, partitions this into N parts, then
sends the parts to the nodes and wait for receiving the result.
The other nodes receive private data, run Map and Reduce
and send the result back to the "main" node.

string dataPart = null;
// declaration of an object for string part

if (MPI.Communicator.world.Rank == 0)
// checking the "main" node

{
int n = MPI.Communicator.world.Size;

// count of processors
string data = GetSource();

// "main" node gets whole string
string[] dataParts = GetParts(data);

// then partitions it
for (int i = 1; i < n; i++)
{ // then sends to all nodes

MPI.Intracommunicator.incomm.
Send<string>(dataParts[i], i, root);

}
dataPart = dataParts[0];

// points 0-part for own processing
}
else
{ // other nodes receive the data

MPI.Intracommunicator.incomm.
Receive<string>(0, 0, dataPart);

}
var mapResult = Map(dataPart);

// run Map for the own part
var reduceResult = Reduce (mapResult);

// run Reduce for the own part
//
// and next the place for code
// of sending results back (analogously)

Note that functions Map and Reduce will be processed
in all nodes, even in the "main" one (denoted by identifier
0). It happens because there are no condition guards
around Map and Reduce calls. We put the checking of
the host identifier (MPI.Communicator.world.Rank) to
the test, so if the execution of the program is performing
at the state of condition, then the consequent will be
executing only if the host satisfies to the test. The source
string dataPart is different for all the hosts because it



was received individually. As shown in example, "main"
node do (MPI.Communicator.world.Size - 1) sending
operations, therefore it is necessary to do same count
of receiving ones. Someone can ask, why there is only
one receive operator, but we clarify that this code is
performed on all processors in the system (i.e. these count
is MPI.Communicator.world.Size) and the consequent
of the condition (MPI.Communicator.world.Rank.Size
== 0) holds only once. Therefore for other
(MPI.Communicator.world.Size - 1) times the alternative
holds and receive-operator performs.

4. Testing and results
The applications were built by MS Visual Studio 2010

Beta 2 and tested on the following hardware configuration:
laptop with 3GB RAM, Intel Core2 Duo 2,26 HGz CPU,
Vista SP2, Microsoft.NET Framework 4 Extended Beta
2; MS Visual C++ 2010 Beta 2 x86 Runtime, MPI.NET
Runtime. For the cluster emulation the Microsoft HPC MPI
Application Launch was used (mpiexec and smtp utilities).

Table 1: The average execution time (sec) for C++
source data Serial PPL OpenMP MPI
25 Mb 10.066 6.062 6.047 5.809
50 Mb 22.230 13.450 13.503 12.341

100 Mb 49.509 31.678 31.837 27.362

Table 2: The average execution time (sec) for C#
source data Serial TPL Thread ThreadPool MPI.Net
25 Mb 12.243 8.317 7.416 7.308 7.812
50 Mb 26.813 17.372 16.112 15.910 16.183

100 Mb 57.125 37.484 35.869 35.995 33.784

Table 3: The average execution time (sec) for F#
source data Serial TPL Async MPI.Net
25 Mb 14.386 8.412 8.536 8.145
50 Mb 30.856 17.722 17.723 17.2641

100 Mb 66.640 37.924 38.193 37.130

5. Conclusions
A lot of algorithms we use in our programs can be

parallelized by adding of one line of code. But programmers
who do not know the advantages of parallelism, have to
develop non-optimized code. We hope the illustrated work
will be a good help while studying the concurrent program-
ming. We showed the strengths and weaknesses of such
technologies as TPL, OpenMP, MPI for C++, C# and F# with
respect to MapReduce problem, but other implementations
on different platforms and using different methods can also
be developed and compared. The experience and positive
efforts of such research give us a lot of opportunities and
topics for oncoming investigation.

6. Acknowledgements
This research as well as the "Parallel Dwarfs" project were

funded in part by a grant from the Microsoft Corporation.
We a pleased to say many thanks for the people who worked
with us under the project: Sean Mortazavi, Robert Palmer,
Jeffrey Sax, Matej Ciesko, George Bosworth, Ilya Yuneev
and Nikolay Viskov.

References
[1] David A. Patterson. Future of Computer Architecture 2006.
[2] Krste Asanovic Ras Bodik, Bryan Christopher Catanzaro, Joseph James

Gebis, Parry Husbands, Kurt Keutzer, David A. Patterson, William
Lester Plishker, John Shalf, Samuel Webb, Williams, Katherine A.
Yelick. The Landscape of Parallel Computing Research: A View From
Berkeley. University of California, 2006

[3] Jeffrey Dean, Sanjay Ghemawat. MapReduce: Simplified Data Process-
ing on Large Clusters. Google, Inc. (c) 2004

[4] Sean Mortazavi, Jeff Baxter, "Building Supercomputer Applications
using Windows HPC 2008", Microsoft, 2008

[5] OpenMP Application Program Interface. Version 2.5 May 2005, (c)
1997-2005 OpenMP Architecture Review Board.


