
Misery Loves Company:
CrowdStacking Traces to Aid Problem Detection

Tommaso Dal Sasso, Andrea Mocci, Michele Lanza
REVEAL @ Faculty of Informatics — University of Lugano, Switzerland

Abstract—During software development, exceptions are by
no means exceptional: Programmers repeatedly try and test
their code to ensure that it works as expected. While doing so,
runtime exceptions are raised, pointing out various issues, such
as inappropriate usage of an API, convoluted code, as well as
defects. Such failures result in stack traces, lists composed of the
sequence of method invocations that led to the interruption of
the program. Stack traces are useful to debug source code, and
if shared also enhance the quality of bug reports. However, they
are handled manually and individually, while we argue that they
can be leveraged automatically and collectively to enable what
we call crowdstacking, the automated collection of stack traces on
the scale of a whole development community.

We present our crowdstacking approach, supported by Shore-
Line Reporter, a tool which seamlessly collects stack traces during
program development and execution and stores them on a central
repository. We illustrate how thousands of stack traces stemming
from the IDEs of several developers can be leveraged to identify
common hot spots in the code that are involved in failures, using
this knowledge to retrieve relevant and related bug reports and
to provide an effective, instant context of the problem to the
developer.

I. INTRODUCTION

Software development is an iterative refinement process:
developers write code and then test it to increase their
confidence that the program behaves as desired. This continuous
process of running small, localized tests generates many errors
that developers exploit to locate and correct the defects in
the code. Some paradigms, like Test Driven Development [1],
adopt an inverse point of view: Developers define tests first, and
then write the code that complies with the tests until they all
pass. As a consequence, this process results in an even larger
number of runtime exceptions, each of which may contain
useful information about the context of failures.

The knowledge enclosed in such exceptions potentially
provides useful insights that can be exploited to better under-
stand the underlying system, its functioning, and its quality.
For example, the number and the nature of errors related to
the incorrect use of an API is correlated with the difficulty to
approach it for a beginner, can suggest a lack of documentation,
or a bad architectural design. Information from exceptions can
also be exploited to get a deeper understanding of the runtime
behavior of a complex fragment of code, and it is crucial to
identify possible defects hidden in the program.

Programming environments generally deal with exceptions
by means of stack traces, a textual description that depicts
the execution of the steps that led to the error. In object-
oriented programming languages this is the sequence of method
invocations that led to the exception.

The information in a stack trace is useful to understand
where the failure originated and which entities of the system
are involved. Research has shown that it is also valuable
to determine the cause of a defect: Including a stack trace
in a bug report increases its quality by providing reliable
and relevant information. Indeed, researchers showed that
bug reports containing stack traces are closed sooner than
bug reports containing only a generic description of the
error [2], [3]. However, a stack trace is generally checked
manually by a developer to spot and fix single defects and
its usefulness terminates once the bug gets resolved. As a
result, a considerable amount of information is discarded and
the knowledge it contains is lost. Researchers already used
automated approaches to collect generated stack traces and
identify bugs and performance issues [4], [5]. However, these
approaches remain post mortem, and largely focus on the
properties of a running system by recording the behavior of
users of operating systems.

We believe that the knowledge contained in stack traces
should not be limited to the mere fixing of a single case,
and that its use can be extended and in a live fashion by
automatically and collectively gathering this information, using
it to provide instant feedback to the developer. By establishing
such a tight cycle between a failure and the feedback, we want
to enable what we call crowdstacking, a collective process
that involves a whole development community in gathering
information automatically collected from stack traces, to boost
the debugging process.

We present ShoreLine Reporter,1 a tool implementing
crowdstacking by seamlessly and silently collecting stack traces
from development sessions, and storing them on a shared,
central repository. We used the collected data to perform various
analyses, such as identifying the entities that are more prone to
be involved in a failure, and searching and retrieving relevant
knowledge already present in the community ecosystem. This
additional information can be used to prompt a developer during
the development process, for example by recommending a set
of bug reports contained in the bug tracker that are related to
the current exception, thus providing a more complete picture
of the context of the error.

Structure of the paper. Section II illustrates the nature
of stack traces and describes the gathered data. Section III
introduces ShoreLine Reporter and the methodology we used
to collect stack traces, as well as the process to link them
to relevant bug reports. Section IV evaluates our approach.
Section V discusses our results. Section VI analyzes related
work on debugging data. Section VII concludes the paper and
presents future work.

1http://shoreline.inf.usi.ch

II. ON THE NATURE OF STACK TRACES

Exceptions are a common mechanism in modern program-
ming languages to represent errors and signal unexpected
behavior in general; they are the standard error management
technique in any modern object-oriented programming language.
When they are left unmanaged, and thus they remain uncaught,
exceptions ultimately result in the interruption of the executed
program. Normally, an error message gets printed together
with a stack trace, which represents the status of the dynamic
call stack when the uncaught exception was thrown. Essen-
tially, it represents a summary of the path that the program
followed through the code, showing the entities that were
involved before the failure. We collected large volumes of data
from development sessions of users of Pharo [6], an object-
oriented programming language and companion IDE inspired
by Smalltalk. In Section III we detail the Pharo system and
the approach we used to collect the stack trace data.

Stack trace structure. In Pharo, a stack trace is a list of
pairs Class>>selector, where Class is the name of the class
containing the method, and selector is the name of the method
invoked. Figure 1 shows a concrete example of a stack trace
that we collected with our tool.

PluggableButtonMorph(Morph)>>handleKeyDown:
KeyboardEvent>>sentTo:
PluggableButtonMorph(Morph)>>handleEvent:
PluggableButtonMorph(Morph)>>handleFocusEvent:
[
ActiveHand := self.
ActiveEvent := anEvent.
result := focusHolder handleFocusEvent: (anEvent
transformedBy: (focusHolder transformedFrom: self))] in
HandMorph>>sendFocusEvent:to:clear:
BlockClosure>>on:do:
WorldMorph(PasteUpMorph)>>becomeActiveDuring:
HandMorph>>sendFocusEvent:to:clear:
HandMorph>>sendEvent:focus:clear:
HandMorph>>sendKeyboardEvent:
HandMorph>>handleEvent:
HandMorph>>processEvents
[:h |
ActiveHand := h.
h processEvents.
ActiveHand := nil] in WorldState>>doOneCycleNowFor:
Array(SequenceableCollection)>>do:
WorldState>>handsDo:
WorldState>>doOneCycleNowFor:
WorldState>>doOneCycleFor:
WorldMorph>>doOneCycle
[
World doOneCycle.
Processor yield.
false] in MorphicUIManager>>spawnNewProcess
[
self value.
Processor terminateActive] in BlockClosure>>newProcess

Fig. 1. Example of a stack trace collected from a runtime exception. The
most recent call is at the top, the oldest call is at the bottom. The snippets of
code inside blocks are highlighted in blue.

As we can see from the listing, the stack trace occasionally
contains small snippets of code included in blocks (between
square brackets, highlighted in blue). This happens when
a method executes a block. Since in Smalltalk a block is
equivalent to a closure, it represents a pluggable behavior that
can change the flow of the program and, as such, it is reported
into the stack trace.

Some class names are complemented with the name of a
superclass between parenthesis. This happens when the called
method is not defined in the class itself, but it has been inherited
from the specified superclass. This notation maintains the link
between the class involved in the exception and its superclass:
It is important to keep track of this information, since the cause
of an error can be rooted in the superclass chain and suggest
a possible defect in the original method, as well as being a
consequence of the interaction with the code of the subclass.

Stack traces and dynamic typing. An interesting property
of Pharo comes from its dynamic nature: the whole system
is polymorphic, and polymorphism is obtained through the
so-called duck typing [7]: every object can be used in place
of other objects, as long as it is able to respond to the same
messages. This entails that—as in other dynamic programming
languages—there is no static type system and, as such, no
static type checking: every type error happens at runtime,
resulting in a Message Not Understood kind of exception.
This peculiarity is important when considering the nature of
exceptions in Pharo, because the vast majority of the exceptions
is caused in this context: In our dataset an exception is thrown
as a result of a message not understood in more than 72%
of the cases. Among those cases, 68% are generated from a
message sent to UndefinedObject. These are the equivalent of
a NullPointerException in Java.

A. Interpreting Stacktraces

The amount of information represented by type errors is
ambivalent: On the one hand, it may be an effect of trivial
errors from the user, such as typos, and may represent noise
among the useful exceptions. On the other hand, it contains a
large amount of usage knowledge: being able to discriminate
the actual failures from the occasional use errors can aid the
early identification of defects and speed up debugging. Also,
what at first may look as a “false positive”, can still be of great
help in understanding how users and developers operate the
system. A recurrent and consistent misuse of a method of an
API may represent a flaw in the design of the public interface
of a library. The maintainer of the library can then determine
how to refactor the interface to improve the documentation.
Moreover, using further data collected after the changes, she
would also be able to measure the impact of her intervention
on the workflow of the developers.

Another usage example can employ data showing a frequent
pattern inside core classes of the system to identify the nodes on
the system that manages the largest part of the computation. By
identifying these spots, a developer could be able to prioritize
her development activity and to perform targeted optimization.

So far we have considered the horizontal dimension of
stack traces, that is, we considered the information of a group
of traces based on their occurrence. However, an interesting
property that we should also consider is represented by the
vertical dimension of a stack trace. Since the order of the
elements inside the trace is determined by the call sequence,
the depth of a class can give us a hint of the role of the class
in the computation: classes near the top of the trace provide
an overview of the context where the exception originated, and
can therefore be used to provide immediate feedback on the
nature of the error and help debugging. Instead, classes towards

Fig. 2. Distribution of the stack traces on the Pharo system using a city like visualization, where each building is a class. Pharo is composed of 14,045 classes
distributed among 557 packages. We highlight the system with data from 7,532 stack traces that we collected. The height and the color of each building is
determined by the number of traces the class appears in, while classes that are not involved in an exception are collapsed and depicted in gray. The gray squares
enclosing the buildings represent the package containing the classes.

the mid part and the bottom of the trace are more related to
the mechanics of the system and could be usefully aggregated
to identify anomalies in the core parts of the system.

Figure 2 shows the impact that runtime exceptions have
on the Pharo system, adopting a city visualization [8]. We
aggregated the stack traces in one set of stack calls and counted
the number of times a class would appear in a stack trace. Each
class is depicted as a building, where the height and the color
represent how often the class is involved in an exception: the
more the class appears in a stack trace, the more the color tends
to red and the higher the building. Classes that are not touched
by any stack trace are depicted in gray and collapsed. From
this figure we can see how the number of classes involved in
exceptions is much lower than the total number of classes in
the system, therefore suggesting some hot spots in the system
that could be investigated for further development activities.

B. A Practical Use Case

To be able to deal with a potentially large volume of
information, we need an effective approach to classify the
stack traces. In Section III we present an approach based
on clustering stack traces by similarity, and then stratifying
horizontally the clusters using the number of members in each
cluster to represent the frequency of the similar exceptions.

The most immediate advantage of using clustered stack
traces is to leverage them for bug fixing. We developed an
approach to analyze the contents of a stack trace and use
the mined information to retrieve bug reports from the Pharo
bug tracker that discuss the classes and methods in the trace.

For example, by retrieving the reports related to the trace in
Figure 1, which involves key events, we can find the bug report
#12973, that discusses an issue related to keyboard shortcuts.
By further reading the report, we can learn about the nature
of the issue, and by checking the last events we can learn
about the current status of the defect. In this case, we can
see that the issue has already been resolved, a patch has been
committed and is waiting to be integrated. Thus, we can ignore
the problem, knowing that it will be solved soon. Moreover,
by checking future stack traces, we are able to determine if
the problem has been completely solved or if it may appear
again in some particular, missed corner cases.

Overall, having quick access to bug reports related to
encountered exceptions can help to obtain an overview of
the problem and improve and boost the debugging process. We
next discuss how we match bug reports and stack traces.

III. CROWDSTACKING TRACES

A. Data Collection

Stack traces are a frequent and recurrent side product of the
daily workflow of developers. Such data represent a significant
amount of information that is usually not collected and thus
lost. To benefit from this data we built ShoreLine Reporter, a
tool to intercept exceptions, the corresponding generated stack
traces, collect the resulting data and submit it to a central
server. ShoreLine Reporter is a plugin designed and built to
integrate seamlessly into the Pharo development environment.
We wanted to collect unbiased and uniform data, so we posed
particular attention in building a tool that could be unobtrusive

and that required minimal interaction with the user. For this
purpose, ShoreLine Reporter is highly configurable through a
dedicated settings menu, and can work in two different main
modes: an interactive mode, and a shadow mode.

The interactive mode is designed to allow the developer
to keep full control of her data and decide which are the traces
to submit and which ones to discard. Figure 3 shows the main
elements of the interactive user interface.

A

B

C

Fig. 3. The interactive interface of ShoreLine Reporter

ShoreLine Reporter activates when the user runs code that
triggers an exception A©. The Pharo IDE generally pops up a
pre-debug window B©, that illustrates a preview of the exception
and the options that she can undertake. Here ShoreLine Reporter
shows up, proposing a Report button that allows the user to
send the trace to the ShoreLine server. If she chooses to do so,
she is presented with a window C© that allows her to review
the data that is being submitted to verify that it does not leak
undesired information. Once the user presses the Send button,
the reporter serializes the stack trace and submits it.

Shadow mode. By acting on the system configuration, the
user can reduce the level of interaction with the tool at the
point of making it become completely transparent: She can
decide to submit every stack trace without confirmation and
also disable the intermediate check for the data she is sending.
In short, ShoreLine Reporter can become completely silent
and gather all the stack traces from each exception. This is
particularly important to avoid continuous prompts to the user
asking for a confirmation and allow ShoreLine Reporter to
gather a significant number of stack traces without breaking
the workflow of the developer.

B. Data Representation

In Pharo, everything is modeled with an object. As such,
a stack trace is a complex object containing a reference
to the debugger, the full context of the exception and the
sequence of method calls that constitutes the trace. However,
to value privacy and to avoid our tool from being intrusive,
we decided to serialize the whole stack trace as a list of
strings, each one containing just the signature of methods,
formatted as ClassName>>methodSelector. Thus, we discard
all the elements that contain private data, such as the contents
of instance variables. Encoding a stack trace using strings also

guarantees compatibility and portability of the collected data,
even when imported from different versions of Pharo.

Besides collecting the stack traces, we also added to the
report additional metadata to allow a better categorization of
the error. We collect the name of the author, which is the tag
she uses to sign her commits, the date of the exception and
the version of Pharo build for which the exception happened.
The version of the build can be useful to analyze the evolution
of the system while it is developed. The Pharo development
cycle is structured in two main branches: a stable version and a
development version. In the Pharo community, the development
version is actively developed and constantly improved by a
large number of users and developers, and exception data from
developed software can provide insights about the evolution
of the system over time, as well as help spotting defects as
soon as they arise, ultimately reducing the time required to fix
a new defect after it is introduced.

C. Analysis on the Collected Data

We collected stack traces during a time period of five
months, from June to November 2014. Table I shows a summary
of the data we collected during that time span.

TABLE I. STACK TRACES COLLECTED FROM JUNE TO NOVEMBER 2014

of stack traces 7,532
of lines in all stack traces 252,668
of developers 8
average lines of a stack trace 34
size of the shortest stack trace 1
size of the longest stack trace 314

We visualized the data to highlight the parts of the Pharo
system that were involved in the collected exceptions: Figure 4
shows a city visualization of the stack trace data mapped on
the whole Pharo system. Using the same convention used in
Figure 2, each building represents a package and each square
enclosing a building is a package. Each building is composed
of blocks, each one representing a method. The color of each
method is determined by the number of times a method appears
in a stack trace: it tends to red when the number is higher
and to blue when the number is lower. Methods, classes and
packages that do not appear in a stack trace are collapsed and
depicted in gray.

The figure suggests that only a small part of the system
is actually involved in the collected exceptions, and the vast
majority of methods and classes is not impacted by these
exceptions. By knowing these methods that work as entry
points to the classes, a developer can view the impact that each
class and method have in case of failures, and decide which
methods she has to inspect first to search for a bug.

Table II shows a summary of the most active methods in all
the stack traces. As expected, the most recurrent exceptions are
related to some core elements of the language: BlockClosure
is a core element used when passing code as argument, while
UndefinedObject»doesNotUnderstand: and Message»sentTo: are
part of the message sending infrastructure that is the foundation
of Smalltalk. Despite being expected, the fact that the most
common exceptions involve the dynamic nature of the language
shows how the freedom provided by the absence of static
type checking comes with the price of incurring in runtime
exceptions even for experienced programmers.

Fig. 4. Distribution of the stack traces on the methods of Pharo using a
city like visualization, where each building is a class composed by blocks
representing methods. All the classes contain 112,558 methods, the color of
each building is determined by the number of traces the class appears in, while
the packages, classes and methods that are not involved in an exception are
collapsed and depicted in gray.

TABLE II. THE 10 MOST CALLED METHODS IN THE COLLECTED STACK
TRACES.

Class>>Method Occurrences
BlockClosure>>on:do: 9,265
UndefinedObject>>doesNotUnderstand: 8,549
BlockClosure>>cull:cull: 6,268
Message>>sentTo: 4,980
PragmaMenuBuilder>>collectRegistrations 4,776
WorldState»doOneCycleNowFor: 4,714
BlockClosure»on:fork: 4,554
Array»do: 4,497
BlockClosure»ensure: 4,495
BlockClosure»cull: 3,642

Once verified that the most recurring exceptions are caused
by common usage patterns of the language, we can consider
these elements as outliers for the specific purpose of this paper:
The information they carry can still be useful in identifying
other issues like API usage problems, but it is likely negligible
to be connected to bug reports. Moreover, methods that appear
in very few stack traces are also outliers, since there is an
intrinsic lack of confidence that they can be significant to
represent any pattern in the system.

D. Extracting Information

We saw that many stack traces are channelled mainly
through few crucial points in the system. To inspect whether it
was possible to group them, we applied a clustering approach
to detect the stack traces that could be generated by similar
errors. Clustering stack traces can give us the advantage of
reducing the number of elements that we have to inspect to
determine whether a given error is caused by a defect, by bad
usage or simply by a behavior of the developer (e.g., in the case
of Test Driven Development). Inspired by a technique used in
information retrieval, we mapped our stack traces to a vector
space model [9]. A vector space model is a data structure to
index documents and perform efficient comparisons between
each document. In information retrieval it is built by splitting a
document in a sequence of terms, and turning the document in a
vector counting the number of occurrences of each word in the

document. We build our vector space model by building a vector
for each stack trace: we use the pair ClassName>>MethodName
to identify the features (the terms) of the vector. We collected
all the features in a dictionary and used it to build each vector,
where the components of the vector contain the number of
times that a method invocation appears in the stack trace. For
example, consider the two stack traces containing the method
calls:

Trace 1 Trace 2
UndefinedObject>>DoIt TabManager>>setTabContentFrom:
BlockClosure>>valueAfterWaiting: Tab>>retrieveMorph:
BlockClosure>>newProcess BlockClosure>>newProcess

We collect all the terms and build a dictionary composed
of the features:

Dictionary
BlockClosure>>newProcess
BlockClosure>>valueAfterWaiting:
Tab>>retrieveMorph:
TabManager>>setTabContentFrom:
UndefinedObject>>DoIt

Using the dictionary we can then build the vectors for the
two stack traces:

Trace 1 〈1, 1, 0, 0, 1〉
Trace 2 〈1, 0, 1, 1, 0〉

Once we have our vector space model, we can define the
distance between each stack trace. For this, we need to define a
similarity measure, that indicates how two stack traces are
different according to our metrics. Having a vector space
model allows us to calculate distances by means of the cosine
similarity, which for two vectors can be calculated from the
definition of the Euclidean dot product, that is:

cos θ =
A ·B
‖A‖‖B‖

In the case of documents, where the vectors have all positive
components, the similarity ranges from 0 to 1. In the previous
example, the distance for the two vectors representing Trace 1
and Trace 2 is 0.58. Using the cosine similarity we calculated
the first nearest neighbor for each stack trace. With this data
we were able to construct a visualization to understand the
topology of the stack traces in our vector space model.

Figure 5 shows a force graph where each dot is a stack
trace and every edge represents the connection between each
trace and its nearest neighbour.

The figure shows evidence that there are groups of related
stack traces, gathered around a pivotal point. In particular,
few large groups gather the majority of stack traces, and the
remaining form smaller groups. To represent each cluster, we
chose the medoids [10]. A medoid is the element of the dataset
that is nearest to the centroid of the cluster. The advantage of
using medoids instead of centroids is that they are element of
the dataset, and thus they represent a real occurred stack trace.
Moreover, centroids tend to be much more sparse that medoids,
thus being more suitable for efficient computation of operations
between vectors. We considered the medoids as archetypes,
that represent the summary of each cluster. The number of

Fig. 5. Force graph representing the stack traces and their neighbour. Each
dot is a trace, each edge connects a stack trace with its nearest neighbour.

incoming edges represents the measure of the popularity of the
archetype and, as such, of the whole group.

TABLE III. SUMMARY OF THE MOST POPULAR STACK TRACES, WITH
THE POPULARITY METRICS.

Archetype (first line) Popularity
UndefinedObject»doesNotUnderstand: 1,585
UndefinedObject»doesNotUnderstand: 647
UndefinedObject»DoIt 619
UndefinedObject»doesNotUnderstand: 428
UndefinedObject»doesNotUnderstand: 427
RGFactory»doesNotUnderstand: 363
BlockClosure»doesNotUnderstand: 127
UndefinedObject»doesNotUnderstand: 111
SystemDictionary»errorKeyNotFound: 71
MouseWheelEvent»doesNotUnderstand: 69
UndefinedObject»doesNotUnderstand: 57
NBGLFrameBuffer»error: 41
RTDraggable»initializeElement: 29
UndefinedObject»DoIt 29
UndefinedObject»DoIt 28

From Table III we can see that the largest groups of stack
traces are generated by exceptions related to the dynamic nature
of the language, and as such probably caused by the style
of programming of the developer. We still believe that this
information can provide deep knowledge over the status of the
system, but we think that their analysis represents a different
set of problems that could be tackled with statistical analysis of
big volume of stack traces during the evolution of the system.
Therefore, at this stage we removed the most popular groups,
and focused our inspection on the traces positioned in the
central part of the ranking. We used these samples to determine
a possible correlation with existing defects.

We mined the Pharo bug tracker to collect the bug reports
produced during the development of the platform. To focus our
research on actual and relevant problems, but without risking

of losing valid examples, we considered the reports opened
between January and November 2014.

We extracted 1,910 bug reports, with 17,747 different events,
including comments, patches and changes of status. During
this period, 1,591 reports have been closed or are waiting for
integration, and 319 are still active.

We then extracted from each archetype of stack trace a list
of methods invocation. We used this list to search through the
data extracted from the bug tracker using a full text search of
the pair ClassName>>MethodName into the contents of each
comment that compose a bug report. After this operation, we
obtained a list of the bug reports that are associated to each
method invocation. Not every bug report can have the same
relation with the stack trace, therefore we applied a heuristic
to define a ranking between the reports.

We discussed earlier how the lines of a stack trace that are
closer to the top are more likely to be involved to the current
error, while the lines closer to the bottom are more likely to
involve the deep dynamics of the system. We leveraged this
idea to give a higher ranking to the reports retrieved using
lines closer to the top of the stack trace and lower ranking to
those retrieved by lines close to the bottom. In the scenario
of a context-aware tool that suggests interesting reports to the
developer while he encounters an exception, the interesting bug
reports are likely to be in the first three positions. After those,
it is increasingly likely that the information in the bug reports
is too general and probably related to internal mechanics of
the system.

IV. PRELIMINARY RESULTS

We obtained a list of bug reports connected to each
archetype of stack trace, that we called topic. We performed a
qualitative analysis on the topics to determine if the retrieved
reports could actually provide valuable information about
the nature of the exception. We removed from the list the
topics triggered by a doesNotUnderstand: and UndefinedObject,
because they are mostly generic and less likely to contain
specific bug reports in the tracker. After the filtering, we reduced
the list to 629 elements. We then eliminated the elements with
the lowest popularity, to exclude the groups that had not enough
components to be significative. We set the threshold to be the
0.5% of the maximum popularity, which gave us a list of 23
elements, with a significantly diverse popularity ranging from
1,585 to 9.

We manually inspected the bug reports related to each
topic, to determine if they could bring value to the developer
during the development activity. Of the 23 topics, 15 of them
had no bug reports connected in the top of the trace and had
only reports in the bottom, related to generic mechanics of the
system, unrelated to the specific exception.

The fact that some stack traces had not connected bug
reports could have different meaning, and may carry interesting
information that may be used in the debugging activity:

(1) It may represent an exception that occurs in code that is
specific to the project of a developer and therefore not
discussed in the system bug tracker;

(2) It may be due to a misuse of an API that leads to type
errors;

(3) It may be caused by a new defect, not yet reported.

Each of the three cases can represent an interesting scenario
that can be addressed with a different practical action.

In case (1) the information about runtime error of a
developer’s code can be of interest for the developer itself
and, if collected for further usage during debugging, it can be
used to signal possible defects in the code and prioritize the
classes and methods to inspect.

The case (2) can take place when many developers use the
same API in an incorrect way. Such case may suggest an area
of code or a class interface that requires refactoring.

The case (3) is the most interesting for the developers of the
system: It means that the system is raising a lot of exceptions
in an area of code that is not known yet for having unexpected
behaviors. This could—by definition—represent a new defect,
not yet known to the community, or not precisely defined. In
this case, grouping the stack traces and highlighting them as a
problem to investigate, may provide a valuable support for the
community, for example by proposing to automatically open
a new bug report containing the collected data to start the
debugging activity when the popularity of the group reaches a
critical mass, and help to severely cut down the latency between
the arise of a defect and its resolution.

For the remaining 8 stack traces we found relevant bug
reports in the bug tracker. After assigning every report a priority
depending on the distance of the top of the stack, we inspected
them in order of priority. We observed that, given the structure
of the stack trace, only the bug reports in the first two or
three lines of the trace are relevant to define the context of the
precise problem: the trace of calls then quickly dives into the
system core classes becoming thus too generic to pertain to
specific scenarios. We found the information of the reports to
be relevant to the debugging activity, or to get information on
the status of the malfunction: Either the identified reports were
addressing the specific issue raised by the stack trace, or were
not depicting the same specific context of the exception, but
still discussing a related problem.

We now present two example bug reports and show how they
are relevant in understanding an exception during development.

Example 1. In Section II we already presented the stack
trace shown in Figure 1. The example is particularly interesting
because it shows a practical use case for a user or a developer
that encounters the exception while she is writing code. Figure 6
shows the bug reports retrieved for this stack trace.

As the report shows, there is a known error caused by a
defect in the system, and the community is already working to
address it. In particular, since the stack trace that we considered
was generated in date 7/7/2014, the user encountered the
problem before its resolution and, at the time, the report was
stuck in a low priority status. This information could have been
exploited by a developer to report more precise information
or to ask for an increase of the priority for a quicker defect
resolution, while a user encountering the exception could know
that there is work in progress, or if there is an estimated time
to have an updated and fixed version.

By continuing to read the report, we can see that the problem
has been further investigated, and that a slice (a piece of

A

B

C

D

E

Fig. 6. The bug report 12973, related to the stack trace depicted in Figure 1.
We can see the metadata (A), the initial description that opened the bug report
(B), the discussion that followed (C), the submission of a slice and its validation
(D), and the bug resolution (E).

submitted code, that in Pharo works in a similar way of a
patch) has been proposed and is being tested by the continuous
integration server of the project. Finally we can see that the
report was closed, the fix was accepted and it is waiting to be
integrated in a later version.

Other than simply useful, this information can improve
awareness in the community. For example, it may disseminate
and reward the contributions targeted at improving the general
quality of the whole system.

Example 2. Another example is represented by the stack
trace starting with:

SmalllintManifestChecker»runRules:onPackage:withoutTestCase:
RBPackageEnvironment»classesDo:
Set»do:
RBPackageEnvironment»classesDo:
Set»do:
RBPackageEnvironment»classesDo:
SmalllintManifestChecker»runRules:onPackage:withoutTestCase:
CriticBrowser»reapplyRule:

The lines containing CriticBrowser>>reapplyRule: are
related to the bug report 14230. At a closer inspection we
can see that the bug report contains only three comments,
but the last one points to the report 110473, where a long
discussion (40 comments) is ongoing regarding the relation of
the method in the stack trace and the application of rules for
the CriticBrowser. At the end of the discussion the report gets
closed, but as a result of the fix, another bug report is issued
to address further weird behavior of the CodeCriticBrowser. To
add even more correlation to the trace and the report, we noticed
that the author of the stack trace is active in the discussion
of the report, and actively contributed in its resolution. This
reinforces our belief that providing a bug report context when
a user encounters an exception can provide great value in
debugging software.

V. DISCUSSION

We discussed our approach and its preliminary results in
investigating the stack trace data that we collected. We now
take a critical stance towards our approach, discussing the data,
the approach itself and the actual impact that it can have on a
development community.

A. The Data

During this experiment we collected novel data generated
from actual daily development activity. The biggest threat that
we see in our work is given by the nature of our dataset. Despite
having a considerable amount of stack traces, the fact that they
were produced by just eight developers may introduce hidden
patterns caused by the specific style of programming of each
developer, or by the codebase the developers were working
on during the experiment. This could lead to a latent bias in
our results, that may prove to be too tailored for our users.
We are expanding the number of developers using ShoreLine
Reporter, and we will therefore be able to verify the generality
and scalability of our approach.

Despite this threat, we believe that the data we collected
contains valuable and unexploited information, that can lead
to the discovery of hidden patterns in developers’ activity.
Analyzing this information can produce knowledge that can
be helpful in supporting the developers during the bug fixing
activities, and can support the work of the community.

B. The Approach

We designed our approach to find immediate use of the
stack traces, and confirm that the data we collected contained
information that was both significant and interpretable. However,
there are many improvements that can be done to refine the way
that we process stack traces and link them with bug reports.

One can argue that the use of clustering is not really
necessary in finding a correlation between a stack trace and

a report, and that a simple direct search of the elements of a
stack trace is sufficient to find the relevant matches. However,
we believe that the use of clustering carries some advantages
that can be valuable in building a tool to provide feedback on
actual data. w Generalization: First of all, the use of clustering
allows to identify, group and “average” similar stack traces,
having the effect of making the whole process more robust
and noise resistant by considering only the most popular stack
trace in the group. In this way, even changes in the system that
would generate different, but still similar stack traces would
have no immediate negative impact in the search result.

Scalability: Even more important, the use of clustering
brings the crucial advantage of drastically reducing the size
of the problem. While this is not an impossible problem to
overcome with the size of the dataset that we considered, in
a real world scenario with thousands of developer constantly
providing stack traces from errors, the volume of the data
would quickly become impossible to process. As such, building
clusters that can be used as index and provide a quick lookup
for the existing categories of stack traces is a necessary step
in building a tool that provides real-time feedback to the user
in an acceptable time.

Metrics: The final advantage of building clusters is that it
eases further analysis on the dataset. Clustering provides an
immediate measure of the popularity of the cluster, it can help in
profiling the types of errors on the system during time and ease
further investigation on specific groups of stack traces, allowing
deeper inspection of other unexpected behaviors on the system,
such as the distribution of Message Not Understood or the
distribution of the invoked classes and methods. To develop this
approach, we used a very simple, yet effective clustering method
based on the connected components of the graph formed by
the nearest neighbor. Despite its simplicity, this method already
provided useful results in identifying the main groups of stack
traces in the dataset, as shown in Figure 5. The approach can
be further refined with more specific algorithms, such as k-
means[11] or k-medoids[10], [12], which could provide more
precise results. However, the cost for such improvement could
be represented by a drop of performance, since these algorithms
are computationally expensive. Therefore, the nearest-neighbor
clustering represents a good tradeoff between results and
efficiency. Also, the problem of a clustering algorithm such as
k-means, is that it requires to determine a priori the number
of clusters to separate our dataset, but in the context of stack
traces this information is indeed impossible from the beginning,
and it can invalidate the notion of similarity, degrading the
approach. Instead, our approach allows a to define a partition
without previous knowledge, and that can be easily an quickly
adapted as the number of instances increases, and different
classes of exceptions and stack traces are discovered.

C. Applicability of the Method

We think that the ability to immediately link stack traces
to bug reports can be effectively exploited to provide on-line
help to a developer. We foresee additional benefits that require
additional investigation and tool support. Our approach provides
quick evidence of the problems in a system and helps finding the
immediate context of the error: Therefore, it can be exploited
to speed the debugging process, or it can provide information
on the current status of a bug in the system. Moreover, since

the information presented to the developer depends on the
context she is working on, it may also work as additional
documentation, and support the understanding of some parts
of the code which are poorly documented.

Besides the pragmatic aspects of assisting developers, we
think that having a way to access live information on the
status of the system may result in a more integrated and
open development process. A normal user can be reassured
by knowing that the core development team is already dealing
with a problem, while other developers may be encouraged
to step in and help the resolution of the defect, either by
providing additional information or by actually start working
on the defect. In an open source project, this set of conditions
could bolster the interactions among the community members,
focus the attention to current problems and reinforce the whole
community.

VI. RELATED WORK

Bug fixing is well known to be a tedious activity, and
identifying the source of a problem—even with a bug report—
represents a non trivial task. Zimmermann et al. showed that the
bug reports containing stack traces improve the general quality
of the report, and result in a faster resolution of the report [2].
Schröter et al. provided empirical evidence analyzing the
Eclipse project that the use of stack traces in defect resolution
provides value in the debugging activity, and suggested that
software projects should provide means to include them in
defect reporting [3].

The idea of collecting runtime exceptions to analyze
software errors has been adopted by different authors in
different contexts. Glerum et al. used an automated approach to
collect errors generated and submitted by WER, the Windows
Error Reporting tool. They analyzed data collected from users
of Microsoft’s operating systems worldwide: In their approach
approach they grouped the reports into buckets by looking
for specific properties of the trace, and used this information
to prioritize debugging and build a knowledge base where
system administrators could check common problems of the
system [4]. Inspired by this work, Han Shi et al. applied the
same principle to performance debugging [5]: They proposed
an approach called StackMine, designed to detect and report
highly impacting performance bugs and address defects that
cause long delays in the user experience. We believe that a
similar approach to the one that they applied to an operating
system, can be a valuable support for developers in building a
programming environment. Mozilla adopts a similar approach
to collect stack traces and runtime execution for debugging
purposes [13].

The information of stack traces contained in bug reports
represents a valuable support in debugging: as such, many
researchers devised different methods to aid bug fixing and
management of reports using stack traces. These works provided
evidence that stack traces are a useful tool and a precious
source of information [14], [15], [16], [17]: they provide precise
information that are generally more reliable and useful than
the descriptions produced by the submitter of the reports [18].

Moreno et al. applied Text Retrieval techniques to compute
similarity between bug reports using the stack traces contained
in the report description, focusing on reducing the overhead to

analyze large amounts of data [19]. Again, this was done in a
localized post mortem way.

Managing bug reports is expensive and represents an open
problem: Many studies proposed approaches to automatically
manage them, by finding the the right developer to fix the
defect, predict the cost of fixing a bug and reduce maintenance
costs [20], [21], [22], [23]. In this context, we propose an
approach to efficiently associate new stack traces to existing bug
reports, in an efficient and scalable way, to provide immediate
feedback to the users of the system and to assist development
and bug fixing in a live fashion.

VII. CONCLUSION

A. CrowdStacking Traces

Fixing defects is an expensive, tedious and time consuming
activity: It costs money in industry and it consumes contrib-
utors’ time—and energy—in open source communities. The
debugging process requires to deeply understand the system,
and to gather information to shed light on the nature of the
defect. As a result, the debugging process has the side effect
of producing a lot of information describing the context of
the error. This information is however usually discarded after
solving the problem.

We presented ShoreLine Reporter, a tool that seamlessly
integrates into the Pharo system to collect stack traces produced
during the arise of runtime executions in the system. The goal
of ShoreLine Reporter is to collect and store information, and
reuse it to extract deeper knowledge of the underlying code,
assist and boost the whole debugging process.

Given the volume of the data produced by the collection
approach, it is crucial to have a way to browse the stored
information in an efficient and useful way, that allows fast
access to the obtained knowledge. We presented a study on the
data we collected, proposing an approach to group the stack
traces into clusters and use those clusters to retrieve useful
information for the developers. We generated the clusters by
stack traces similarity, and selected the medoid of each group
to represent the archetype of the collection: Each archetype
represents a different type of error that happens in the system.
We calculated the popularity of each group, that is determined
by the number of stack traces that it contains, and used this
metric to rank the clusters.

We showed a possible application to exploit the data
contained in stack traces by mining the Pharo bug tracker
to retrieve the bug reports associated with each archetype of
stack trace. We found a connection with bug reports related to
the exception and we showed that the information can be used
to aid the debugging activity. In the cases where the clusters
do not have a clear connection with existing bug reports, the
system should highlight the anomaly and propose to open a
bug report displaying the information gathered until then.

B. Future Work

We see this paper as preliminary work towards a new way of
dealing with information from error contexts. Current debugging
workflows include a number of time consuming activities that
could be automated, to reduce the time spent on fixing problems,
speed up the development, and foster the improvement of the

software project. The approach that we presented in this paper
is only one of the many possible ways that we see possible
to adopt in employing this data: leveraging this information
can lead to a number of tools that can deeply impact the way
communities and developers deal with debugging.

◦ Context aware debugging: as we suggested during the paper,
we want to extend ShoreLine Reporter to propose the
possible bug reports to the developer whenever he triggers
an exception, to provide a quicker access to the information
needed to deal with the problem.

◦ Bug triaging: Having access to stack trace information can
help identifying the types of defects that caused an exception,
thus easing the process of triaging the bug [21]. Also, we
can use the data submitted by each user to create and
update profiles of the developers and determine their area
of expertise in a quick and reliable way.

There still is a significant amount of data that we did not
consider during our analysis. The information regarding the
dynamic nature of the language can still be exploited to get
insights on the internals of the system.

◦ System core exceptions: We mainly focused on the top part of
the trace, because it contains the part of information closer
to the user. The bottom of the stack, which involves the
deeper parts of the system, can be used to find bugs hidden
in the core classes of the system.

◦ Stack trace patterns: We saw from Figure 2 and Figure 4
that many stack traces actually touch only a small part of
the system. This is an interesting behavior that we want to
investigate further, by looking for patterns in the call stack
and detect how to deal with “hot areas” of the system.

◦ Optimization: Knowing the main areas of the system that are
executed during an exception can also show the frequency
of execution during the daily activity of the users. This
information can be combined with code profiling techniques
to determine where and how to perform optimizations on
the existing code, and improve execution performances.

We envision a future where debugging, but also development
activities are supported by means of context-aware tools that
use automatically extracted information produced by a whole
development community, to aid the tasks of developers and
support debugging, with the support of the whole community.

ACKNOWLEDGEMENTS

We gratefully acknowledge the financial support of the
Swiss National Science Foundation through project “HI-SEA”
(no. 146734), the European Smalltalk User Group (ESUG), and
the Swiss Group for Object-Oriented Systems and Environments
(CHOOSE).

REFERENCES

[1] Beck, Test Driven Development: By Example. Addison-Wesley Longman
Publishing Co., Inc., 2002.

[2] T. Zimmermann, R. Premraj, N. Bettenburg, S. Just, A. Schroter, and
C. Weiss, “What makes a good bug report?” IEEE Transactions on
Software Engineering (TSE), vol. 36, no. 5, pp. 618–643, 2010.

[3] A. Schroter, N. Bettenburg, and R. Premraj, “Do stack traces help
developers fix bugs?” in Proceeding of MSR 2010 (7th IEEE Working
Conference on Mining Software Repositories). lol, May 2010, pp.
118–121.

[4] K. Glerum, K. Kinshumann, S. Greenberg, G. Aul, V. Orgovan,
G. Nichols, D. Grant, G. Loihle, and G. Hunt, “Debugging in the (very)
large: Ten years of implementation and experience,” in Proceedings of
SIGOPS 2009 (ACM 22Nd Symposium on Operating Systems Principles),
ser. SOSP ’09. ACM, 2009, pp. 103–116.

[5] S. Han, Y. Dang, S. Ge, D. Zhang, and T. Xie, “Performance debugging
in the large via mining millions of stack traces,” in Proceedings of
ICSE 2012 (34th International Conference on Software Engineering),
ser. ICSE ’12. IEEE Press, 2012, pp. 145–155.

[6] A. Black, S. Ducasse, O. Nierstrasz, D. Pollet, D. Cassou, M. Denker
et al., Pharo by example, 2009.

[7] R. Chugh, P. M. Rondon, and R. Jhala, “Nested refinements: A logic for
duck typing,” SIGPLAN Not., vol. 47, no. 1, pp. 231–244, Jan. 2012.

[8] R. Wettel, M. Lanza, and R. Robbes, “Software systems as cities: A
controlled experiment,” in Proceedings of ICSE 2011 (33rd International
Conference on Software Engineeering). ACM Press, 2011, pp. 551–560.

[9] G. Salton, A. Wong, and C.-S. Yang, “A vector space model for automatic
indexing,” Communications of the ACM, vol. 18, no. 11, pp. 613–620,
1975.

[10] L. Kaufman and P. Rousseeuw, Clustering by means of medoids. North-
Holland, 1987.

[11] J. MacQueen et al., “Some methods for classification and analysis of
multivariate observations,” in Proceedings of the fifth Berkeley symposium
on mathematical statistics and probability, vol. 1, no. 14. California,
USA, 1967, pp. 281–297.

[12] H.-S. Park and C.-H. Jun, “A simple and fast algorithm for k-medoids
clustering,” Expert Systems with Applications, vol. 36, no. 2, pp. 3336–
3341, 2009.

[13] L. McLaughlin, “Automated bug tracking: the promise and the pitfalls,”
Software, IEEE, vol. 21, no. 1, pp. 100–103, Jan 2004.

[14] S. Davies and M. Roper, “Bug localisation through diverse sources
of information,” in Proceedings of ISSREW 2013 (IEEE International
Symposium on Software Reliability Engineering Workshops). IEEE,
2013, pp. 126–131.

[15] S. Wang, F. Khomh, and Y. Zou, “Improving bug localization using
correlations in crash reports,” in Proceedings of MSR 2013 (IEEE 10th
IEEE Working Conference on Mining Software Repositories. IEEE,
2013, pp. 247–256.

[16] M. Brodie, S. Ma, L. Rachevsky, and J. Champlin, “Automated problem
determination using call-stack matching,” Journal of Network and
Systems Management, vol. 13, no. 2, pp. 219–237, 2005.

[17] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller, “How long will
it take to fix this bug?” in Proceedings of MSR 2007 (4th International
Workshop on Mining Software Repositories), ser. MSR 2007. IEEE
Computer Society, 2007, pp. 1–.

[18] A. J. Ko, B. A. Myers, and D. H. Chau, “A linguistic analysis of how
people describe software problems,” in Visual Languages and Human-
Centric Computing, 2006. VL/HCC 2006. IEEE Symposium on. IEEE,
2006, pp. 127–134.

[19] L. Moreno, J. J. Treadway, A. Marcus, and W. Shen, “On the use of stack
traces to improve text retrieval based bug localization,” in Proceedings of
ICSME 2014 (30th International Conference on Software Maintenance
and Evolution), 2014.

[20] D. Matter, A. Kuhn, and O. Nierstrasz, “Assigning bug reports using a
vocabulary-based expertise model of developers,” in Proceedings of MSR
2009 (6th IEEE International Working Conference on Mining Software
Repositories, May 2009, pp. 131–140.

[21] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?” in
Proceedings of ICSE 2006 (28th International Conference on Software
Engineeering), ser. ICSE 2006. ACM, 2006, pp. 361–370.

[22] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do changes induce
fixes?” ACM sigsoft software engineering notes, vol. 30, no. 4, pp. 1–5,
2005.

[23] M. D’Ambros, M. Lanza, and R. Robbes, “An extensive comparison
of bug prediction approaches,” in Proceedings of MSR 2010 (7th IEEE
Working Conference on Mining Software Repositories). IEEE CS Press,
2010, pp. 31–40.

