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Abstract

The successful commercial MMOGs, at the moment, are imple-
mented using some variant of the client-server model. This model
offers simple design, good security and fast detection and treatment
of cheating. However, it lacks scalability. The cost of maintaining
the server becomes excessive with the increased number of cus-
tomers. One approach to deal with this situation is distributing the
MMOG simulation. The changes in the virtual world of the game
would be processed by the machines of the clients, without inter-
ference from the server. This distribution can be achieved using the
peer-to-peer model. In this paper, we describe a network engine,
called P2PSE, which supports partially decentralized MMOGs, en-
suring scalability and flexibility, while guaranteeing the basic prop-
erties of a client-server model, such as security and consistency. We
first examine in more details the existent distributed models. After
that, we discuss about the P2PSE project and its characteristics. Fi-
nally we present a simulation of the architecture in comparison with
the traditional client-server model.
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1 Introduction

Multiplayer games are a very popular game genre, due to their
highly interactive nature. Among those games, a class that is
growing in popularity is MMOGs (Massively Multiplayer Online
Games). MMOGs are real-time multiplayer games played through
the Internet, where a large number of players (usually thousands)
play within a persistent-state virtual world. Successful examples
include EverQuest [Sony Entertainment 1999] and World of War-
craft [Blizzard Entertainment 2004].

The most common network model used in MMOGs is client-server.
In this model, the client only sends its data to the server-side (that
can operate on a single machine, a cluster or a grid) and receives
frequent updates from the server. The server process all the data
from the clients, and broadcasts all the results that occur on the vir-
tual world back to them. Some advantages of this model are: being
simple in design; cheating can be efficiently detect and stopped;
retaining control over access to the game; and being a predictable
model.

The main disadvantage of the client-server model is the lack of scal-
ability. The cost of maintaining the server-side becomes excessive
with the increase in the number of clients. When it comes to com-
mercial games, the usual approach is to continuously expand the
number of machines on the server-side. That is a reasonable solu-
tion, however it is not suitable for projects on a limited budget such
as those from small companies or research groups.

One way of dealing with the above problem is to fully or partially
distribute the MMOG simulation. All the changes on the game
world would be registered and dealt within the client-side, with
no interference of the server-side. Security and world state con-
sistence are issues on that model, because there isn’t a point where
the changes in the virtual world can be evaluated and considered
legal or illegal. The main challenge of our project is thus to provide

a partially decentralized support model for MMOGs, while retain-
ing the basic properties of the client-server model such as security,
consistency and scalability [Schiele et al. 2007].

In this paper a hybrid model is proposed, combining the security
and consistency of the client-server model with the scalability and
flexibility of the distributed model. In sections 2 and 3 we discuss
the client-server and peer-to-peer models. The P2PSE (acronym
in portuguese for “P2P for Entertainment Software”) architecture
is explained in section 4. Section 5 presents the simulations we
made to compare client-server and peer-to-peer models. Section 6
presents conclusions on the topic.

2 Client-server model

The client-server paradigm is undoubtedly the most currently used
in the implementation of Internet real-time multiplayer games.
Commercial examples of these games include Doom [id Software
1993], Quake [id Software 1996] and Counter-Strike [Valve 2000],
all them 3D real time action games. In any client-server game, mas-
sively multiplayer or not, the players interact with the environment
and with other players through a client program. Each client has a
network connection only with the server. The server is responsible
for receiving the information from each client and passing updates
to the other clients. There are several different ways the commu-
nication protocol between the client and the server can be imple-
mented: some of them provide more security, while others provide
efficiency.

Regardless of the technique used, the server is responsible for main-
taining the game state up-to-date. Since the game is a real time
simulation, it is necessary for the state of the game to be frequently
recalculated. In general, the server is configured to update its state
in a fixed and relatively small frequency, and to periodically send
update messages to all clients. Due to that, the server must have
great processing power (CPU and, indirectly, memory) and enough
bandwidth (network).

A distributed game can use the centralized simulation to accommo-
date thousands of simultaneous clients. In practice, however, it can
be difficult to have in a single machine all the processing power
required to perform the simulation in real time. One solution to
this problem, commonly used in commercial MMOGs such as Ev-
erQuest and PlanetSide [Sony Entertainment 2003], is to divide the
virtual world and simulate each division in an individual machine
as, for example, a particular computer in a cluster of computers.
But even using the clusters to mitigate the problem of the server
processing cost, the problem of network consumption still remains.
The MMOG server, a single machine or a cluster, will need an In-
ternet connection with low latency and very high bandwidth.

3 Peer-to-peer model

There is a growing interest in research and development of peer-to-
peer architectures for MMOGs. The proposed models seek decen-
tralization as a way of increasing scalability and reducing depen-
dency on nodes in trusted areas. Other benefits include the elimi-
nation of central points of failure, as well as the increase of respon-
siveness.

The Communications Architecture for Massive Multiplayer Games,
proposed by [Fiedler et al. 2002], was the first architecture to ad-
dress the scalability problem by proposing a solution based on the
publisher-subscriber paradigm. In this paradigm, the virtual world
is divided into smaller pieces, usually called ”cells”, and each par-



ticipant can choose to sign (or participate) in only a few cells. Thus,
each subscriber of a cell only needs to exchange update messages
with subscribers of the same cell. These architectures also deal with
other fundamental problems, such as the problem of responsiveness
to commands generated by each participant.

There are other proposals that do not address the cheating prob-
lem, such as Hydra [Chan et al. 2007], that focuses on guaranteeing
the consistency in the messages committed when nodes fail; and
Mediator [Fan et al. 2007], which addresses the scalability and per-
formance problems by proposing a solution based on a super-peer
network and a reward scheme: peers that contribute more can use
more resources.

It can be noted that recent proposals for MMOG support based on
peer-to-peer overlays are becoming more aware of issues in actually
deploying a peer-to-peer MMOG on the Internet, as they show more
concern about peer-to-peer problems, like hostile service providers
and bandwidth limitations, for instance. There are many pure peer-
to-peer and hybrid model proposals. However, some of these pro-
posals don’t offer any kind of deterrent mechanism against cheating
players, which is an essential feature for implementing an online
massively distributed and persistent-state game. In the next sec-
tion we will show how our model offers scalability and also cheat-
resistance so that its commercial application is viable.

4 P2PSE project

The P2PSE project is a distributed simulation model, and also a
library (in reality, a stack of C/C++ libraries) that implements the
instanced game model, which will be described in section 4.1. The
instanced game model is the price to pay for a simple approach
in unifying security, consistency and scalability in a decentralized
MMOG. The objective is to drastically reduce the processing and
communication cost in the server-side.

4.1 The Instanced Game Model

Several MMOGs, like PlanetSide and World of Warcraft, offer to
the player the illusion of one or several large and contiguous virtual
spaces where all the gaming takes place. Those spaces are divided
in segments, and each server machine or group of server machines
is responsible for one segment. A warping system is necessary to tie
all segments together, allowing the player to move from one space
to the other transparently.

Figure 1: The instanced ‘social vs. action’ MMOG

The game Guild Wars introduced a new game model, which will
be referenced to as the instanced game model [Cecin et al. 2006].
There are two virtual spaces on Guild Wars: the social space and the
action space. The first kind is a medium-sized virtual space where
a significant number of players can socialize, trade virtual goods
and organize game sessions. Because of the nature of this space,
low consistency requirements are necessary. Game sessions happen

on the action space, which is a small-sized virtual space where a
small number of players gather to play a game session. Higher
consistency requirements are necessary on that space because of its
fast and dynamic nature.

The relationship between the two spaces is as follows. When a
game session ends, the players involved in it return to the social
space. All the traits of the characters (e.g. virtual world money,
experience points and statistics) are updated with new information
from the session. The social space is designed as a contiguous
world, as mentioned in the beginning of this section. The action
spaces are created dynamically to support temporary game sessions
with a small number of players. This space is destroyed after the
session ends.

Guild Wars, as far as we can tell, follows the client-server model.
Our proposal, which is illustrated in Figure 1, is to use the instanced
game model with a hybrid network architecture model. Since the
interactions on the social space (chatting, trading) don’t require
high consistency, and there is a necessity for validation of who can
play (game accounts, passwords), the server-side will be responsi-
ble for coordinating this part of the game. So even a server-side with
modest processing capacity and network bandwidth could manage
the social space if game quality is scaled down accordingly, for
instance by sending less frequent updates to clients. The game ses-
sions would be processed only on the client-side machines, avoid-
ing unnecessary processing and communication cost on the server-
side. The clients would form groups, which would operate within a
peer-to-peer dynamics.

4.2 P2PSE architecture
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Figure 2: P2PSE Architecture

The functionality promised by our network engine is delivered by
a set of libraries. Those libraries are organized in layers, as shown
in Figure 2. The next sections describe the implementation of the
three layers, followed by an overview of security and artificial in-
telligence (AI) techniques which are employed.

4.2.1 Layer 0

The first layer in the P2PSE architecture is responsible for forming
the mesh of point-to-point connections. The clients’ connections
with the servers and with other clients are established and managed
in this layer. The basic network functions for connection establish-
ment, such as socket creation, connection and packet sending and
receiving, are given by a low-level API provided by the ZIG library
[Cecin 2007] which basically implements a protocol that resem-
bles SCTP [Stewart et al. 2000] over UDP. The term “connection”,
when used in the context of the P2PSE library, refers to this ZIG-
layer level protocol connection, which, again, is implemented over
UDP, adding some features, such as reliability, timeout detection
and utilization of only one single socket in every host to handle all
communications.

The Layer 0 server is responsible for managing connections with all
clients. Naturally, it maintains a list of all clients that are connected



to it along with a logical communication endpoint object for each
client. When started, the server spawns a socialization space called
the social space object. The clients that are not in an action space
are bound to the social space - or to the “limbo”, when in transit
from one space to the other. All communication between clients
that are in the social space is intermediated by the server.

The server can create new empty groups in order to instantiate new
action spaces, or destroy such existing groups and their correspond-
ing spaces. In the action spaces all the clients communicate directly,
which requires them to already have the ability to send UDP pack-
ets to one another. The entry of a client into a group is managed by
the server in the following manner:

1. The server sends a synchronization message to the new mem-
ber and to all the other members informing them to which
clients they must be connected in order to enter (or stay) in
the group. The server sends a list with all the members of the
group;

2. All members try then to establish connections to every other
member in the recently received member list, or just keep the
connection, if it has already been established (the ZIG library
supports simultaneous bidirectional connections through the
same socket);

3. When a client is entering a group, but still has not finished the
process, it belongs to the “limbo”;

4. As soon as the new member establishes connections to the
other clients, the server excludes it from the limbo and inserts
it in the member list of the group;

5. When a client is removed from the group, all connections to
the other clients are interrupted and it returns to the social
space;

6. If a client, for any reason, loses its connection to the server, it
is removed from the group;

7. When a client enters or leaves a group, the server sends to the
others an up-to-date member list.

The groups provide to the clients message exchanging function-
alities, such as broadcast and unicast. The connections between
the group members are represented by peers. The clients, when in
groups, will keep a list of peers, what is equivalent to the client list
of the server. With this list, the clients in that group manage their
connections between one another.

Layer 0 is also responsible for the timeout control of the connec-
tions. Keep-alive dummy messages are sent regularly in order to
maintain all connections active. If, after an interval of time speci-
fied by the application, no messages from a host have arrived, the
connection to that host is closed.

The communication between the layer 0 and the ZIG library is done
with a listener. This listener is implemented in layer 0 and receives
ZIG callbacks to indicate the occurrence of events such as connec-
tions, disconnections and receiving of messages. The communica-
tion between the upper layers of the P2PSE library and layer 0 is
made through service calls. Layer 0 returns callbacks to the upper
layers in response to these service calls.

4.2.2 Layer 1

Layer 1 of the P2PSE architecture is responsible for handling
connection-related problems between the peers within a group.
This layer will ensure that all peers are able to send and receive
messages from each other.

We see two main problems that can cause a connection failure be-
tween two peers: NAT/Firewall blocking and bandwidth insuffi-
ciency. When the Layer 0 indicates that a message must be sent
from one peer to another, Layer 1 must verify if there is a direct
connection between the peers. If this connection doesn’t exist, an
alternative path must be discovered, using intermediate peers. After
this route is created, the messages will be sent through it.

Among all peers within a group there are different bandwidth ca-
pabilities. It is very likely to occur a situation where a peer doesn’t
have enough upload bandwidth to deal with the number of mes-
sages that it has to send. Layer 1 will identify such situation and,
instead of sending the messages directly to the destinations, send
them to a peer with good upload bandwidth capability, holding him
responsible to send the message.

4.2.3 Layer 2

The upper layer of the P2PSE implementation is responsible for
guaranteeing the simulation consistency on action spaces, provid-
ing support for multiple servers and exposing all of the implemen-
tation’s functions to the game programmer. Due to the simulation
of action spaces being executed asynchronously in each peer, there
is no intrinsic guarantee of consistency. To partially address that,
Layer 2 introduces the role of the super-peer, which is a special peer
responsible for receiving, ordering and redistributing some of the
game events such as updating player scores and picking up the flag
in a capture-the-flag action game, for instance. To avoid overload-
ing the super-peer, position updates or player movement requests
(depending on the game’s protocol design) are to be sent directly
from each peer to every other peer using the unicast full-mesh pro-
vided by the lower layers. Not only position updates, but any other
frequent, delay-sensitive and weakly-coupled message type should
also be sent peer-to-peer.

Depending on the game, the resulting conflicts from a lack of cen-
tralized timestamping of movement and similar events, whenever
they ensue, can be either handled by each peer individually or left
for the super-peer to detect it and issue a special correction message
later, as the BZFlag protocol does [Pellegrino and Dovrolis 2003].
Local corrections are an option if each peer is authoritative over its
own avatar’s position and if it broadcasts position updates for its
own avatar. For instance, if a peer’s local avatar overlaps with a
remote peer’s, the local avatar can push its own avatar out of that
position. The remote avatar will do the same. The only issue is en-
suring that the correction step won’t make both peers try to resolve
the situation by unstucking their avatars to the same spot again.
This local conflict resolution is what we are currently employing in
our capture-the-flag action prototype, Hoverkill [Singular Studios
2006].

Besides ordering and distributing some of the events, the super-
peer is responsible for the communication of the peer-to-peer ac-
tion group with the server. The super-peer is the one that reports
gameplay results back to the server, whenever necessary.

Layer 2 also introduces support for multiple game servers (Figure
3) in the API. The idea is that players can choose their server from
a list of servers. Each server will typically host a single social space
and when that is full (server capacity is reached) players can con-
nect to other social spaces in other servers. To tie all of the players
scattered on different servers together, there is a master server to
which all servers are connected. Whenever a player connects to
a server and authenticates, his player account is downloaded from
the master server to that game server. When the client drops from
the game server, his account is uploaded back to the master server.
There is a simple Yellow Pages Server proxy that can be used by
clients to query the master server for the currently available game
servers.

The social space support provided by Layer 2 is a simple client-
server API. Any interest management [Morse et al. 1996] in the
social space is currently left for the application to implement. We
are planning to add something akin to OpenTNL ghosting [Garage
Games 2004] into the API which would allow the game program-
mers to optimize the social space more easily. Another idea is to
implement a peer-to-peer mesh for social spaces, but that one would
have to be scalable (no full-mesh possible). Since we are aiming at
a simple solution, the use of probabilistic broadcast for position up-
dates on the social space is being considered, leaving timestamping
and distribution of more infrequent events for the server.
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4.2.4 Artificial Intelligence Module

In the previous section, we revealed that we encourage peers in an
action space to send authoritative position updates, among other
events that might have low-latency requirements and a low proba-
bility of having their order of execution affecting the resulting game
states too much (weakly-consistent events). This opens up the pos-
sibility of cheating.

In this project we tried a somewhat unique approach [Gaspareto
et al. 2008]. Since most events would be still centralized at the
super-peer and most action games have one-per-client avatar po-
sition updates as their latency, consistency and bandwidth bottle-
necks, we just left peers with total control over their positions and
with the responsibility for sending them directly to other peers in a
broadcast fashion. This optimizes for consistency and latency, and
doesn’t create a bandwidth bottleneck at the super-peer. On top of
that, we tried AI-based detection of unusual patterns over streams
of position updates coming from each peer. The approach used for
cheat detection was focused on the data packets being transferred
during the game sessions - both in the transmitters and receptors -
and how they are used during the functioning of the system. Only
packets relevant to the cheat being investigated are considered.

The cheat detection module is implemented in an independent way
and works as an attachment to P2PSE, which, with a parameter
passage protocol, informs the set of data received from a player
and returns a correspondent “fraud index”, that tries to quantify the
cheating that the player is assumed to have performed in the ana-
lyzed period.

The adopted approach was to consider only movement data as in-
put to the cheat detection module. Although this might seem to be
too few information, it is based on movement that malicious play-
ers perform great part of their cheating. For example, one could
try to move at a speed higher than the maximum speed allowed in
the game (most common kind of cheating in MMOGs) or teleport
instantaneously to strategic spots, which is also known as speed-
cheating.

This way, the point is to analyze a set of movements of the player,
in order to detect anomalous sequences. Each player will be eval-
uated individually, based on his position history, using Artificial
Neural Networks (ANN). ANNs, because of their great generaliza-
tion and pattern recognition capacity, present satisfactory results in
tasks similar to the speed-cheating problem. The idea is to iden-
tify, in the set of analyzed data, at least one movement that could be
considered a fraud, which characterizes the player where this set of
data came from as a cheater. The ANN then identifies and classifies
the movement patterns as acceptable and non-acceptable.

During the modeling and design of the cheat detection module, the
architectures of the ANNs, the set of training data and the set of
tests have been defined in order to allows them to solve this kind of
problem. Considering that the task consists of the classification of

behavior patterns, it has been decided to use the full-connected mul-
tilayer perceptron ANN with supervised learning based on back-
propagation. The reason to choose it was that it is the most com-
monly used ANN model in many classification applications, due to
it simplicity of understanding and implementation.

The projected ANN was simulated using MatLab, to evaluate its
efficiency. MatLab allows the creation of complex ANN structures
only by informing the neural network parameters, such as the num-
ber of neurons in each layer, training algorithm, rates, values that
configure this training etc. MatLab was also used to train the ANN
to be integrated to the game. This way, the implemented module
only performs propagation, but not training of the ANN.

After the efficiency has been proven, the module was implemented
and tested in Hoverkill, obtaining a 21.14% cheat detection, and
0.98% false positives. The results were satisfactory because, even
though the cheat detection percentage was only 21.14%, the rate
of false positives was less than 1%. It is preferable not to detect a
cheat than considering a fair player as a cheater. Other parameters,
besides movement data, may be added in the future, in order to
detect other kinds of cheating.

4.2.5 Security Module

The main purpose of the security module is to provide secure com-
munication between servers and clients, and between peers in an ac-
tion space group. Our security module is almost completely trans-
parent to the application, both in terms of API and in network and
CPU overhead. The module does many tasks behind the scenes,
such as cryptographic key distribution and secure channel hand-
shakes, tending to each application’s individual needs for message
confidentiality, integrity and authenticity.

The implementation works mainly by intercepting any engine UDP
packets before they are written to the UDP socket for sending. In
each packet, a small header is inserted with control information and,
upon first contact between two parties (being them clients, servers
or both), that message is delayed while another quick message ex-
change is performed for setting up the secure channel on-the-fly.
The root Certificate Authority (CA) of the cryptographic system is
the operator of the master server.

ZIG−Sec
SECP2PSE

Nettle Cyo EncodeHawkNL

Figure 4: Security module architecture

The module has been implemented by extending the ZIG library
functionalities, providing secure communication, transparently to
the application, being responsible for distributing cryptogaphic
keys. It runs over HawkNL [Hawk Software 2006] and over
SECP2PSE. HawkNL is a library that, among other functionali-
ties, provides a simpler and portable API for sockets. SECP2PSE is
our library that provides C++ abstractions for cryptographic algo-
rithms available in Nettle [Möller 2006] and CyoEncode [CyoTec
2004]. SECP2PSE also implements certification and serialization
functionalities meant for security related transmissions. Figure 4
illustrates the security module architecture.

In our secure communication protocol, all ZIG-generated packets
sent, both by clients and by servers, are intercepted right before
being transmitted through the network. In each one of them, a
small header is introduced with control information used to guar-
antee confidentiality, integrity and authenticity of data when such
attributes are required. The size of this header is variable, for it de-
pends on what characteristics are desired by the application, and on
the intended level of security (key length). For a real-time applica-
tion, such as distributed games, usually there is no need for a very
long key, because the hacker would have too little time to break
the algorithm by brute force. For example, using AES and HMAC-
MD5, it would be necessary only 21 bytes. In general, the overhead



size of each packet is somewhere between 1 and 37 bytes. These
packets containing user data and control header are then called data
packets.

There is also another type of packet, called control packet, which
is utilized to negotiate keys between peers who intend to commu-
nicate with each other. They are usually longer, for they need to
attach a copy of the users certificates. However, these packets are
sent only once in the beginning of the communication with a peer
which has been unknown until that moment. Once they have ne-
gotiated a key, they only need to negotiate a new one when one of
the peers loses it or if the key is already being used for a time long
enough for the key to become breakable by brute force.
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Figure 5: Control header

The control header consists of the packet descriptor (1 byte). As
shown in Figure 5, the bit 0 indicates whether the data are protected
by HMAC-SHA-256. The bit 1 indicates whether the data are en-
crypted with AES. Bit 5 indicates that the message source needs the
destination host certificate. Bit 6 indicates that a key has been gen-
erated and attached to the packet in control data and bit 7 indicates
that the certificate of the origin has been attached to the packet in
control data. Bits 2, 3 and 4 are not used.

When the application requires the secure transmission of a packet to
the security library, it must inform: data being transmitted, socket
used for sending, address and port of the destination, type of desired
security (confidentiality, authenticity and integrity) and the identi-
fication of the user which will receive the message at the provided
address.

To guarantee confidentiality of the messages, it can be used both
symmetric and asymmetric cryptographic algorithms. Both are
considered secure, depending on the length of the key used. The
secure communication protocol adopts the strategy of initially us-
ing an asymmetric cryptography algorithm to negotiate a key to
be used then by each pair of computers to communicate securely
with symmetric cryptography. This approach allows to reduce the
processing time of encrypting and decrypting data, for symmetric
cryptography requires less CPU time. Along with the confidential-
ity provided by this mechanism, authenticity may also be achieved
by using hash functions with keys, also known as Message Authen-
tication Code (MAC), to verify the authenticity and integrity of the
messages.

Every time that a peer needs to communicate with another which
was unknown until that time, they first need to negotiate a key.
Therefore, before sending the data packet required by the appli-
cation, the library sends a requisition for the certificate of the desti-
nation through a control packet, which already carries the source’s
own certificate. When the packet arrives in the destination peer,
the security library reads the attached certificate and verifies its au-
thenticity with the specified certification authority responsible for
the game. If the verification fails, the packet is discarded. If it
succeeds, the process continues: the peer who received the packet
allocates a reply packet, where it attaches its own certificate, as re-
quired, and a randomly generated key, which is encrypted using
the public key present in the certificate of the peer that initiated the
whole process. This way, it can be assured that only the receiver
of this reply packet will be able to decrypt it and then obtain the
key. To guarantee that the sender of this packet is not an attacker
who intercepted the communication, the already encrypted key is
re-encrypted, this time with the private key of the sender. This way,
both authenticity and integrity are provided.

After receiving the reply packet containing the double-encrypted
key, the first peer decrypts it using the public key of the other peer,

verifying the authenticity of the message, and then decrypts it again,
using its own private key. When this whole process is successfully
completed, the peers will be able to securely communicate with a
fast symmetric cryptographic algorithm using the generated key.

5 Simulations

Since one of the main objectives of the P2PSE engine is to reduce
the bandwidth utilization by the server, a numerical comparison be-
tween the load on a traditional server and the load on a P2PSE
server was required. In order to do that, it was necessary to sim-
ulate two game servers, each one with players connected to it. One
of them was a traditional game server, to which the clients kept
connected and trading packets the whole time. The other one was
a P2PSE server, where the players needed to trade packets with the
server only while they were in the social space. In the action space,
the players formed a peer-to-peer group, communicating to one an-
other directly.

The ns-2 simulator [McCanne et al. 1995] was used to create the
simulated environment and perform the simulation itself. The
servers and clients - both traditional and P2PSE - were programmed
extending the Application base class of the ns-2 API. The P2PSE
clients connect to the P2PSE server, sending packets to it at a fixed
rate while in the social space. The server, in turn, sends to each
client in the social space an update containing information about
all other clients in the same space. When a player leaves the social
space and joins a peer-to-peer group of an action space, it stops ex-
changing packets with the server, due to its direct communication
with the other players. The non-P2PSE server and clients behave
simply as follows: each client sends a packet to the server at a given
fixed rate, while the server broadcasts an update to all clients, also
at a fixed rate. Although this approach does not take into consid-
eration possible optimizations on the server, such as interest man-
agement [Morse et al. 1996], this is not relevant, since the same op-
timizations could be used in the social space of the P2PSE server,
resulting in a similar bandwidth usage reduction percentage, when
comparing the two server models.

We based our simulation on some works, such as [Breu 2007], [Park
et al. 2005] and [Feng et al. 2005], which analyse the network traf-
fic generated by action games, since this is the genre targeted by the
P2PSE engine. As in most first-person shooters, the transport layer
protocol used was UDP. Each packet received by the server from the
clients is 100 bytes long. The update sent to each client, contain-
ing information about all the players, is proportional to the number
of players present in the game, for the traditional server. For the
P2PSE server, the update length is based only on the number of
players in the social space. In both cases, the length of this update
is 100 bytes multiplied by the number of players who will be up-
dated. The interval between two consecutive packets received from
each client is 150 ms, while the interval between two consecutive
updates from the server to each client is 100 ms. Each player keeps
alternating between the social space and the action space. The time
he stays in each one of them is chosen randomly, ranging from 0 to
20 minutes, for each space change. The whole game session lasts
for 1 hour.

The results were collected as follows: to measure the average up-
load bandwidth usage by the server, the sizes of all packets sent
during the whole session were added up and then divided by the
session time; to determine the maximum usage, it was measured
how many bytes had been sent each second and the highest value
was selected. In Figure 6, it is shown the maximum and average
upload bandwidth utilization results found for a traditional server
and a P2PSE server. In Figure 7, the download bandwidth usage is
also depicted. Table 1 and Table 2 show the numerical values of the
average bandwidth utilization found in the simulation.

As we can see, the average download bandwidth utilization is de-
creased by, approximately, one half, and the average upload band-
width utilization is reduced to one quarter. This happens because
the periods during which a client stays on the social and action
spaces have approximately the same duration. In consequence of
that, there are roughly half the clients exchanging packets with the
server for each instant, in the average. As each client sends fixed
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Figure 6: Upload bandwidth utilization by the server
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Figure 7: Download bandwidth utilization by the server

size packets periodically to the server, the bandwidth occupation
grows linearly, and so, as the number of players halves, so does
the server’s download bandwidth utilization. However, as the up-
date sent by the server to each client is proportional to the number
of clients being updated, the upload bandwidth utilization by the
server grows quadratically. Therefore, when the number of players
is divided by two, the upload bandwidth utilization of the server is
divided by the square of two, that is, four.

It is important to notice, however, that the time a player usually
spends playing action games, such as first-person shooters, is much
longer than the time they keep talking in the game chat room.
Therefore, the average time spent by each player in the social space
should be much shorter than the time spent on the action spaces
in the simulation. Also, the social space will most likely have
much less need for frequent updates, allowing further decrease of
the bandwidth utilization by the P2PSE servers. Anyway, those pa-
rameters were chosen considering a pessimistic scenario, where the
social space is as interactive as the action space, and the players
spend more time socializing than it usually occurs in this kind of
games.

6 Conclusion

We proposed a different approach to MMOGs, that uses P2P groups
and transfers the simulation processing to them. In order to pro-
vide security and scalability, the game model was restrict to the in-
stanced game model. The existence of a server-side guarantees that,
if deem necessary, the server can act as final arbiter. The performed
simulations demonstrate that, even in a pessimistic scenario, the re-
duction of the average bandwidth usage by the game server can be
significant. The download bandwidth utilization was reduced by
one half, while the upload bandwidth utilization was the most ben-

Table 1: Average upload bandwidth utilization (kB/s)
Clients Traditional Server P2PSE Server

40 1562.50 400.76
80 6250.00 1581.38

120 14062.49 3533.67
160 24999.98 6290.14

Table 2: Average download bandwidth utilization (kB/s)
Clients Traditional Server P2PSE Server

40 26.04 13.02
80 52.08 26.04

120 78.12 39.00
160 104.17 52.09

efited one, decreasing by 75%, allowing to reduce the maintenance
cost of such kind of server.

We are currently integrating the P2PSE architecture with our game
prototype, Hoverkill. This game is a client-server capture-the-flag
tank game, and its network system is being replaced by our archi-
tecture. The final goal is to be able to test the game in client-server
and peer-to-peer modes, in order to base our conclusions in real
results rather than simulations.
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