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Abstract

State machine replication (SMR) is a well-known replication technique that ensures
strong consistency (linearizability) for distributed services. Even though SMR ensures
strong consistency, it provides limited throughput scalability, since every replica ex-
ecutes every command. We propose Scalable SMR (S-SMR), a technique that provides
throughput scalability by means of partitioning the service state and partially order-
ing commands across partitions, along with two optimizations: caching and state
prefetching.
We also propose Fast-SSMR, which changes S-SMR by providing an extended inter-
face between clients and servers. Fast-SSMR implements two state machines at each
server replica: an optimistic state machine and a conservative state machine. Both
state machines respond to each command, resulting in a fast optimistic reply, which
is correct with a high probability, and a conservative reply, which is always correct and
confirms the optimistic reply. This way, Fast-SSMR does not require the service to be
able to undo operations.
We have implemented both S-SMR and Fast-SSMR as a Java library, along with a col-
lection of representative applications. Our experiments show that both S-SMR and
Fast-SSMR achieve throughput scalability with the number of partitions, and that the
optimistic replies are significantly faster than the conservative replies.
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1 Introduction

Many current online services have stringent availability and performance requirements. Providing availab-
ility involves tolerating failures: if one server goes down, the service stays available through server replicas,
which should be consistent with one another. Performance translates into scalable throughput and low

latency, that is, the ability to accommodate an ever-increasing number of clients and to provide a good user
experience by means of low response times. State machine replication (SMR) [1, 2] is a well-established
replication approach to fault-tolerance, while also ensuring strong consistency (i.e., linearizability). With
strong consistency, clients cannot distinguish the behavior of the replicated system from that of a single-
server system [3]. SMR ensures that all server replicas execute the same sequence of commands, one by
one. Assuming that each command execution is deterministic, every server reaches the same state after
executing the same command in the sequence. Although this ensures strong consistency and fault toler-
ance, SMR was not designed to scale throughput with an increasing number of replicas. Adding more of
them increases the number of failures tolerated by the service, but likely not the maximum throughput of
the system.
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To provide scalability, many distributed systems rely on partitioning (e.g., [4–7]). If different requests
can be handled simultaneously by servers of different partitions, then augmenting the number of partitions
results in an overall increase in system throughput. In the context of SMR, however, exploiting partitioned
state is challenging for several reasons. First, as we want the system to scale, we should avoid totally or-
dering commands. However, imposing a partial order on commands allows some executions that violate
linearizability. Second, with SMR, all the service designer has to do is provide a sequential implementation
of each command. This is relatively simple in SMR because every replica contains all state that may be ac-
cessed by the commands. With partitioned state, it may be necessary for replicas to exchange portions of
the state when executing commands that access multiple partitions. Finally, when executing commands
that span across multiple partitions, the coordination between partitions is likely to significantly increase
the response time for that command.

This paper presents Scalable State Machine Replication (S-SMR), an approach that achieves scalable
throughput and strong consistency (i.e., linearizability) without constraining service commands or adding
additional complexity to their implementation. S-SMR partitions the service state and relies on atomic
multicast [8], a class of protocols that ensure partial, yet consistent ordering of messages sent to groups
of processes. Since simply ordering commands consistently across partitions is not enough to ensure lin-
earizability, S-SMR implements execution atomicity, a property that prevents command interleavings that
violate our consistency criterion.

To reduce latency when executing multi-partition commands, we also propose a few optimizations:
conservative caching, speculative caching and state prefetching. Conservative caching avoids unnecessary
exchange of state between servers when executing multi-partition commands: if a cached item is still up-
to-date, there is no need to send the value again, as a cache validation message would suffice. Speculative
caching speeds up the execution of such commands by having the replicas assume that their cache is cor-
rect and verify after the execution. Finally, with state prefetching, servers of different partitions proactively
propagate the state needed to execute multi-partition commands before the state is needed, thus reducing
execution time (i.e., when the execution of a command starts in a server, the server will likely have all state
needed to execute the command).

To further reduce the response time of commands, we also propose Fast-SSMR, which is a replication
approach that extends S-SMR by providing a different interface between clients and servers and ensur-
ing slightly different properties. Fast-SSMR brings lower latency for both single- and multi-partition com-
mands, at the cost of potentially exposing temporary inconsistencies to clients. The idea of Fast-SSMR is
to provide a fast, optimistic reply, which is potentially inconsistent, while the client waits for the final, con-

servative reply. Conservative replies can be used by clients to verify optimistic replies. Fast-SSMR requires
optimistic atomic multicast [9,10], which delivers messages to replicas twice: once optimistically and once
conservatively. The optimistic delivery is fast but may violate order across replicas; the conservative deliv-
ery is slower but guarantees order.

Fast-SSMR implements two state machines at each server replica: an optimistic state machine, which
executes commands as they are optimistically delivered, and a conservative state machine, which waits for
the conservative delivery to execute each command. Previous optimistic replicated designs (e.g., [11–14])
require replicas to recover from commands executed in the wrong order, when the optimistic and the con-
servative orders do not match. Fast-SSMR does not have this constraint: in case of order mismatches, a
correct state is copied from the conservative state machine to the optimistic one. Moreover, our technique
generalizes optimistic execution to partitioned-state systems, dealing with problems not faced in fully rep-
licated optimistic approaches, such as handling dependencies between states of different partitions and
the exchange of optimistic state.

The optimistic state machines can operate in two modes: with and without optimistic state exchange.
Without exchanging optimistic state, the optimistic state machines responsible for different state partitions
only exchange conservative state when executing commands, significantly simplifying the optimistic exe-
cution of multi-partition commands. On the other hand, when an optimistic state machine receives optim-
istic state of a remote partition, it must account for the possibility of the received state being invalid. This
may happen even if the local optimistic delivery order of optimistic atomic multicast was correct, making
the verification of the optimistic execution significantly more complex.

Applications that involve user interaction (e.g., social networks) are well-suited for Fast-SSMR: before
the conservative execution finishes, the client can receive the likely result of the computation, based on the
optimistic reply. Although Fast-SSMR can be configured to provide consistent replies only, by executing
commands less aggressively (i.e., servers send an optimistic reply only if the optimistic delivery order is
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confirmed, in which case it is not be necessary to wait for the conservative execution), we opted for a more
aggressive approach that provides lower latency, at the cost of exposing optimism to the client. We base this
decision on the importance of response time for user experience and business revenues [15–17].

The dual state machine approach used by Fast-SSMR is service-independent and does not require an
environment that supports recoverable actions (e.g., a database) or the implementation of service-specific
recovery. Running two state machines, however, requires additional processing and memory resources. We
judge that this cost in resources is offset by the flexibility of the approach and the resulting simplification
it brings in the design of applications. Moreover, one could argue that running two state machines as sep-
arate threads makes better use of multi-core architectures than SMR or S-SMR, which typically have only
a single execution thread per replica. As for memory overhead, widely deployed techniques, such as copy-
on-write [18], can mitigate the effects of maintaining two state machines. Finally, to minimize the cost of
copying the conservative state onto the optimistic one, Fast-SSMR copies only the divergent portion of the
state.

To assess the performance of S-SMR and Fast-SSMR, we developed Eyrie, a Java library that allows de-
velopers to implement partitioned-state services transparently, abstracting partitioning details. All com-
munication between partitions is handled internally by Eyrie, including remote object transfers. We also
developed Volery, a service that implements the API of Zookeeper [19], and Chirper, which is a scalable
Twitter-like social-network application.

In the experiments we conducted with Volery and Chirper, throughput scaled with the number of par-
titions, in some cases linearly. In some deployments, Volery reached over 250 thousand commands per
second, significantly outperforming Zookeeper, which served 45 thousand commands per second under
the same workload. With Chirper, we demonstrated that Fast-SSMR provides a significant decrease of re-
sponse time, at the cost of a low number of inconsistent optimistic replies.

The remainder of this paper is organized as follows. Section 2 describes our system model and provides
some definitions. Section 3 presents state machine replication and the motivation for this work. Section 4
introduces S-SMR; describing in detail our scalable variant of SMR. Section 5 describes Fast-SSMR, includ-
ing both execution modes. Section 6 details the implementation of Eyrie, Volery and Chirper. Section 7
presents and comments on the results found with the experiments. Section 8 surveys related work and
Section 9 concludes the paper.

2 System model and definitions

We consider a distributed system consisting of an unbounded set of client processes C = {c1,c2, ...} and a
bounded set of n server processes (replicas) S = {s1, ...,sn}. Set S is divided into k disjoint groups of servers,
S1, ...,Sk. Processes are either correct, if they never fail, or faulty, otherwise. In either case, processes do not
experience arbitrary behavior (i.e., no Byzantine failures).

Processes communicate by message passing, using either one-to-one or one-to-many communication.
The system is asynchronous: there is no bound on message delay or on relative process speed. One-to-
one communication uses primitives send(p,m) and receive(m), where m is a message and p is the process
m is addressed to. If sender and receiver are correct, then every message sent is eventually received. One-
to-many communication relies on reliable multicast, atomic multicast and optimistic atomic multicast,
respectively defined in Sections 2.1, 2.2 and 2.3.1

2.1 Reliable multicast

Reliable multicast allows messages to be sent to a set of groups. To reliably multicast a message m to a set of
groups γ , processes use primitive reliable-multicast(γ,m). Message m is delivered at the destinations with
reliable-deliver(m). Reliable multicast has the following properties:

• If a correct process multicasts m, then every correct process in γ delivers m (validity).

• If a correct process delivers m, then every correct process in γ delivers m (agreement).

• For any message m, every process p in γ delivers m at most once, and only if some process has multicast
m previously (uniform integrity).

1Solving atomic multicast requires additional assumptions [20, 21]. In the following, we simply assume the existence of an atomic
multicast oracle.
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2.2 Atomic multicast

S-SMR relies on atomic multicast [8]. Like reliable multicast, atomic multicast also allows messages to be
sent to a set γ of groups. It is defined by the primitives atomic-multicast(γ,m) and atomic-deliver(m). Let
relation ≺ be defined such that m≺m′ iff there is a destination that delivers m before m′. Atomic multicast
guarantees the following properties:

• If a correct process multicasts m, then every correct process in γ delivers m (validity).

• If a process delivers m, then every correct process in γ delivers m (uniform agreement).

• For any message m, every process p in γ delivers m at most once, and only if some process has multicast
m previously (integrity).

• The order relation ≺ is acyclic (atomic order).

Atomic broadcast is a special case of atomic multicast in which there is a single process group. Atomic
multicast provides uniform agreement, whereas our choice of reliable multicast ensures only non-uniform
agreement. Although there are implementations of reliable multicast that provide uniformity, those imple-
mentations require two communication steps for messages to be delivered, while messages can be delivered
within a single communication step if uniformity is not enforced [22].

2.3 Optimistic atomic multicast

Fast-SSMR relies on optimistic atomic multicast [9, 10], which performs two deliveries for each multicast
message m: an optimistic delivery and a conservative delivery. It is defined by primitives opt-amcast(γ,m),
opt-deliver(m) and cons-deliver(m).

The conservative delivery has the same properties as atomic multicast, i.e., validity, uniform agreement,
integrity and atomic order (defined by relation ≺). Let relation ≺opt be such that m ≺opt m′ iff a process opt-
delivers m before m′. The optimistic delivery has the same properties as reliable multicast (i.e., validity,
agreement and integrity), in addition to the following:

• If the given optimistic assumptions hold,2 the order relation ≺opt does not contradict the relation ≺
(optimistic order).

Finally, optimistic atomic multicast ensures the following:

• If a correct process p delivers m optimistically, p also delivers m conservatively, and vice-versa (equi-

valence).

The optimistic order is probabilistic: with high probability processes deliver messages optimistically
and conservatively in the same order. If the i-th optimistic delivery made at a process p matches the i-th
conservative delivery at p, we say that the order of the i-th message was correct; otherwise, we say that the
optimistic delivery made a mistake.

We developed a simple benchmark to assess latency, throughput and the rate of mistakes of optimistic
atomic multicast. We consider two groups, each group consisting of three Paxos [23] acceptor processes and
one server process. Clients multicast 100-byte messages to those servers, which reply when opt-delivering
and when cons-delivering each message. Even when the system was saturated, the optimistic latency was
roughly half the conservative one, as shown in Figure 1 (top). Also, the rate of mistakes was fairly low, as
the number of messages optimistically delivered in the correct order was over 93% at the tipping point
(150 clients) of the throughput graph, and above 84%, even under peak load, which can be seen in Fig-
ure 1 (bottom). The environment used is described in Section 7 and a detailed analysis of the optimistic
atomic multicast protocol used here can be found in [10].

2Which exactly are the optimistic assumptions depends on the implementation of optimistic atomic multicast. In the case of [9]
and [10], the optimistic assumption is that each process can accurately measure the latency from every other process in the system.
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Figure 1: Latency (in milliseconds), throughput (in messages per second, or mps) and percentage of mistakes of op-
timistic atomic multicast.

3 Background and motivation

State machine replication is a fundamental approach to implementing a fault-tolerant service by replicat-
ing servers and coordinating the execution of client commands against server replicas [1, 2]. The service is
defined by a state machine, which consists of a set of state variables V = {v1, ...,vm} and a set of commands

that may read and modify state variables, and produce a response for the command. Each command is im-
plemented by a deterministic program. State machine replication can be implemented with atomic broad-
cast: commands are atomically broadcast to all servers, and all correct servers deliver and execute the same
sequence of commands.

We are interested in implementations of state machine replication that ensure linearizability. Lineariz-
ability is defined with respect to a sequential specification. The sequential specification of a service consists
of a set of commands and a set of legal sequences of commands, which define the behavior of the service
when it is accessed sequentially. In a legal sequence of commands, every response to the invocation of a
command immediately follows its invocation, with no other invocations or responses in between them.
For example, a sequence of operations for a read-write variable v is legal if every read command returns the
value of the most recent write command that precedes the read, if there is one, or the initial value otherwise.
An execution E is linearizable if there is some permutation of the commands executed in E that respects
(i) the service’s sequential specification and (ii) the real-time precedence of commands. Command C1 pre-
cedes command C2 if the response of C1 occurs before the invocation of C2 [24].

In classical state machine replication, throughput does not scale with the number of replicas: each com-
mand must be ordered among replicas and executed and replied to by every (correct) replica. Some simple
optimizations to the traditional scheme can provide improved performance but not throughput scalability.
For example, although update commands must be ordered and executed by every replica, only one replica
can respond to the client, saving resources at the other replicas. Commands that only read the state must
be ordered with respect to other commands, but can be executed by a single replica, the replica that will
respond to the client.

Lacking throughput scalability is a fundamental limitation of SMR: while some optimizations may in-
crease throughput by adding servers, the improvements are limited since fundamentally, the technique
does not scale. In the next sections, we describe two extensions to SMR: S-SMR and Fast-SSMR. Under cer-
tain workloads, both extensions allow throughput to grow proportionally to the number of replicas. Fast-
SSMR manages to reduce the response time of S-SMR by using optimistic execution.

4 Scalable State Machine Replication

In this section, we introduce Scalable State Machine Replication (S-SMR), discuss performance optimiza-
tions, and argue about S-SMR’s correctness. In Section 4.1, we present an overview of S-SMR. In Section 4.2,
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we detail its algorithm. In Section 4.3, we propose several performance optimizations. In Section 4.4, we
argue about S-SMR’s correctness.

4.1 General idea

S-SMR divides the application state V (i.e., state variables) into k partitions P1, ...,Pk. Each variable v in V

is assigned to at least one partition, that is, ∪k
i=1Pi = V , and we define part(v) as the set of partitions that

contain v. Each partition Pi is replicated by servers in group Si. For brevity, we say that server s belongs to
Pi with the meaning that s ∈ Si, and say that client c multicasts command C to partition Pi meaning that c

multicasts C to group Si. Finally, if server s is in (the server group that replicates) partition P , we say that P
is the local partition with respect to s, while every other partition is a remote partition to s.

To issue a command C to be executed, a client multicasts C to all partitions that hold a variable read or
updated by C, denoted by part(C). Consequently, the client must be able to determine the partitions that
may be accessed by C. Note that this assumption does not imply that the client must know all variables ac-
cessed by C, nor even the exact set of partitions. If the client cannot determine a priori which partitions will
accessed by C, it must define a superset of these partitions, in the worst case assuming all partitions. For
performance, however, clients must strive to provide a close approximation to the command’s actually ac-
cessed partitions. We assume the existence of an oracle that tells the client which partitions should receive
each command.

Upon delivering command C, if server s does not contain all variables read by C, s must communicate
with servers in remote partitions to execute C. Essentially, s must retrieve every variable v read in C from
a server that stores v (i.e., a server in a partition in part(v)). Moreover, s must retrieve a value of v that is
consistent with the order in which C is executed, as we explain next. Operations that do not involve reading
a variable from a remote partition are executed locally.

In more detail, let op be an operation in the execution of command C. We distinguish between three
operation types: read(v), an operation that reads the value of a state variable v, write(v,val), an operation
that updates v with value val, and an operation that performs a deterministic computation.

Server s in partition Pi executes op as follows.

i) op is a read(v) operation.
If Pi ∈ part(v), then s retrieves the value of v and sends it to every partition P j that delivers C and does
not hold v. If Pi 6∈ part(v), then s waits for v to be received from a server in a partition in part(v).

ii) op is a write(v,val) operation.
If Pi ∈ part(v), s updates the value of v with val; if Pi 6∈ part(v), s executes op, creating a local copy of v,
which will be up-to-date at least until the end of C’s execution (caching is explained in Section 4.3.1).

iii) op is a computation operation.
In this case, s executes op.

As we now show, the procedure above is not enough to ensure linearizability. Consider the execution
depicted in Figure 2 (a), where state variables x and y have initial value of 10. Command Cx reads the value
of x, Cy reads the value of y, and Cxy sets x and y to value 20. Consequently, Cx is multicast to partition Px, Cy

is multicast to Py, and Cxy is multicast to both Px and Py. Servers in Py deliver Cy and then Cxy, while servers
in Px deliver Cxy and then Cx, which is consistent with atomic order. In this execution, the only possible
legal permutation for the commands is: Cy, Cxy, then Cx. However, this violates the real-time precedence of
the commands, since Cx precedes Cy in real-time (Cy is invoked after the reply for Cx is received).

Intuitively, the problem with the execution in Figure 2 (a) is that commands Cx and Cy execute “in
between" the execution of Cxy at partitions Px and Py. In S-SMR, we avoid such cases by ensuring that the
execution of every command is atomic. Command C is execution atomic if, for each server s that executes C,
there exists at least one server r in every other partition in part(C) such that the execution of C at s finishes
after r delivers C. More precisely, let delivery(C,s) and end(C,s) be, respectively, the time when s delivers
commandC and the time when s completesC’s execution. Execution atomicity ensures that, for every server
s in partition P that executes C, there is a server r in every P ′ ∈ part(C) such that delivery(C,r)< end(C,s).
Intuitively, this condition guarantees that the execution of C at P and P ′ overlap in time.

Replicas can ensure execution atomicity by coordinating the execution of commands. After delivering
command C, servers in each partition send a signal(C)message to servers in the other partitions in part(C).
Before finishing the execution of C, each server must receive a signal(C)message from at least one server
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Figure 2: Atomic multicast and S-SMR. (To simplify the figure, we show a single replica per partition.)

in every other partition that executes C. Moreover, if server s in partition P receives the value of a variable
from server r in another partitionP ′, as part of the execution of C, then s does not need to receive a signal(C)

message from servers inP ′. This way, to tolerate f failures, each partition requires f +1 servers; if all servers
in a partition fail, service progress is not guaranteed.

Figure 2 (b) shows an execution of S-SMR. In the example, servers in Px wait for a signal from Py, there-
fore delaying Cxy’s execution in Px and also postponing the execution of Cx. Note that the outcome of each
command execution is the same as in case (a), but the executions of Cx, Cy and Cxy, as seen by clients, now
overlap in time with one another. Hence, there is no real-time precedence among them and linearizability
is not violated.

4.2 Detailed algorithm

The basic operation of S-SMR is shown in Algorithm 1. To submit a command C, the client queries an
oracle to get set C.dests (line 5), which is a superset of part(C) used by the client as destination set for C (line
6).

Upon delivering C (line 9), server s in partition P multicasts signal(C) to others, which is the set contain-
ing all other partitions involved in C (lines 10 and 11). It might happen that s receives signals concerning
C from other partitions even before s started executing C. For this reason, s must buffer signals and check
if there are signals buffered already when starting the execution of C. For simplicity, Algorithm 1 initializes
such buffers as ; for all possible commands. In practice, buffers for C are created when the first message
concerning C is delivered.

After multicasting signals, server s proceeds to the execution of C, which is a sequence of operations
that might read or write variables in V . The main concern is with operations that read variables, as they
may determine the outcome of the command execution. All other operations can be executed locally at s.
If the operation reads variable v and v belongs to P , s’s partition, then s multicasts the value of v to the other
partitions that delivered C (line 15). The command identifier C.id is sent along with v to make sure that the
other partitions will use the appropriate value of v during C’s execution. If v belongs to some other partition
P ′, s waits until an up-to-date value of v has been delivered (line 17). Every other operation is executed with
no interaction with other partitions (line 19).

After executing all operations of C, s waits until a signal from every other partition has been received
(line 20) and, only then, sends the reply back to the client (line 21). This ensures that C will be execution
atomic.

4.3 Performance optimizations

Algorithm 1 can be optimized in many ways. We briefly describe here some of them and present caching
and state prefetching in more detail.
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Algorithm 1 Scalable State Machine Replication (S-SMR)

1: Initialization:

2: ∀C ∈K : rcvd_signals(C)←;
3: ∀C ∈K : rcvd_variables(C)←;

4: Command C is submitted by a client as follows:

5: C.dests← oracle(C) {oracle(C) returns a superset of part(C)}

6: atomic-multicast(C.dests,C)

7: wait for reply from one server

8: Command C is executed by a server in partition P as follows:

9: upon atomic-deliver(C)
10: others←C.dests \ {P}
11: reliable-multicast(others,signal(C))

12: for each operation op in C do

13: if op is read(v) then

14: if v ∈P then

15: reliable-multicast(others,{v,C.id})
16: else

17: wait until v ∈ rcvd_variables(C)

18: update v with the value in rcvd_variables(C)

19: execute op

20: wait until rcvd_signals(C) = others

21: send reply to client

22: upon reliable-deliver(signal(C)) from partition P ′

23: rcvd_signals(C)← rcvd_signals(C)∪{P ′}

24: upon reliable-deliver({v,C.id})
25: rcvd_variables(C)← rcvd_variables(C)∪{v}

Algorithm variables:

K: the set of all possible commands

C.id: unique identifier of command C

oracle(C): function that returns a superset of part(C)

C.dests: set of partitions to which C is multicast

others: set of partitions waiting for signals and variables from P ; also, P waits for signals from all such partitions

signal(C): a synchronization message that allows S-SMR to ensure C to be execution atomic

rcvd_signals(C): a set containing all partitions that already signaled P regarding the execution of C

rcvd_variables(C): a set containing all variables that must be received from other partitions in order to execute C

• Even though all replicas in all partitions in part(C) execute C, a reply from a single replica (from a
single partition) suffices for the client to finish the command.

• Servers can keep a cache of variables that belong to remote partitions; when multi-partition com-
mands are executed and remote variables are received, this cache is verified and possibly updated.

• The exchange of objects between partitions serves the purpose of signaling. Therefore, if server s

sends variable v’s value to server r in another partition, r does not need to receive a signal message
from s’s partition.

• It is not necessary to exchange each variable more than once per command since any change dur-
ing the execution of the command will be deterministic and thus any changes to the variable can be
applied to the cached value.

• Server s does not need to wait for the execution of command C to reach a read(v) operation to only
then multicast v to the other partitions in part(C). If s knows that v will be read by C, s can send v’s
value to the other partitions as soon as s starts executing C.

• As soon as a command C that reads a variable v is delivered, if there are no pending commands to be
executed before C that change v, the value of v can already be sent to other partitions that deliver C.
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The last two optimization are similar, as variables are sent proactively from servers of a partition to
servers of another partition. They differ in the sense that, in the last one, the local variable’s value is retrieved
from the local state even before the command that accesses it is executed (possibly with a number of other
commands waiting to be executed before)—we call this state prefetching.

4.3.1 Caching

When executing multi-partition commands, servers of different partitions may have to exchange state vari-
ables. In order to reduce the amount of data exchanged and the time required to execute this kind of com-
mands, each server can keep a cache of variables read from remote partitions. When a server executes a
command that reads a variable from a remote partition, the server stores the read value in a cache and uses
the cached value in future read operations. If a command updates a remote variable, the server updates
(or creates) the cached value. The value of a variable stored in a server’s cache stays up-to-date until (i) the
server discards that variable’s entry from the cache due to memory limitations, or (ii) some command that
was not multicast to that server changes the value of the variable. In S-SMR, servers of any partitionP know
what servers of other partitions may be keeping cached values of variables from P . They even know if such
cached values are up-to-date (that is, if they were not discarded to free memory). With such knowledge,
they can proactively send messages to other servers to let them know if the values they cache are still valid.

For instance, say there are two partitions P and Px, and there is a variable x in Px. Every command that
accesses x is multicast to Px, and each command contains the list of partitions it was multicast to. Servers
in Px can use this information to keep track of what other servers received commands that access x. When
a command C that reads or updates x is multicast to both P and Px, servers in P update their cache with
the value of x, which will stay valid until some other command changes x’s value. Say a command Cr, which
reads x, is multicast again to Px and P , and it is the first command that accesses x after C. Servers of Px

know that servers in P executed command C, and the value of x has not changed ever since. Thus, they
know that the cached value of x in those servers is still valid. So, as soon as Cr is delivered, the servers of
Px send a message to servers in P notifying that the value they hold of x is up-to-date. Naturally, some of
servers of P may have discarded the cache entry for x, so they will have to send a request to Px servers for x’s
newest value. If x was changed by a different command that was executed after C, but before Cr, the servers
of Px will know that the value cached in the servers of P is stale and send the newest value. How servers use
cached variables distinguishes conservative from speculative caching, which we describe next.

Conservative caching: Once server s has a cached value of x, it waits for a cache-validation message from
a server in Px before executing a read(x) operation. The cache validation message contains tuples (var,val),
where var is a state variable that belongs to Px and whose cache in P needs to be validated. If servers in Px

determined that the cache is stale, val contains the new value of var; otherwise, val contains⊥, telling s that
its cached value is up to date. If s had a valid cache of x (therefore receiving ⊥ as its value), but discarded x’s
cached copy, s sends a request for x to Px.

Speculative caching: It is possible to reduce execution time by speculatively assuming that cached values
are up-to-date. Speculative caching requires servers to be able to rollback the execution of commands, in
case the speculative assumption fails to hold. Many applications allow rolling back a command, such as
databases, as long as no reply has been sent to the client for the command yet.

The difference between speculative caching and conservative caching is that in the former servers that
keep cached values do not wait for a cache-validation message before reading a cached entry; instead, a
read(x) operation returns the cached value immediately. If after reading some variable x from the cache,
during the execution of command C, server s receives a message from a server in Px that invalidates the
cached value, s rolls back the execution to some point before the read(x) operation and resumes the com-
mand execution, now with the up-to-date value of x. Server s can only reply to the client that issued C after
every variable read from the cache has been validated.

4.3.2 State prefetching

When handling a multi-partition command C, partitions may need to exchange data so that every parti-
tion concerned by C has the state necessary to execute C. This exchange of data among partitions slows
down the execution of multi-partition commands. Moreover, since commands are handled in delivery or-
der, multi-partition commands may also delay commands that will come after them, a phenomenon some-
times referred to as convoy effect [6].
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We reduce the delaying effects of multi-partition commands with state prefetching, a technique similar
to hardware prefetching, used to speed up the execution of a program by reducing wait states in a processor.
Instead of propagating data to partition P on a per-command basis, with state prefetching servers deliver a
stream of commands and send to P the data needed to execute all multi-partition commands in the stream
in a single batch, before the commands in the stream are executed in P . This optimization improves per-
formance in two ways. First, communication is more efficient as a consequence of batching the data to be
propagated. Second, when a server in P starts the execution of a command, it may already have received
the data needed by the command.

State prefetching introduces a complication: Let C be a command delivered before command C′. If the
state of variable v needed to executeC′ is sent by s beforeC andC′ are executed andC modifies the value of v,
the value sent by s will be invalid since it does not contain C’s modifications. We cope with this problem by
only allowing the value of v to be prefetched if no command delivered before C′ (but not yet executed) will
modify v. As a consequence, our implementation of state prefetching requires to determine the variables
read and written by commands.

4.4 Correctness

In this section, we argue that, if every command in execution E of S-SMR is delivered by atomic multicast
and is execution atomic, then E is linearizable.

Theorem 1. S-SMR ensures linearizability.

Proof. As defined in Section 2.2, we denote the order given by atomic multicast by relation ≺. Given any
two messages m1 and m2, “m1 ≺m2” means that both messages are delivered by the same processes and m1

is delivered before m2, or there is some message m′ such that m1 ≺m′ and m′ ≺m2, which can be written as
m1 ≺m′ ≺m2.

Suppose, by means of contradiction, that there exist two commands x and y, where x finishes before y

starts, but y ≺ x in the execution. There are two possibilities to be considered: (i) x and y are delivered by
the same process p, or (ii) no process delivers both x and y.

In case (i), at least one process p delivers both x and y. As x finishes before y starts, then p delivers x,
then y. From the properties of atomic multicast, and since each partition is mapped to a multicast group,
no process delivers y, then x. Therefore, we reach a contradiction in this case.

In case (ii), if there were no other commands in E , then the execution of x and y could be done in any
order, which would contradict the supposition that y ≺ x. Therefore, there are commands z1, ...,zn with
atomic order y ≺ z1 ≺ · · · ≺ zn ≺ x, where some process p0 (of partition P0) delivers y, then z1; some process
p1 ∈P1 delivers z1, then z2, and so on: process pi ∈Pi delivers zi, then zi+1, where 1≤ i < n. Finally, process
pn ∈Pn delivers zn, then x.

Let z0 = y and let atomic(i) be the following predicate: “For every process pi ∈Pi, pi finishes executing zi

only after some p0 ∈P0 started executing z0.” We now claim that atomic(i) is true for every i, where 0≤ i≤ n.
We prove our claim by induction.

Basis (i= 0): atomic(0) is obviously true, as p0 can only finish executing z0 after starting executing it.
Induction step: If atomic(i), then atomic(i+1).

Proof: Command zi+1 is multicast to both Pi and Pi+1. Since zi+1 is execution atomic, before any pi+1 ∈Pi+1

finishes executing zi+1, some pi ∈ Pi starts executing zi+1. Since zi ≺ zi+1, every pi ∈ Pi start executing zi+1

only after finishing the execution of zi. As atomic(i) is true, this will only happen after some p0 ∈P0 started
executing z0.

As zn ≺ x, for every pn ∈ Pn, pn executes command x only after the execution of zn at pn finishes. From
the above claim, this happens only after some p0 ∈P0 starts executing y. This means that y (z0) was issued
by a client before any client received a response for x, which contradicts the assumption that x precedes y

in real-time, i.e., that command y was issued after the reply for command x was received.

5 Fast Scalable State Machine Replication

Fast-SSMR extends S-SMR by allowing clients to receive replies from servers within a lower time by means
of optimistic execution. In Section 5.1, we present baseline Fast-SSMR, a basic version of our optimistic
technique. We provide a detailed algorithm in Section 5.2. In Section 5.3, we extend the baseline Fast-
SSMR algorithm with a technique to speed up the execution of multi-partition commands, by allowing
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partitions to exchange optimistic state when executing multi-partition commands. Section 5.4 argues for
the correctness of the algorithm.

5.1 Baseline Fast-SSMR

The baseline Fast-SSMR is inspired by previous optimistic designs to reduce the latency of replication (e.g.,
[11–14]). Some replicated systems share a similar execution pattern to exploit optimistic message ordering:
(a) commands are exposed to the service before their order is final (i.e., optimistically delivered); (b) com-
mands are optimistically executed by the service while the ordering protocol determines the final order of
the commands (i.e., conservative delivery); (c) if the optimistic and the conservative orders do not match,
commands must be re-executed in the order established by the conservative delivery. Like other optim-
istic replicated systems, baseline Fast-SSMR reduces latency by overlapping the execution of commands
with their ordering. Differently from previous techniques, Fast-SSMR generalizes optimistic execution to
partitioned-state systems, while providing linearizability.

Optimistic replicated designs require the ability to recover from commands executed in the wrong order.
Previous approaches have tackled this issue by relying on the recoverability of the environment in which
the service is deployed (e.g., replicated databases [11, 12]) or by explicitly implementing a recovery pro-
cedure, either “physical recovery" (e.g., checkpoints [13]) or “logical recovery" (e.g., application-dependent
recovery [14]). We propose a different technique, consisting of two state machines that run concurrently: a
conservative state machine, which implements S-SMR and whose execution is always correct, and an optim-

istic state machine, which relies on optimistic delivery to speed up the execution. Repairing the state of the
optimistic state machine, in case of commands delivered out-of-order, boils down to copying the conser-
vative state (or part of it) over the optimistic state. This dual state machine approach is service-independent
and does not require an environment that supports recoverable actions (e.g., a database) or the implement-
ation of service-specific recovery, although it requires additional processing and memory resources. Since
current servers are typically multi-processor, each state machine can be assigned to a different processor,
lessening the processing overhead. The memory overhead is mitigated by widely deployed OS techniques
like copy-on-write [18]. Finally, we note that Fast-SSMR only copies the divergent portion of the state when
performing a repair.

Most of the complexity of the Fast-SSMR algorithm deals with repairing the optimistic state in case of
order violations. When an order violation is detected, the optimistic state machine stops the execution
of commands, but to repair the optimistic state, the conservative state machine needs to “catch up" with
the optimistic state machine. From the equivalence property of optimistic atomic multicast (defined in
Section 2.3, eventually every command delivered optimistically by a correct process will be delivered con-
servatively. Therefore, once the optimistic execution stops, eventually the conservative state machine will
catch up. After the optimistic state is repaired, any optimistically delivered command that is already in-
cluded in the copied state is discarded.

Besides the repair procedure, the two state machines differ in another important aspect. When ex-
ecuting a read(v) operation in a multi-partition command, the optimistic state machines in the concerned
partitions exchange the conservative state of v, instead of its optimistic state. This procedure simplifies the
optimistic state machine as only valid state is exchanged across partitions—we introduce optimistic state
exchange in Section 5.3. Both the optimistic and the conservative state machines send replies to clients;
the conservative reply for a command allows the client to confirm the optimistic reply, likely to have been
received earlier.

5.2 Detailed baseline algorithm

Algorithm 2 is executed by the conservative state machine. It is essentially the same as that of S-SMR (Al-
gorithm 1), except that it uses optimistic atomic multicast instead of atomic multicast, and it also keeps
track of the conservative execution order. Algorithm 3 details the execution of the optimistic state machine,
which shares variables of the conservative state machine’s algorithm. For brevity, we say that a command is
“opt-executed" and “cons-executed" meaning that it was executed by the optimistic and the conservative
state machines, respectively.

The core idea behind Algorithm 2 and Algorithm 3 is to compare the sequence of commands executed
by the optimistic state machine to the sequence of commands executed by the conservative state machine,
one by one. Those sequences are kept in the ordered sets opt_executed and cons_executed, respectively.
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Algorithm 2 Conservative State Machine (Fast-SSMR)

1: Initialization:

2: cons_executed← empty ordered set
3: ∀C ∈K : rcvd_signals(C)←;
4: ∀C ∈K : rcvd_variables(C)←;

5: Command C is submitted by a client as follows:

6: C.dests← oracle(C)

7: opt-amcast(C.dests,C)

8: wait for reply

9: Server s of partition P executes command C as follows:

10: when cons-deliver(C)
11: reliable-multicast(C.dests,signal(C))

12: for each operation op in C do

13: if op is read(v) then

14: if v ∈P then

15: reliable-multicast(C.dests, 〈v,C.id〉)
16: else

17: wait until v ∈ rcvd_variables(C)

18: update v with the value in rcvd_variables(C)

19: execute op

20: wait until rcvd_signals(C) =C.dests

21: send reply to client
22: append C to cons_executed

23: when reliable-deliver(signal(C)) from partition P ′

24: rcvd_signals(C)← rcvd_signals(C)∪{P ′}

25: when reliable-deliver(〈v,C.id〉)
26: rcvd_variables(C)← rcvd_variables(C)∪{v}

Algorithm variables:

K: the set of all possible commands

C.id: unique identifier of command C

oracle(C): function that returns a superset of the partitions accessed by C

C.dests: set of partitions to which C is multicast

signal(C): signal exchanged to ensure linearizability

rcvd_signals(C): set of all partitions that already signaled P regarding C

rcvd_variables(C): set of all variables received from other partitions in order to execute C

cons_executed: commands executed, in order of execution

Commands are appended to those sets as they are executed by the different state machines, and are re-
moved as the optimistic execution order is confirmed (or a mistake is detected and the optimistic state is
repaired). If the optimistic execution order at a server was the same as the conservative one, the optim-
istic state is correct. This condition suffices to determine that the optimistic state at a server is correct
because mistaken optimistic deliveries at a server cannot cause the optimistic state of other servers to be
incorrect—baseline Fast-SSMR does not exchange optimistic state between servers when executing multi-
partition commands; instead, it uses the conservative state exchanged by the conservative state machines.
This way, when the first element of both opt_executed and cons_executed is the same, this means that both
state machines reached the same state after executing that command, which is removed from both sets. On
the other hand, if the first element of opt_executed differs from that of cons_executed, this means that there
was an ordering mistake and the repairing flag is set to True, signaling that the optimistic state machine
is under repair and no command will be opt-executed before the repair is finished. To repair its state, the
optimistic state machine first waits until the conservative state machine has caught up with the optimistic
execution, that is, until opt_executed = ; (commands are removed from that set as they are executed by the
conservative state machine). This is sure to eventually happen at any correct replica thanks to the equi-
valence property of optimistic atomic multicast: any command that is opt-delivered is also cons-delivered,
and vice-versa. Once the command is cons-delivered, it is executed by the conservative state-machine.
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Algorithm 3 Optimistic State Machine (Fast-SSMR) (part 1)

1: Initialization:

2: opt_queue← opt_executed← empty ordered set
3: repairing←False, skip_opt←;
4: ∀C ∈K : rcvd_opt_signals(C)←;

5: Server s of partition P executes command C as follows:

6: when opt-deliver(C)
7: reliable-multicast(C.dests,opt_signal(C))

8: append C to opt_queue

9: when opt_queue 6= ;∧not repairing

10: remove first element C of opt_queue

11: if C 6∈ skip_opt then

12: append C to opt_executed

13: execute-opt(C)

14: when opt_executed 6= ;∧not repairing

15: C← first element of opt_executed

16: if C is the first element of cons_executed then

17: //C was correctly opt-executed

18: remove C from opt_executed

19: remove C from cons_executed

20: else if cons_executed 6= ; then

21: repairing← True

22: when repairing ∧ ∃C : C ∈ opt_executed ∩ cons_executed

23: remove C from opt_executed

24: remove C from cons_executed

25: when repairing∧opt_executed = ;
26: copy conservative state onto optimistic state
27: skip_opt← skip_opt ∪ cons_executed

28: cons_executed←;
29: repairing←False

30: when reliable-deliver(opt_signal(C)) from partition P ′

31: rcvd_opt_signals(C)← rcvd_opt_signals(C)∪{P ′}
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Optimistic State Machine (Fast-SSMR) (part 2)

34: Server s of partition P executes command C as follows:

35: function execute-opt(C)
36: for each operation op in C do

37: if op is read(v) then

38: if v 6∈P then

39: wait until v ∈ rcvd_variables(C)∨ repairing

40: if repairing then

41: exit function
42: vopt ← v : v ∈ rcvd_variables(C)

43: execute read(vopt )

44: else if op is write(v,val) then

45: execute write(vopt ,val)

46: else

47: execute op

48: wait until rcvd_opt_signals(C) =C.dests

49: send optimistic reply to client

Additional variables:

vopt : the optimistic copy of variable v

repairing: tells whether the optimistic state is under repair

opt_queue: commands waiting to be opt-executed

opt_executed: commands whose optimistic execution has not been confirmed yet

opt_signal(C): signal exchanged to provide linearizability

rcvd_opt_signals(C): partitions that signaled P about C

skip_opt: commands to be skipped

Once the conservative state machine has caught up with the optimistic execution during a repair (opt_executed =

;), there are two possibilities:

(i) All commands that were cons-executed were also opt-executed, i.e., cons_executed = ;.

(ii) Some command that was not executed by the optimistic state machine was cons-executed, i.e., cons_executed 6=
;.

In case (i), both state machines executed the same commands, although in different orders. The op-
timistic state machine then simply copies the conservative state and resumes execution with the next com-
mand opt-delivered. In case (ii), not only the order was different, but also the set of commands executed.
To deal with this, those commands that were not opt-executed yet, but already cons-executed, are put in a
set to be skipped by the optimistic state machine. If one of these commands changes the state of the ser-
vice, the state copied from the conservative state machine already contains any such changes. Reexecuting
them might cause the optimistic state to become incorrect. To illustrate how Algorithm 3 works, suppose
the following events happen at a replica (the command execution sequences after each event are shown):

1. Command C3 is opt-executed.

opt_executed = (C3), cons_executed = ;

2. Command C1 is opt-executed.

opt_executed = (C3,C1), cons_executed = ;

3. Command C1 is cons-executed.

opt_executed = (C3,C1), cons_executed = (C1)

At this point, the first element of opt_executed (C3) is different from that of cons_executed (C1). This
triggers a repair and the optimistic state machine will stop executing commands, waiting until every
command in opt_executed has also been cons-executed. This is already the case for C1, which is re-
moved from both sets.
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4. Command C2 is cons-executed (opt_executed = (C3),cons_executed = (C2)).

5. Command C3 is cons-executed (opt_executed = ;,cons_executed = (C2)).

As soon as C3 is executed, it is removed from both ordered sets, leaving opt_executed empty. This
means that the conservative state machine has caught up with the optimistic one, but also that C2

was not opt-delivered yet. The conservative state is copied to the optimistic one, but C2 was already
executed (by the conservative state machine) against this state, so the optimistic state machine must
skip C2 once it is deliverd. For this reason, C2 is put in the skip_opt set, so that the optimistic state
machine does not execute it.

We now give a more detailed, “operational” description of baseline Fast-SSMR. In Algorithm 2, when a
server opt-delivers a command (line 6) it appends the command to a queue (line 8) from which commands
are later removed to be executed (lines 10–13). For every read(v) operation during the execution of a com-
mand (line 36), the server checks whether v is local (line 38); if not, the server waits until the value of v is
received from a remote conservative state machine. Once v has arrived, its value is used to update vopt , the
optimistic copy of v (line 42). When reading (or writing) a variable v, the optimistic state machine reads (or
writes) vopt instead, thus accessing only the optimistic state (lines 43–45). The optimistic reply is sent to the
client that issued the command (line 49).

The rest of the algorithm deals with order violations (lines 14–20) and repairs of the optimistic execution
(lines 22–29). The repairing flag indicates whether the optimistic state machine is in normal operation or in
repair mode. During normal operation, the algorithm keeps verifying the optimistic execution order, saved
in opt_executed, by comparing it with the conservative execution order, kept by the conservative state ma-
chine in cons_executed. To verify that the optimistic and the conservative orders match, the first command
of those sequences are compared: if they are the same, the command is removed from both sequences
(lines 16–19); if not, the repair procedure is initiated by setting the repairing flag to True (lines 20 and 21),
which also pauses the optimistic execution (line 9).

The repair procedure consists of waiting until all opt-executed commands have been cons-executed.
Until then, there are two possibilities for each command C: (i) C was opt-executed out-of-order, or (ii) C

was cons-executed and not opt-executed yet. Case (i) is handled by removing C from both opt_executed

and cons_executed (lines 22–24). In case (ii), at the end of the repair procedure (line 25), that is, when
opt_executed is empty, C remains in cons_executed, since it was never opt-executed. C is then moved to
skip_opt (line 27), so that it will not be opt-executed after the repair is complete. This is done because at
the end of a repair, the optimistic state is overwritten with the conservative state (line 26), which is already
based on C. Finally, the repairing flag is set to False so that the optimistic execution can resume.

5.3 Optimistic state exchange

In the baseline Fast-SSMR, partitions exchange only conservative state when executing multi-partition
commands. This simplifies the optimistic state machine since no provision is needed to cope with invalid
state. Optimistic state exchange speeds up the execution, at the cost of a more complex design, needed to
detect and handle invalid state exchanged among partitions due to the possibility of messages delivered
out of order.

Figure 3 illustrates how exchanging optimistic state increases the complexity of the optimistic execution.
The figure shows servers s1, s2 and s3, respectively of partitions P1, P2 and P3, as they execute optimistically
and conservatively commands C1, C2 and C3. Server s1 optimistically delivers and executes C2 before C1, but
s1 conservatively delivers and executes commands C1 before C2. Because of this, s1 sends invalid state to s2,
which also executes C2. Even though the optimistic and conservative delivery orders match at s2, s2 reaches
an invalid state after executing C2. Even commands that were optimistically delivered in the correct order
in all replicas can be “contaminated” by remote invalid states. Consider, for example, command C3, which
involves s2 and s3. As we can see, the optimistic and conservative delivery orders match in both servers.
The problem is that C3 was executed by s2 after C2, which in turn was executed based on an invalid state
received from s1. This may cause the state read by C3 from P2 (and sent to s3) to be invalid.

For a server s to determine that the optimistic execution of a command C is correct, s must (i) optimist-
ically deliver C in the correct order and (ii) receive a confirmation from each remote partition involved in
the command that the state s received from the partition is valid. Moreover, to handle contaminated states,
commands that precede C must be confirmed as well. For this reason, a server s only sends a confirmation
regarding the local execution of command C to other partitions after the execution of every command C′
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Figure 3: Invalid states propagated across optimistic state machines of different partitions.

executed by s before C is confirmed. If a server detects that the optimistic execution of a command was
based on invalid state, the server switches to repairing mode and proceeds as described in Section 5.1.

Due to message delays and server failures, upon executing command C, a server s1 of partition P1 may
receive an optimistic state from s2 in P2 and a confirmation from a different server s3 in P2. Since the op-
timistic execution at s2 and s3 may diverge (e.g., if C’s optimistic and conservative orders match at s3 but
they do not match at s2), how can s1 determine whether the state received from s2 is valid? We handle this
problem as follows. Since s1 used the optimistic state sent by s2, s1 waits until it receives the confirmation
from s2, or until s1 suspects that s2 has failed. If s1 suspects s2’s failure, s1 assumes that the received state
was incorrect and switches to repairing mode. Note that incorrectly suspecting a correct process has no
implications on the correctness of the approach, only on its performance. Therefore, this mechanism can
be implemented with a failure detector with strong completeness only, without accuracy [21].

5.4 Correctness

In this section, we argue that the Fast-SSMR algorithm ensures linearizability and is deadlock-free.

Theorem 2. Fast-SSMR ensures linearizability.

Proof. The conservative state machine guarantees linearizable executions, since it implements S-SMR. The
optimistic state machine (Algorithm 3) ensures linearizability for optimistic replies, as long as the optimistic
delivery order matches the conservative one. Both the conservative and optimistic state machines exchange
signals in order to provide linearizability, as explained in detail in Section 4.

Theorem 3. Fast-SSMR is deadlock-free.

Proof. There are two situations in which a state machine stops and waits for some event: (i) when waiting
for a signal and (ii) when waiting for the value of a variable to execute a multi-partition command.

Both optimistic and conservative deliveries have the agreement property (Section 2.1). Therefore, when
executing a command C, all correct replicas of all partitions in C.dests deliver C. Each replica will reliable-
multicast a signal to all servers in C.dests as soon as C is delivered. Therefore, from the validity property,
every replica will reliable-deliver at least one signal from each partition in C.dests. This means that no rep-
lica will block forever waiting for a signal. This argument is valid for both the optimistic and the conservative
state machines in case (i).

As for case (ii), let us first assume that the optimistic order matches the conservative order, as the argu-
ment is the same for both state machines. Every multi-partition command C delivered by some server is
delivered by all correct servers in C.dests. Each variable v accessed by C will be reliable-multicast by at least
one server of the partition that contains v. Now, say command C accesses variables in multiple partitions.
It is impossible to have servers s1, ...,sn, such that each server si (of partition Pi) waits for a variable stored
in Pi+1, where i ∈ {1, ...,n− 1}, while sn waits for a variable stored in P1. This follows from the fact that C

is deterministic and all servers execute the same operations in the same order: for each such operation,
if the operation is read(v), at least one server of v’s partition will send its value to the other servers execut-
ing C. Therefore, there is no deadlock in the conservative state machine. Also, there is no deadlock in the
optimistic state machine when the conservative and the optimistic delivery orders match.

If the optimistic delivery order does not match the conservative delivery order, it is possible that an
optimistic state machine sopt (at server s) waits for a variable that will never be sent from a remote partition.
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For example, say sopt , due to a previous optimistic ordering mistake, has a variable index with value i, while
its correct value is j, where j 6= i. Then, sopt delivers C, which reads index and, then, reads vindex. Since index

is i, sopt tries to access vi, which belongs to partitionPi, thus waiting for its value to be received from a server
in Pi. However, this value will never be sent: no conservative state machine executes C with index equal to
i. Therefore, sopt never receives vi. To circumvent this problem, Algorithm 3 stops waiting if an ordering
mistake is detected (i.e., when repairing is set to True). When a mistake is detected, the optimistic state
machine stops the execution of C (i.e., it exits the execute-opt function) and the optimistic state is repaired.
This prevents deadlocks from happening in case (ii), even when optimistic delivery mistakes happen. In
this example, s will not produce an optimistic reply for C, but only a conservative one.

6 Implementation

In this section, we describe Eyrie, Volery and Chirper. Eyrie is a library that implements both S-SMR and
Fast-SSMR. Volery is a service implemented with Eyrie that provides Zookeeper’s API. Chirper is a scalable
social network application also developed with Eyrie that exploits optimism to deliver faster replies to com-
mands. Eyrie, Volery and Chirper were implemented in Java.

6.1 Eyrie

One of the main goals of Eyrie is to make the implementation of services based on S-SMR (and Fast-SSMR)
as easy as possible. To use Eyrie, the developer (i.e., service designer) must extend two classes, PRObject
and StateMachine. Class PartitioningOracle has a default implementation, but the developer is en-
couraged to override its methods.

6.1.1 The PRObject class

Eyrie supports partial replication (i.e., some objects may be replicated in some partitions, not all). There-
fore, when executing a command, a replica might not have local access to some of the objects involved in
the execution of the command. The developer informs to Eyrie which object classes are replicated by ex-
tending the PRObject class. Such class represents any kind of data that is part of the service state. Each
instance of PRObject may be stored locally or remotely, but the application code is agnostic to that. All
calls to methods of such objects are intercepted by Eyrie, transparently to the developer.

Eyrie uses AspectJ3 to intercept method calls for all subclasses of PRObject. Internally, the aspect re-
lated to such method invocations communicates with theStateMachine instance in order to (i) determine
if the object is stored locally or remotely and (ii) ensure that the object is up-to-date when each command
is executed. When executing Fast-SSMR, Eyrie also creates an optimistic copy of every object; when a com-
mand is optimistically delivered, it is executed against the optimistic copy of the objects, i.e., against the
optimistic state.

Each replica has a local copy of all PRObject objects. When a remote object is received, replicas in
the local partition PL must update their local copy of the object with the received (up-to-date) value. For
this purpose, the developer must provide implementations for the methods getDiff(Partition p) and
updateFromDiff(Object diff). The former is used by the remote partitionPR, which owns the object,
to calculate a delta between the old value currently held by PL and the newest value, held by PR. Such
implementations may be as simple as returning the whole object. However, it also allows the developer to
implement caching mechanisms. Since getDiff takes a partition as parameter, the developer may keep
track of what was the last value received by PL, and then return a (possibly small) diff, instead of the whole
object. The diff is then applied to the object with the method updateFromDiff, which is also provided by
the application developer.

To avoid unnecessary communication, the developer may optionally mark some methods of theirPRObject
subclasses as local, by annotating them with @LocalMethodCall. Calls to such methods are not inter-
cepted by the library, sparing communication when the developer sees fit. Although the command that
contains a call to such a method still has to be delivered and executed by all partitions that hold objects ac-
cessed by the command, that particular local method does not require an up-to-date object. For example,
say a command C accesses objects O1 and O2, respectively, in partitions P1 and P2. C completely over-
writes objects O1 and O2, by calling O1.clear() and O2.clear(). Although C has to be delivered by both

3http://eclipse.org/aspectj
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partitions to ensure linearizability, a write method that completely overwrites an object, regardless of its
previous state, does not need an up-to-date version of the object before executing. Because of this, method
clear() can be safely annotated as local, avoiding unnecessary communication between P1 and P2.

6.1.2 The StateMachine class

Linearizability is ensured by the StateMachine class: it executes commands one by one, in the order
defined by atomic multicast, and implements the exchange of signals as described in Section 4. This class is
abstract and must be extended by the application server class. To execute commands, the developer must
provide an implementation for the method executeCommand(Command c). The code for such a method
is agnostic to the existence of partitions. In other words, it can be exactly the same as the code used to
execute commands with classical state machine replication (i.e., full replication). Eyrie is responsible for
handling all communication between partitions transparently. When executing Fast-SSMR there are two
threads in Eyrie that call the executeCommand method: the conservative state machine thread, and the
optimistic state machine thread. Again, this is transparent to the service designer, who simply writes one
implementation of the method executeCommand, accessing objects as if there was a single copy of each of
them. Internally, when Eyrie intercepts the method call to PRObject instances, it determines which thread
(conservative or optimistic) made the call and redirects the method invocation to the proper (conservative
or optimistic) copy of the object. This was implemented with the Java reflection API.

6.1.3 The PartitioningOracle class

Clients multicast each command directly to the partitions affected by the command, i.e., those that con-
tain objects accessed by the command. Although Eyrie encapsulates most details regarding partitioning,
the developer must provide an oracle that tells, for each command, which partitions are affected by the
command. The set of partitions returned by the oracle needs to contain all partitions involved, but does
not need to be minimal. In fact, the default implementation of the oracle simply returns all partitions for
every command, which although correct, is not efficient. For best performance, the partition set returned
by the oracle should be as small as possible, which requires the developer to extendPartitioningOracle
and override its methods.

MethodgetDestinations(Command c) is used by the clients to ask the oracle which partitions should
receive each command. It returns a list of Partition objects. The developer can override this method,
which will parse command c and return a list containing all partitions involved in the execution of c. The
getDestinationsmethod can encapsulate any kind of implementation, including one that involves com-
municating with servers, so its execution does not necessarily need to be local to clients. If the set of parti-
tions involved in the execution of a command cannot be determined a priori, the oracle can communicate
with servers to determine such set and then return it to the client, which then multicasts the command to
the right partitions.

Another important method in PartitioningOracle is getLocalObjects(Command c), which is
used by servers to allow state prefetching before executing c. The method returns a list of local objects
(i.e., objects in the server’s partition) that will be accessed by c. It may not be possible to determine in
advance which objects are accessed by every command, but the list of accessed objects does not need to be
complete. Any kind of early knowledge about which objects need to be updated in other partitions helps
decrease execution time, as the objects can potentially be sent as soon as the server delivers the command.
The default implementation of this method returns an empty list, which means that objects are exchanged
among partitions as their methods are invoked during execution (i.e., no state prefetching).

6.1.4 Other classes

In the following, we briefly describe a few accessory classes provided by Eyrie.
The Partition class has two relevant methods, getId() and getPartitionList(), which return,

respectively, the partition’s unique identifier and the list of all partitions in the system. The oracle can use
this information to map commands to partitions.

To issue a command (i.e., a request), a client must create a Command object containing the command’s
parameters. TheCommand object is then multicast to the partitions determined by the partitioning oracle at
the client. The Command class offers methods addItems(Objects... objs), getNext(), hasNext()
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and so on. How the server will process such parameters is application-dependent and determined by how
the method executeCommand of the StateMachine class is implemented.

Eyrie uses atomic multicast to disseminate commands from clients and handle communication between
partitions. This is done by configuring a LocalReplica object, which is created by parsing a configuration
file provided by the developer, in both clients and servers. Eyrie is built on top of a multicast adaptor lib-
rary,4 being able to easily switch different implementations of atomic multicast, with and without optim-
istic deliveries. Thanks to Eyrie’s flexibility, we deployed the applications with different atomic multicast
implementations, namely Multi-Ring Paxos5 and Ridge.6 Fast-SSMR requires an optimistic atomic multic-
ast protocol, which is implemented in Eyrie with Ridge.

6.2 Volery

We implemented the Volery service on top of Eyrie, providing an API similar to that of Zookeeper [19]. Zoo-
keeper implements a hierarchical key-value store, where each value is stored in a znode, and each znode
can have other znodes as children. The abstraction implemented by Zookeeper resembles a file system,
where each path is a unique string (i.e., a key) that identifies a znode in the hierarchy. We implemented the
following Volery client API:

• create(String path, byte[] data): creates a znode with the given path, holding data as
content, if there was no znode with that path previously and there is a znode with the parent path.

• delete(String path): deletes the znode that has the given path, if there is one and it has no
children.

• exists(String path): returns True if there exists a znode with the givenpath, or False, otherwise.

• getChildren(String path): returns the list of znodes that have path as their parent.

• getData(String path): returns the data held by the znode identified by path.

• setData(String path, byte[] data): sets the contents of the znode identified bypath todata.

Zookeeper ensures a mix of linearizability (for write commands) and session consistency (for read com-
mands). Every reply to a read command (e.g., getData) issued by a client is consistent with all write com-
mands (e.g., create or setData) issued previously by the same client. With this consistency model and
with workloads mainly composed of read-only commands, Zookeeper is able to scale throughput with the
number of replicas. Volery ensures linearizability for every command. In order to scale, Volery makes use
of partitioning, done with Eyrie.

Distributing Volery’s znodes among partitions was done based on each znode’s path: Volery’s partition-
ing oracle uses a hash function h(path) that returns the id of the partition responsible for holding the znode
at path. Each command getData, setData, exists and getChildren is multicast to a single partition,
thus being called a local command. Commands create and delete are multicast to all partitions and are
called global commands; they are multicast to all partitions to guarantee that every (correct) replica has a
full copy of the znodes hierarchy, even though only the partition that owns each given znode is guaranteed
to have its contents up-to-date.

6.3 Chirper

We implemented the Chirper service on top of Eyrie, providing an API similar to that of Twitter. Twitter is an
online social networking service in which users can post 140-character messages and read posted messages
of other users. The API consists basically of:

• post(long uid, String msg): user with id uid publishes message msg.

• follow(long uid, long fid): user with id uid starts following user with id fid.

4https://bitbucket.org/kdubezerra/libmcad
5With Multi-Ring Paxos (https://github.com/sambenz/URingPaxos), each message can be multicast to a single ring only. To map

rings to partitions, each server in partition Pi is a learner in rings Ri and Rall (merge is deterministic); if message m is addressed only
to Pi, m is sent to Ri, otherwise, to Rall (and discarded by non-addressee partitions).

6https://bitbucket.org/kdubezerra/ridge
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• unfollow(long uid, long fid): user with id uid stops following user with id fid.

• getTimeline(long uid): user with id uid requests messages of all people the user follows.

Chirper makes use of Fast-SSMR, so each command can have two replies: an optimistic reply (fast,
but possibly inconsistent) and a conservative reply (slower, but always correct). Any execution of Chirper
is linearizable with respect to conservative replies. With respect to optimistic replies, the execution may
violate linearizability if the delivery order of a message does not match its conservative delivery. This means
that a client of the service may observe an inconsistent state until the conservative reply arrives and rectifies
the state seen by the client. An online social networking service is well-suited for Fast-SSMR, since this kind
of application can tolerate brief inconsistencies in exchange for faster replies.

State partitioning in Chirper is based on user id. Chirper’s oracle uses a hash function h(uid) that re-
turns the partition that contains all up-to-date information regarding user with id uid. Taking into account
that a typical user probably spends more time reading messages (i.e., issuing getTimeline) than writing
them (i.e., issuing post), we decided to optimize getTimeline to be single-partition. This means that,
when a user requests her timeline, all messages should be available in the partition that stores that user’s
data, in the form of a materialized timeline (similar to a materialized view in a database). To make this pos-
sible, whenever a post command is executed, the message is inserted into the materialized timeline of all
users that follow the one that is posting. Also, when a user starts following another user, the messages of
the followed user are inserted into the follower’s materialized timeline as part of the command execution;
likewise, they are removed when a user stops following another user. Because of this design decision, every
getTimeline command accesses only one partition, follow and unfollow commands access at most
two partitions, and post commands access up to all partitions.

One detail about the post command is that it must be multicast to all partitions that contain a follower
of the user issuing the post. The Chirper client cannot know for sure who follows the user: it keeps a cache
of followers, but such a cache can become stale if a different user starts following the poster. To ensure lin-
earizability, when executing the post command, the Chirper server checks if the corresponding command
was multicast to the proper set of partitions. If that was the case, the command is executed. Otherwise, the
server sends a retry(γ)message to the client and proceeds to the next command. Upon receiving the retry

message, the client multicasts the command again, now adding all partitions in γ (a set of partitions) as des-
tinations for the next attempt. This repeats until all partitions that contain followers of the poster deliver
the command. This is guaranteed to terminate because partitions are only added to the set of destinations
for retries, never removed. Therefore, in the worst case scenario, the client will retry until it multicasts the
post command to all partitions of the system. Note that the optimistic state machine may wrongly infer,
based on an incorrect optimistic state, that the destination set of the command is incomplete. Because of
that, only the conservative state machine tells the client to retry a command: if the command is not mul-
ticast to all accessed partitions, the optimistic state machine skips the command, but does not send a retry

message.
We compared Chirper to Retwis,7 which is another Twitter clone. Retwis relies on Redis,8 a key-value

store well-known for its performance. Redis offers asynchronous replication, which does not ensure linear-
izability. The Twitter API is implemented in the Retwis client as follows. Thepost commands update the list
of all messages ever posted, the list of message ids of the user who is posting, and the materialized timeline
(a list of message ids) of each follower of the poster. The follow and unfollow commands update the list
of people followed by the user issuing the command, and the list of followers of another user. Finally, the
getTimeline command accesses only the materialized timeline of the user who issued the command.

Retwis is similar to Chirper in that both applications precompute each user’s timeline, executinggetTimeline
commands as fast as possible, at the expense of other commands. However, even with a single server, Retwis
does not ensure the same level of consistency as Chirper: when executing apost command, getting the fol-
lowers of a poster and adding the message to each of their materialized timelines are completely separate
commands to Redis, and they can be interleaved with follow and unfollow commands. This means that a
user may have, in her timeline, a message posted by someone who she does not follow anymore, or vice-
versa. Each post command in Chirper is a single, atomic operation, and such interleavings are impossible
to happen in the conservative state. Even if such an inconsistency happens in the optimistic state, it will
be due to an ordering mistake, and the optimistic state will be repaired as soon as the mistake is detected.
Moreover, the client will always receive consistent conservative replies from the Chirper servers.

7http://retwis.antirez.com
8http://redis.io
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7 Performance evaluation

In this section, we assess the performance of S-SMR and Fast-SSMR, in terms of throughput scalability and
latency. For this purpose, we conducted experiments with Volery and Chirper.

With Volery, we evaluated S-SMR’s throughput scalability by deploying the system with different num-
bers of partitions, message sizes, both with on-disk storage and with in-memory storage. Our goal was also
to find the limits of S-SMR, showing when the technique does not perform as well, that is, when global com-
mands are a significant part of the workload. We compare Volery results with Zookeeper and ZKsmr, which
is an implementation of Zookeeper with traditional SMR.

With Chirper, we evaluated Fast-SSMR’s latency improvement over S-SMR and the corresponding rate
of mistaken replies received by clients. We also compared the throughput scalability of both techniques,
to show that Fast-SSMR does not need to sacrifice throughput in order to reduce latency. For this reason,
Chirper was deployed both using S-SMR and Fast-SSMR. We compare Chirper results to Retwis, a Twitter-
clone application backed by a Redis key-value store.

7.1 Environment setup and configuration parameters

We ran all our experiments on a cluster that had two types of nodes: (a) HP SE1102 nodes, equipped with two
Intel Xeon L5420 processors running at 2.5 GHz and with 8 GB of main memory, and (b) Dell SC1435 nodes,
equipped with two AMD Opteron 2212 processors running at 2.0 GHz and with 4 GB of main memory. The
HP nodes were connected to an HP ProCurve Switch 2910al-48G gigabit network switch, and the Dell nodes
were connected to an HP ProCurve 2900-48G gigabit network switch. Those switches were interconnected
by a 20 Gbps link. All nodes ran CentOS Linux 6.3 with kernel 2.6.32 and had the Oracle Java SE Runtime
Environment 7. Before each experiment, we synchronize the clocks of the nodes using NTP. This is done to
obtain accurate values in the measurements of the latency breakdown involving events in different servers.

In all our experiments, clients submit commands asynchronously, that is, each client can keep submit-
ting commands even if replies to previous commands have not been received yet, up to a certain number of
outstanding commands. Trying to issue new commands when this limit is reached makes the client block
until some reply is received. Replies are processed by callback handlers registered by clients when sub-
mitting commands asynchronously. In the case of Fast-SSMR, there were two callback handlers for each
request: one for the conservative reply, and one for the optimistic reply. We allowed every client to have
up to 25 outstanding commands at any time. By submitting commands asynchronously, the load on the
service can be increased without instantiating new client processes.

7.2 Volery

We compared Volery with the original Zookeeper and with ZKsmr, which is an implementation of the Zoo-
keeper API using traditional state machine replication. Local commands consisted of calls to setData,
while global commands were invocations to create and delete. “Message size” and “command size”, in
the next sections, refer to the size of the byte array passed to such commands. For the Zookeeper experi-
ments, we used an ensemble of 3 servers. For the other approaches, we used Multi-Ring Paxos for atomic
multicast, having 3 acceptors per ring: ZKsmr had 3 replicas that used one Multi-Ring Paxos ring to handle
all communication, while Volery had 3 replicas per partition, with one ring per partition, plus one extra ring
for commands that accessed multiple partitions. Since Zookeeper runs the service and the broadcast pro-
tocol (i.e., Zab [25]) in the same machines, each ZKsmr/Volery replica was co-located with a Paxos acceptor
in the same node of the cluster. We had workloads with three different message sizes: 100, 1000 and 10000
bytes. Volery was run with 1, 2, 4 and 8 partitions. We conducted all experiments using disk for storage,
then using memory (by means of a ramdisk). For on-disk experiments, we configured Multi-Ring Paxos
with ∆ of 40 ms [26], batching timeout of 50 ms and batch size threshold of 250 kilobytes; for in-memory
experiments, these parameters were 5 ms, 50 ms and 30 kilobytes, respectively.

7.2.1 Experiments using on-disk storage

In Figure 4, we show results for local commands only. Each Paxos acceptor wrote its vote synchronously to
disk before accepting each proposal. Zookeeper also persisted data to disk. In Figure 4 (top left), we can see
the maximum throughput for each replication scheme and message size, normalized by the throughput
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Figure 4: Results for Zookeeper, ZKsmr and Volery with 1, 2, 4 and 8 partitions, using on-disk storage. Throughput was
normalized by that of Volery with a single partition (absolute values in kilocommands per second, or kcps, are shown).
Latencies reported correspond to 75% of the maximum throughput.
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Figure 5: Cumulative distribution function (CDF) of latency for different command sizes (on-disk storage).

of Volery with a single partition. In all cases, the throughput of Volery scaled with the number of parti-
tions and, for message sizes of 1000 and 10000 bytes, it scaled linearly (ideal case). For small messages (100
bytes), Zookeeper has similar performance to Volery with a single partition. As messages increase in size,
Zookeeper’s throughput improves with respect to Volery: with 1000-byte messages, Zookeeper’s through-
put is similar to Volery’s throughput with two partitions. For large messages (10000 bytes), Zookeeper is
outperformed by Volery with four partitions. Comparing S-SMR with traditional SMR, we can see that for
small messages (100 bytes), ZKsmr performed better than Volery with one partition. This is due to the addi-
tional complexity added by Eyrie in order to ensure linearizability when data is partitioned. Such difference
in throughput is less significant with bigger commands (1000 and 10000 bytes).

We can also see in Figure 4 (bottom left), the latency values for the different implementations tested.
Latency values correspond to 75% of the maximum throughput. Zookeeper has the lowest latency for 100-
and 1000-byte command sizes. For 10000-byte commands, Volery had similar or lower latency than Zoo-
keeper. Such lower latency of Volery with 10000-byte commands is due to a shorter time spent with batch-
ing: as message sizes increase, the size threshold of the batch (250 kilobytes for on-disk storage) is reached
faster, resulting in lower latency.

Figure 4 (right) shows the latency breakdown of commands executed by Volery. Batching is the time
elapsed from the moment the client sends command C to the instant when C is proposed by the ring co-
ordinator as part of a batch. Multicasting is the time from when the propose is executed until when the
batch that contains C is delivered by a server replica. Waiting represents the time between the delivery of C

and the moment when C starts executing. Executing measures the delay between the start of the execution
of command C until the client receives C’s response. We can see that more than half of the latency time
is due to multicasting, which includes saving Multi-Ring Paxos instances synchronously to disk. There is
also a significant amount of time spent with batching, done to reduce the number of disk operations and
allow higher throughput: each Paxos proposal is saved to disk synchronously, so increasing the number
of commands per proposal (i.e., per batch) reduces the number of times the disk is accessed. This allows
performance to improve, but increases latency.
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In Figure 5, we show the cumulative distribution functions (CDFs) of latency for all experiments where
disk was used for storage. The results show that the latency distributions for ZKsmr and Volery with a single
partition are similar, while latency had more variation for 2, 4 and 8 partitions. An important difference
between deployments with a single and with multiple partitions is related to how Multi-Ring Paxos is used.
In ZKsmr and in Volery with a single partition, there is only one Paxos ring, which orders all commands
from all clients and delivers them to all replicas. When there are multiple partitions, each replica delivers
messages from two rings: one ring that orders messages related to the replica’s partition only, and another
ring that orders messages addressed to more than one partition—each replica deterministically merges
deliveries from multiple rings. As the time necessary to perform such deterministic merge is influenced by
the level of synchrony of the rings, latency is expected to fluctuate more when merging is involved.

7.2.2 Experiments using in-memory storage
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Figure 6: Results for Zookeeper, ZKsmr and Volery with 1, 2, 4 and 8 partitions, using in-memory storage. Throughput
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Latencies reported correspond to 75% of the maximum throughput.
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Figure 7: Cumulative distribution function (CDF) of latency for different command sizes (in-memory storage).

In Figure 6, we show the results for local commands when storing data in memory only. Volery’s through-
put scales with the number of partitions (Figure 6 (top left)), specially for large messages, in which case
throughput grows linearly with the number of partitions (i.e., ideal case). We can also see that latency val-
ues for Volery and ZKsmr are less than half of what they are for on-disk storage (Figure 6 (bottom left)), while
Zookeeper’s latency decreased by an order of magnitude.

Figure 6 (right) shows the latency breakdown. Even though no data is saved to disk, multicasting is still
responsible for most of the latency, followed by batching. Differently from the experiments described in
Section 7.2.1, batching here had a size threshold of 30 kilobytes, which helps to explain why batching time
is roughly the same for different message sizes. In these experiments, although there are no disk writes,
batching is still used because it reduces the number of Paxos proposals and the number of messages sent
through the network, which allows higher throughput. Figure 7 shows the latency CDFs for the in-memory
experiments, where we can see that Volery with multiple partitions (i.e., deployments where Multi-Ring
Paxos uses multiple rings) tends to have more variation in latency.
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7.2.3 Experiments with global commands

In this section, we analyze how Volery performs when the workload includes commands that are multicast
to all partitions (global commands). This is the least favorable (non-faulty) scenario for S-SMR, as having
commands multicast to all partitions effectively limits throughput scalability: if all commands go to all
partitions, adding more partitions will not increase throughput.

We ran experiments with different rates of global commands (i.e., create and delete operations): 0%, 1%,
5% and 10% of all commands. We chose such rates for two reasons: (i) it is obvious that high rates of global
commands will prevent the system from scaling, plus (ii) it is common for large scale services to have a
high rate of read requests (which are local commands in Volery). An example of such a service is Facebook’s
TAO [27], which handles requests to a social graph; it allows, for instance, pages to be generated based on
the user’s connections in the social network. In Facebook’s TAO, 99.8% of all requests are read-only [27].

Global commands

 50

 100

 150

 200

 250

 300

T
h
ro

u
g
h
p
u
t 
(k

c
p
s
) Zookeeper

ZKsmr
Volery 1p
Volery 2p
Volery 4p
Volery 8p

 0

 20

 40

 60

 80

 100

 120

 140

0.0 0.01 0.05 0.1

L
a
te

n
c
y
 (

m
s
)

Rate of create/delete commands

 0

 20

 40

 60

 80

 100

 120

 140

1p 2p 4p 8p 1p 2p 4p 8p 1p 2p 4p 8p 1p 2p 4p 8p

L
a
te

n
c
y
 (

m
s
)

 

Latency breakdown for S-SMR (global commands)

Rate of create/delete commands

Batching
Multicasting

Waiting
Executing

0.10.050.010.0

Figure 8: Throughput and latency versus rate of create/delete commands (in-memory storage, 1000-bytes commands).
Throughput is shown in units of a thousand commands per second (kcps). Latencies shown corresponds to 75% of the
maximum throughput.
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Figure 9: Cumulative distribution function (CDF) of latency for different rates of create/delete commands (in-memory
storage, 1000-bytes commands).

We can see in Figure 8 (top left) that Volery scales throughput with the number of partitions for all config-
urations but the exceptional case of 10% of global commands when augmenting the number of partitions
from 4 to 8. Moreover, Volery with two partitions outperforms Zookeeper in all experiments. The major
drawback of Volery under global commands is that to ensure linearizability, partitions must exchange sig-
nals: as create and delete commands are multicast to all partitions, no server can send a reply to a client
before receiving a signal from all other partitions when executing such a command. This explains the signi-
ficant increase in latency shown in Figure 8 (bottom left), as global commands are added to the workload:
as the number of partitions increases, so does the average latency. As we can see in Figure 8 (right), this
extra latency comes from the servers waiting for signals from other partitions.

Figure 9 shows the latency CDFs for the workloads with global commands. For experiments with more
than one partition, the rate of messages with high latency is much higher than the rate of global commands.
This happens due to a “convoy effect": local commands may be delivered after global commands, having
to wait for the latter to finish.
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Figure 10: Latency components for different workloads, partitionings and levels of optimism.

7.3 Chirper

For the experiments with Chirper, we used two kinds of workloads: Timeline (all issued requests aregetTimeline)
and Mix (7.5% post, 3.75% follow, 3.75% unfollow, and 85% getTimeline). We compared Chirper de-
ployed with Fast-SSMR and with S-SMR. State prefetching was enabled in all experiments.

We deployed Retwis with a single Redis server, while Chirper was run with 1, 2, 4 and 8 partitions, with
3 replicas per partition. In our experiments with Chirper, we use Ridge [10] for multicast in experiments
with both S-SMR and Fast-SSMR. Each Paxos ensemble in our Ridge deployment has 3 acceptors, with in-
memory storage.

7.3.1 Latency improvement

In this section we evaluate the latency improvement brought by Fast-SSMR. We report latency for five al-
gorithms: S-SMR, Conservative, Baseline Optimistic, Fully Optimistic (i.e., with optimistic state exchange
enabled), and Retwis as reference. Retwis relied on a non-fault-tolerant stand-alone Redis server. Since we
are interested in measuring latency in the absence of contention, we run our experiments with a low load.

Figure 10 shows the latency components for each algorithm tested. For each command C, the Multic-

asting component is the time between the moment when the client multicasts C and the moment when the
server S that replies to C cons- or opt-delivers the command and puts it in an execution queue; Waiting is
the time from when S delivers C until when S starts to execute it; Executing is the time from when S starts
to execute C to when the client receives the reply. We can see that the multicast time of the optimistic ap-
proaches (i.e., Baseline and Fully Optimistic) is significantly lower (in proportion) than that of S-SMR and
the conservative one of Fast-SSMR, which happens thanks to the lower latency of the optimistic atomic
delivery. The Waiting component is nearly zero because the system is not saturated, so commands do not
have to wait very long to be executed—when there are too many commands, they are put in a queue to be
executed later. The execution time comprises the time it takes to execute the command itself, including
any coordination across partitions. We can see that the Executing component is shorter for the Timeline
workload, which happens because all requests are single-partition, requiring no cross-partition coordina-
tion. In the Mix workload, many requests are multi-partition, which require exchange of both signals and
state between servers.

The optimistic state exchange optimization (Fully Optimistic) shows some latency improvement over
the Baseline approach, although this is visible only as the number of partitions increases (i.e., eight parti-
tions, in Figure 10, bottom right). In Figure 11, we can see the cumulative distribution functions (CDFs) of
latency for each workload and partitioning. The latency difference between the different techniques be-
comes more evident, as both optimistic latencies are significantly lower than those of S-SMR and Conser-
vative. As for the optimistic state exchange, it is expected to reduce latency only for the Mix workload with
more than one partition, and we see improvements with eight partitions. Nevertheless, the Fully Optimistic
latency is roughly the same as the Baseline Optimistic latency in the worst case.

25



Latency CDF for workload Timeline

 0

 0.2

 0.4

 0.6

 0.8

 1

      

1
 P

a
rt

it
io

n

Retwis
Fully Opt.

Baseline Opt.
Conservative

S-SMR

 0

 0.2

 0.4

 0.6

 0.8

 1

0 2 4 6 8 10

Latency (ms)

2
 P

a
rt

it
io

n
s

Latency CDF for workload Timeline

 0

 0.2

 0.4

 0.6

 0.8

 1

      

4
 P

a
rt

it
io

n
s

 0

 0.2

 0.4

 0.6

 0.8

 1

0 2 4 6 8 10

Latency (ms)

8
 P

a
rt

it
io

n
s

Latency CDF for workload Mix

 0

 0.2

 0.4

 0.6

 0.8

 1

         

1
 P

a
rt

it
io

n

 0

 0.2

 0.4

 0.6

 0.8

 1

0 2 4 6 8 10 12 14 16

Latency (ms)

2
 P

a
rt

it
io

n
s

Latency CDF for workload Mix

 0

 0.2

 0.4

 0.6

 0.8

 1

         

4
 P

a
rt

it
io

n
s

 0

 0.2

 0.4

 0.6

 0.8

 1

0 2 4 6 8 10 12 14 16

Latency (ms)

8
 P

a
rt

it
io

n
s

Figure 11: Cumulative distribution function (CDF) of latency for different workloads, partitionings and levels of op-
timism.

7.3.2 Throughput scalability

In this section, we evaluate the throughput scalability of Fast-SSMR, whose goal is to scale throughput while
providing low-latency replies, and we compare it to the original S-SMR. For these tests, we implemented
Chirper with both replication techniques, using the baseline algorithm for Fast-SSMR.

Figure 12 (left) shows throughput and latency results for Chirper when deployed with S-SMR. Through-
put values for each workload are normalized by the throughput of Chirper with a single partition, whose
absolute value (in kilocommands per second, or kcps) is shown in the graph. Figure 12 (right) shows the
corresponding results for Chirper deployed with Fast-SSMR. In the case of Fast-SSMR, the optimistic and
conservative latencies are both shown in Figure 12 (bottom right): the solid bottom of each bar represents
the latency of the optimistic replies, while the hatched top represents the difference between the two laten-
cies; the sum of the two is the conservative latency.

We can see that having two state machine threads (one conservative and one optimistic) running in each
of our multi-core servers had very little impact on the maximum throughput of the system, in comparison
to S-SMR. The slight decrease in throughput observed may be explained by the fact that, when the optim-
istic state machine performs a repair and copies the state from the conservative state machine, the latter is
locked for a brief period to allow a consistent state to be copied from it. The figure also shows that the con-
servative latency of Fast-SSMR is roughly the same as the latency of the original technique, which means
that both approaches are able to provide consistent replies within the same time. Moreover, we can see
that there is a significant latency reduction by having optimistic execution, at the cost of possibly having
some mistaken optimistic replies. There are no mistaken replies for the Timeline workload because get-
Timeline requests are read-only. Thus, if there are no other requests, getTimeline requests can be executed
in any order without affecting the final state of the service or the replies sent back to clients. Finally, the
figure shows that, with both replication techniques, Chirper scales with the number of partitions, reach-
ing a higher throughput than Retwis already with two partitions for the Timeline workload and with eight
partitions for the Mix workload. It is worth noting that Chirper ensures linearizability, unlike Retwis.
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Figure 12: Scalability results for Chirper, implemented with S-SMR and Fast-SSMR, with 1, 2, 4 and 8 partitions. Retwis
results are also shown. For each workload, the throughput was normalized by that of Chirper with a single partition
(absolute values in kilocommands per second are shown). Latencies reported correspond to 75% of the maximum
throughput.

The optimistic latency of Chirper, for the Timeline workload, is significantly lower than the conservat-
ive one (between 30 and 50 percent). This happens because the Timeline workload is composed solely
of single-partition requests, not requiring coordination between partitions. This is not the case for the
Mix workload, which contains requests that require state exchange. When executing such a request, the
(Baseline) optimistic state machine has to wait until a remote state arrives from a remote conservative state
machine. This extra waiting reduces the difference between the optimistic and conservative latencies. Even
then, the optimistic latency is still lower (between 20 and 45 percent) than the conservative one.

The rate of mistakes is calculated by dividing the number of optimistic replies that differed from the
conservative replies by the total number of optimistic replies received. The corresponding percentages are
not shown for the Timeline workload: getTimeline is a read-only request and, thus, an execution composed
only of getTimeline requests would never have incorrect replies sent to the client—even if the servers de-
liver the commands out-of-order. For an incorrect reply to be received, the workload must contain both
requests that read and requests that update the service state, as in the Mix workload. We can see that, in
all experiments, the percentage of mistaken replies was fairly low. The percentage of mistakes can be con-
trolled by setting more or less aggressive parameters for the optimistic atomic multicast algorithm, with a
trade-off between latency improvement and number of correct replies. For instance, waiting a bit longer
before delivering a message optimistically may be enough for a process to receive a late message that would
otherwise be optimistically delivered in the incorrect order [9].

8 Related Work

State machine replication is a well-known approach to replication and has been extensively studied (e.g.,
[1,2,28–30]). State machine replication requires replicas to execute commands deterministically, which im-
plies sequential execution. Even though increasing the performance of state machine replication is non-
trivial, different techniques have been proposed for achieving scalable systems, such as optimizing the
propagation and ordering of commands (i.e., the underlying atomic broadcast algorithm). In [31], the au-
thors propose to have clients sending their requests to multiple computer clusters, where each such cluster
executes the ordering protocol only for the requests it received, and then forwards this partial order to every
server replica. The server replicas, then, must deterministically merge all different partial orders received
from the ordering clusters. In [32], Paxos [23] is used to order commands, but it is implemented in a way
such that the task of ordering messages is evenly distributed among replicas, as opposed to having a leader
process that performs more work than the others and may eventually become a bottleneck.

State machine replication seems at first to prevent multi-threaded execution since it may lead to non-
determinism. However, some works have proposed multi-threaded implementations of state machine rep-
lication, circumventing the non-determinism caused by concurrency in some way. In [30], for instance, the
authors propose organizing each replica in multiple modules that perform different tasks concurrently,
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such as receiving messages, batching, and dispatching commands to be executed. The execution of com-
mands is still sequential, but the replica performs all other tasks in parallel. We also implemented such
kinds of parallelism in Eyrie.

Some works have proposed to parallelize the execution of commands in SMR. In [28], application se-
mantics is used to determine which commands can be executed concurrently without reducing determin-
ism (e.g., read-only commands can be executed in any order relative to one another). Upon delivery, com-
mands are directed to a parallelizer thread that uses application-supplied rules to schedule multi-threaded
execution. Another way of dealing with non-determinism is proposed in [29], where commands are specu-
latively executed concurrently. After a batch of commands is executed, replicas verify whether they reached
a consistent state; if not, commands are rolled back and re-executed sequentially. Both [28] and [29] assume
a Byzantine failure model and in both cases, a single thread is responsible for receiving and scheduling
commands to be executed. In the Byzantine failure model, command execution typically includes signa-
ture handling, which can result in expensive commands. Under benign failures, command execution is less
expensive and the thread responsible for command reception and scheduling may become a performance
bottleneck.

Many database replication schemes also aim at improving the system throughput, although commonly
they do not ensure strong consistency as we define it here (i.e., as linearizability). Many works (e.g., [7,
33–35]) are based on the deferred-update replication scheme, in which replicas commit read-only transac-
tions immediately, not necessarily synchronizing with each other. This provides a significant improvement
in performance, but allows non-linearizable executions to take place. The consistency criteria usually en-
sured by database systems are serializability [36]or snapshot isolation [37]. Those criteria can be considered
weaker than linearizability, in the sense that they do not take into account real-time precedence of different
commands among different clients. For some applications, this kind of consistency is good enough, allow-
ing the system to scale better, but services that require linearizability cannot be implemented with such
techniques.

Other works have tried to make linearizable systems scalable [14, 38, 39]. In [38], the authors propose
a scalable key-value store based on DHTs, ensuring linearizability, but only for requests that access the
same key. In [14], a partitioned variant of SMR is proposed, supporting single-partition updates and multi-
partition read operations. It relies on total order: all commands have to be ordered by a single sequencer
(e.g., a Paxos group of acceptors), so that linearizability is ensured. The replication scheme proposed in [14]
does not allow multi-partition update commands. Spanner [39] uses a separate Paxos group per partition.
To ensure strong consistency across partitions, it assumes that clocks are synchronized within a certain
bound that may change over time. The authors say that Spanner works well with GPS and atomic clocks.

Scalable State Machine Replication employs state partitioning and ensures linearizability for any pos-
sible execution, while allowing throughput to scale as partitions are added, even in the presence of multi-
partition commands and unsynchronized clocks.

Fast-SSMR proposes to use optimism to provide faster replies to client requests. Other works have used
optimistic execution before. In [14,40], optimism is implemented in the communication layer, which allows
replicas to deliver messages early. The approach proposed in [41] uses speculative execution in the context
of fully replicated state machines. It assumes that commands are independent (i.e., they do not access the
same data item) to accelerate execution; when this assumption does not hold, the execution is rolled back
and the command has to be multicast for execution again. An optimistic atomic broadcast protocol [42]
is used in [11, 12] to certify update transactions. In [12], the system ensures snapshot isolation [37] in a
partitioned database. Out-of-order optimistic deliveries may cause transactions to abort, but only if the
out-of-order transactions conflict and one of them already started executing.

In Zyzzyva [13], each command is sent to a primary replica, which forwards it to a number of replicas.
Those replicas immediately execute the command and send a reply to the client, along with an execution
history. If the client receives enough replies with the same history, the order is guaranteed to be correct;
otherwise, the client informs the replicas about the inconsistency, forcing them to execute a conservative
total order protocol. MDCC [43]makes uses of Generalized Paxos [44] to reduce the number of round-trips
between data centers when executing transactions. Generalized Paxos extends Fast Paxos [45], and both are
optimistic consensus protocols that may achieve consensus in fewer communication rounds than Paxos.
MDCC performs well with commutative operations and provides read-committed isolation [46]. The au-
thors argue that the protocol could be extended to provide stronger consistency levels, up to serializability.

There are three main differences between those previous works that use speculative execution and what
we propose here. First, Fast-SSMR accommodates any kind of (deterministic) multi-partition commands,
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which requires a fairly sophisticated repair procedure in case of mistakes of the optimistic delivery. Second,
in our dual state machine approach, the replica never stops executing commands or sending replies to
clients; only the optimistic state machine may stop and not reply to some commands in case of an ordering
mistake. Third, no rollback is necessary when repairing the optimistic state: it is simply copied from the
conservative one; most complexity lies in determining which commands the optimistic state machine will
execute after the repair is done.

9 Conclusion

This work introduces S-SMR, a variant of the well-known state machine replication technique that differs
from previous related works in that it allows throughput to scale with the number of partitions without
weakening consistency. We also introduce general principles of how to implement an optimistic execution
in a partitioned-state system, while ensuring linearizability. The algorithm presented, Fast-SSMR, extends
S-SMR and differs from previous works because (i) it does not require the application to be able to rollback
executions, (ii) it allows any kind of workload (composed of deterministic commands) and any kind of par-
titioning of the state, and (iii) when a mistake is detected, the conservative state machine keeps handling
commands and sending replies. The cost of this technique is to have two state machines running in par-
allel at each replica: a conservative one and an optimistic one. To evaluate both S-SMR and Fast-SSMR,
we developed the Eyrie library and implemented Volery (a Zookeeper clone) and Chirper (a Twitter clone)
with Eyrie. Our experiments demonstrate that in deployments with 8 partitions (the largest configuration
we can deploy in our infrastructure) and under certain workloads, throughput experienced an 8-time im-
provement, resulting in ideal scalability. Moreover, Volery’s throughput proved to be significantly higher
than Zookeeper’s. Chirper’s optimistic replies have significantly lower latency than the conservative replies.
This was also achieved thanks to the optimizations proposed here, which allow multi-partition commands
to execute efficiently, even when servers have to exchange state.
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