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Abstract—State machine replication (SMR) is a well-known
technique able to provide fault-tolerance. SMR consists of
sequencing client requests and executing them against replicas
in the same order; thanks to deterministic execution, every
replica will reach the same state after the execution of each
request. However, SMR is not scalable since any replica added
to the system will execute all requests, and so throughput
does not increase with the number of replicas. Scalable SMR
(S-SMR) addresses this issue in two ways: (i) by partitioning
the application state, while allowing every command to access
any combination of partitions, and (ii) by using a caching
algorithm to reduce the communication across partitions. We
describe Eyrie, a library in Java that implements S-SMR, and
Volery, an application that implements Zookeeper’s API. We
assess the performance of Volery and compare the results
against Zookeeper. Our experiments show that Volery scales
throughput with the number of partitions.

I. INTRODUCTION

Many current online services have stringent availability
and performance requirements. High availability entails tol-
erating component failures and is typically accomplished
with replication. For many online services, “high perfor-
mance” essentially means the ability to serve an arbitrarily
large load, something that can be achieved if the service can
scale throughput with the number of replicas. State machine
replication (SMR) [1], [2] is a well-known technique to
provide fault tolerance without sacrificing strong consistency
(i.e., linearizability). SMR regulates how client commands
are propagated to and executed by the replicas: every
non-faulty replica must receive and execute every command
in the same order. Moreover, command execution must be
deterministic. SMR provides configurable availability, by
setting the number of replicas, but limited scalability: every
replica added to the system must execute all requests; hence,
throughput does not increase as replicas join the system.

Distributed systems usually rely on state partitioning to
scale (e.g., [3], [4]). If requests can be served simultaneously
by multiple partitions, then augmenting the number of
partitions results in an overall increase in system throughput.
However, exploiting state partitioning in SMR is challeng-
ing: First, ensuring linearizability efficiently when state is
partitioned is tricky. To see why, note that the system must be
able to order multiple streams of commands simultaneously
(e.g., one stream per partition) since totally ordering all
commands cannot scale. But with independent streams of
ordered commands, how to handle commands that address
multiple partitions? Second, SMR hides from the service

designer much of the complexity involved in replication; all
the service designer must provide is a sequential implemen-
tation of each service command. If state is partitioned, then
some commands may need data from multiple partitions.
Should the service designer introduce additional logic in the
implementation to handle such cases? Should the service be
limited to commands that access a single partition?

This paper presents Scalable State Machine Replication
(S-SMR), an approach that achieves scalable throughput and
strong consistency (i.e., linearizability) without constraining
service commands or adding additional complexity to their
implementation. S-SMR partitions the service state and
relies on an atomic multicast primitive to consistently order
commands within and across partitions. We show in the
paper that simply ordering commands consistently across
partitions is not enough to ensure strong consistency in
partitioned state machine replication. S-SMR implements
execution atomicity, a property that prevents command in-
terleaves that violate strong consistency. To assess the per-
formance of S-SMR, we developed Eyrie, a Java library that
allows developers to implement partitioned-state services
transparently, abstracting partitioning details, and Volery, a
service that implements Zookeeper’s API [5]. All commu-
nication between partitions is handled internally by Eyrie,
including remote object transfers. In the experiments we
conducted with Volery, throughput scaled with the number
of partitions, in some cases linearly. In some deployments,
Volery reached over 250 thousand commands per second,
largely outperforming Zookeeper, which served 45 thousand
commands per second under the same workload.

The paper makes the following contributions: (1) It intro-
duces S-SMR and discusses several performance optimiza-
tions, including caching techniques. (2) It details Eyrie, a
library to simplify the design of services based on S-SMR.
(3) It describes Volery to demonstrate how Eyrie can be
used to implement a service that provides Zookeeper’s API.
(4) It presents a detailed experimental evaluation of Volery
and compares its performance to Zookeeper.

The remainder of this paper is organized as follows.
Section II describes our system model. Section III presents
state-machine replication and the motivation for this work.
Section IV introduces S-SMR; we explain the technique in
detail and argue about its correctness. Section V details the
implementation of Eyrie and Volery. Section VI reports on
the performance of the Volery service. Section VII surveys
related work and Section VIII concludes the paper.



II. MODEL AND DEFINITIONS

We consider a distributed system consisting of an un-
bounded set of client processes C = {c1, c2, ...} and a
bounded set of server processes S = {s1, ..., sn}. Set S
is divided into P disjoint groups of servers, S1, ...,SP .
Processes are either correct, if they never fail, or faulty,
otherwise. In either case, processes do not experience arbi-
trary behavior (i.e., no Byzantine failures). Processes com-
municate by message passing, using either one-to-one or
one-to-many communication, as defined next. The system is
asynchronous: there is no bound on message delay or on
relative process speed.

One-to-one communication uses primitives send(p,m)
and receive(m), where m is a message and p is the process
m is addressed to. If sender and receiver are correct, then
every message sent is eventually received. One-to-many
communication relies on atomic multicast, defined by the
primitives multicast(γ,m) and deliver(m), where γ is a
set of server groups. Let relation ≺ be defined such that
m ≺ m′ iff there is a server that delivers m before m′.
Atomic multicast ensures that (i) if a server delivers m, then
all correct servers in γ deliver m (agreement); (ii) if a correct
process multicasts m to groups in γ, then all correct servers
in every group in γ deliver m (validity); and (iii) relation
≺ is acyclic (order).1 The order property implies that if s
and r deliver messages m and m′, then they deliver them in
the same order. Atomic broadcast is a special case of atomic
multicast in which there is a single group with all servers.

III. BACKGROUND AND MOTIVATION

State-machine replication is a fundamental approach to
implementing a fault-tolerant service by replicating servers
and coordinating the execution of client commands against
server replicas [1], [2]. The service is defined by a state
machine, which consists of a set of state variables V =
{v1, ..., vm} and a set of commands that may read and
modify state variables, and produce a response for the
command. Each command is implemented by a deterministic
program. State-machine replication can be implemented with
atomic broadcast: commands are atomically broadcast to all
servers, and all correct servers deliver and execute the same
sequence of commands.

We are interested in implementations of state-machine
replication that ensure linearizability. Linearizability is de-
fined with respect to a sequential specification. The sequen-
tial specification of a service consists of a set of commands
and a set of legal sequences of commands, which define
the behavior of the service when it is accessed sequentially.
In a legal sequence of commands, every response to the
invocation of a command immediately follows its invocation,
with no other invocation or response in between them. For

1Solving atomic multicast requires additional assumptions [6], [7]. In the
following, we simply assume the existence of an atomic multicast oracle.

example, a sequence of operations for a read-write variable v
is legal if every read command returns the value of the most
recent write command that precedes the read, if there is one,
or the initial value otherwise. An execution E is linearizable
if there is some permutation of the commands executed in
E that respects (i) the service’s sequential specification and
(ii) the real-time precedence of commands. Command C1

precedes command C2 if the response of C1 occurs before
the invocation of C2.

In classical state-machine replication, throughput does not
scale with the number of replicas: each command must
be ordered among replicas and executed and replied by
every (non-faulty) replica. Some simple optimizations to
the traditional scheme can provide improved performance
but not scalability. For example, although update commands
must be ordered and executed by every replica, only one
replica can respond to the client, saving resources at the
other replicas. Commands that only read the state must be
ordered with respect to other commands, but can be executed
by a single replica, the replica that will respond to the client.

This is a fundamental limitation: while some optimiza-
tions may increase throughput by adding servers, the im-
provements are limited since fundamentally, the technique
does not scale. In the next section, we describe an extension
to SMR that under certain workloads allows performance to
grow proportionally to the number of replicas.

IV. SCALABLE STATE-MACHINE REPLICATION

In this section, we introduce S-SMR, discuss performance
optimizations, and argue about S-SMR’s correctness.

A. General idea

S-SMR divides the application state V (i.e., state vari-
ables) into P partitions P1, ...,PP , where for each Pi,
Pi ⊆ V . Moreover, we require each variable v in V to
be assigned to at least one partition and define part(v) as
the partitions that hold v. Each partition Pi is replicated
by servers in group Si. For brevity, we say that server s
belongs to Pi with the meaning that s ∈ Si, and say that
client c multicasts command C to partition Pi meaning that
c multicasts C to group Si.

To execute command C, the client multicasts C to all
partitions that hold a variable read or updated by C.
Consequently, the client must be able to determine the
partitions accessed by C, denoted by part(C). Note that
this assumption does not imply that the client must know
all variables accessed by C, but it must know the partitions
these variables belong to. If the client cannot accurately esti-
mate which partitions are accessed by C, it must determine
a superset of these partitions, in the worst case assuming
all partitions. For performance, however, clients must strive
to provide a close approximation to the command’s actually
accessed partitions. We assume the existence of an oracle
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that tells the client which partitions should receive each
command.

Upon delivering command C, if server s does not contain
all variables read by C, s must communicate with servers
in other partitions to execute C. Essentially, s must retrieve
every variable v read in C from a server that stores v
(i.e., a server in a partition in part(v)). Moreover, s must
retrieve a value of v that is consistent with the order in
which C is executed, as we explain next. Operations that do
not involve reading a variable from a remote partition are
executed locally.

In more detail, let op be an operation in the execution of
command C. We distinguish between three operation types:
read(v), an operation that reads the value of a state variable
v, write(v, val), an operation that updates v with value val,
and an operation that performs a deterministic computation.

Server s in partition Pi executes op as follows.
i) op is a read(v) operation.

If Pi ∈ part(v), then s retrieves the value of v and
sends it to every partition Pj that delivers C and does
not hold v. If Pi 6∈ part(v), then s waits for v to be
received from a server in a partition in part(v).

ii) op is a write(v, val) operation.
If Pi ∈ part(v), s updates the value of v with val; if
Pi 6∈ part(v), s executes op, creating a local copy of
v, which will be up-to-date at least until the end of C’s
execution.

iii) op is a computation operation.
In this case, s executes op.

As we now show, the procedure above does not ensure lin-
earizability. Consider the execution depicted in Figure 1 (a),
where state variables x and y have initial value of 10.
Command Cx reads the value of x, Cy reads the value of
y, and Cxy sets x and y to value 20. Consequently, Cx is
multicast to partition Px, Cy is multicast to Py , and Cxy

is multicast to both Px and Py . Servers in Py deliver Cy

and then Cxy , while servers in Px deliver Cxy and then Cx,
which is consistent with atomic order. In this execution, the
only possible legal permutation for the commands is Cy ,
Cxy , and Cx, which violates the real-time precedence of the
commands, since Cx precedes Cy in real-time.

Intuitively, the problem with the execution in Figure 1 (a)
is that commands Cx and Cy execute “in between” the
execution of Cxy at partitions Px and Py . In S-SMR, we
avoid such cases by ensuring that the execution of every
command is atomic. Command C is execution atomic if, for
each server s that executes C, there exists at least one server
r in every other partition in part(C) such that the execution
of C at s finishes after r delivers C. More precisely,
let delivery(C, s) and end(C, s) be, respectively, the time
when s delivers command C and the time when s completes
C’s execution. Execution atomicity ensures that, for every
server s in partition P that executes C, there is a server r in
every P ′ ∈ part(C) such that delivery(C, r) < end(C, s).

Intuitively, this condition guarantees that the execution of C
at P and P ′ overlap in time.

Replicas can ensure execution atomicity by coordinating
the execution of commands. After delivering command C,
servers in each partition send a signal(C) message to
servers in the other partitions in part(C). Before finishing
the execution of C, each server must receive a signal(C)
message from at least one server in every other partition that
executes C. Moreover, if server s in partition P receives the
value of a variable from server r in another partition P ′, as
part of the execution of C, then s does not need to receive a
signal(C) message from servers in P ′. This way, to tolerate
f failures, each partition requires f+1 servers; if all servers
in a partition fail, service progress is not guaranteed.

Figure 1 (b) shows an execution of S-SMR. In the
example, servers in Px wait for a signal from Py , therefore
delaying Cxy’s execution in Px and moving the execution of
Cx ahead in time. Note that the outcome of each command
execution is the same as in case (a), but the executions of
Cx, Cy and Cxy , as seen by clients, now overlap in time
with one another. Hence, there is no real-time precedence
among them.

B. Detailed algorithm

In Algorithm 1, we show the basic operation of S-SMR.
To submit a command C, the client queries an oracle to get
set dests (line 5), which is a superset of part(C) used by
the client as destination set for C (line 6).

Upon delivering C, server s in partition P multicasts
signal(C) to others, which is the set containing all other
partitions involved in C (lines 10 and 11). It might happen
that s receives signals concerning C from other partitions
even before s started executing C. For this reason, s must
buffer signals and check if there are signals buffered already
when starting the execution of C. For the sake of simplicity,
Algorithm 1 simply initializes such buffers as ∅ for all
possible commands. In practice, buffers for C are created
when the first message concerning C is delivered.

After multicasting signals, server s proceeds to the execu-
tion of C, which is a sequence of operations that might read
or write variables in V . The main concern is with operations
that read variables, as they may determine the outcome of the
command execution. All other operations can be executed
locally at s. If the operation reads variable v and v belongs
to P , s’s partition, then s multicasts the value of v to the
other partitions that delivered C (line 15). The command
identifier C.id is sent along with v to make sure that the
other partitions will use the appropriate value of v during
C’s execution. If v belongs to some other partition P ′, s
waits until an up-to-date value of v has been delivered (line
17). Every other operation is executed with no interaction
with other partitions (line 19).

After executing all operations of C, s waits until a signal
from every other partition has been received (line 20) and,
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(a) atomic multicast does not ensure linearizability
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Figure 1. Atomic multicast and S-SMR. (To simplify the figure, we show a single replica per partition.)

only then, sends the reply back to the client (line 21). This
ensures that C will be execution atomic.

C. Performance optimizations

Algorithm 1 can be optimized in many ways. In this
section, we briefly mention some of these optimizations and
then detail caching.
• Server s does not need to wait for the execution of

command C to reach a read(v) operation to only then
multicast v to the other partitions in part(C). If s
knows that v will be read by C, s can send v’s value
to the other partitions as soon as s starts executing C.

• The exchange of objects between partitions serves
the purpose of signaling. Therefore, if server s sends
variable v’s value to server r in another partition, r does
not need to receive a signal message from s’s partition.

• It is not necessary to exchange each variable more
than once per command since any change during the
execution of the command will be deterministic and
thus any changes to the variable can be applied to the
cached value.

• Even though all replicas in all partitions in part(C)
execute C, a reply from a replica in a single partition
suffices for the client to finish the command.

Server s in partition P can cache variables that belong to
other partitions. There are different ways for s to maintain
cached variables; here we define two techniques: conserva-
tive caching and speculative caching. In both cases, the basic
operation is the following: When s executes a command
that reads variable x from some other partition Px, after
retrieving the value of x from a server in Px, s stores x’s
value in its cache and uses the cached value in future read
operations. If a command writes x, s updates (or creates) x’s
local value. Server s will have a valid cache of x until (i) s
discards the entry due to memory constraints, or (ii) some
command not multicast to P changes the value of x. Since

servers in Px deliver all commands that access x, these
servers know when any possible cached value of x is stale.
How servers use cached entries distinguishes conservative
from speculative caching.

Servers in Px can determine which of its variables have
a stale value cached in other partitions. This can be done by
checking if there was any command that updated a variable x
in Px, where such command was not multicast to some other
partition P that had a cache of x. Say servers in Px deliver
command C, which reads x, and say the last command that
updated the value of x was Cw. Since x ∈ Px, servers in Px

delivered Cw. One way for servers in Px to determine which
partitions need to update their cache of x is by checking
which destinations of C did not receive Cw. This can be
further optimized: even if servers in P did not deliver Cw,
but delivered some other command Cr that reads x and Cr

was ordered by multicast after Cw, then P already received
an up-to-date value of x (sent by servers in Px during the
execution of Cr). If servers in P discarded the cache of
x (e.g., due to limited memory), they will have to send a
request for its value.

Conservative caching: Once s has a cached value of x,
before it executes a read(x) operation, it waits for a cache-
validation message from a server in Px. The cache validation
message contains a set of pairs (var, val), where var is a
state variable that belongs to Px and whose cache in P needs
to be validated. If servers in Px determined that the cache
is stale, val contains the new value of var; otherwise, ⊥,
telling s that its cached value is up to date. If s discarded its
cached copy, it sends a request for x to Px. If it is possible
to determine which variables are accessed by C before C’s
execution, all such messages can be sent upon delivery of
the command, reducing waiting time; messages concerning
variables that could not be determined a-priori are sent later,
during the execution of C, as variables are determined.
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Algorithm 1 Scalable State-Machine Replication (S-SMR)

1: Initialization:
2: ∀C ∈ K : rcvd signals(C)← ∅
3: ∀C ∈ K : rcvd variables(C)← ∅
4: Command C is submitted by a client as follows:
5: dests← oracle(C)
6: multicast(dests, C)
7: wait for response from one server

8: Command C is executed by a server in partition P as follows:
9: upon deliver(C)

10: others← dests \ {P}
11: multicast(others, signal(C))
12: for each operation op in C do
13: if op is read(v) then
14: if v ∈ P then
15: multicast(others, {v, C.id})
16: else
17: wait until v ∈ rcvd variables(C)
18: update v with the value in rcvd variables(C)
19: execute op
20: wait until rcvd signals(C) = others
21: send reply to client

22: upon deliver(signal(C)) from partition P ′

23: rcvd signals(C)← rcvd signals(C) ∪ {P ′}

24: upon deliver({v, C.id})
25: rcvd variables(C)← rcvd variables(C) ∪ {v}

Algorithm variables:
K: the set of all possible commands
C.id: unique identifier of command C

oracle(C): function that returns a superset of part(C)

dests: set of partitions to which C is multicast
others: set of partitions waiting for signals and variables from
P; also, P waits for signals from all such partitions
signal(C): a synchronization message that allows S-SMR to
ensure C to be execution atomic
rcvd signals(C): a set containing all partitions that already
signaled P regarding the execution of C
rcvd variables(C): a set containing all variables that must
be received from other partitions in order to execute C

Speculative caching: It is possible to reduce execution
time by speculatively assuming that cached values are up-
to-date. Speculative caching requires servers to be able to
rollback the execution of commands, in case the speculative
assumption fails to hold. Many applications allow rolling
back a command, such as databases, as long as no reply has
been sent to the client for the command yet. The difference
between speculative caching and conservative caching is
that in the former servers that keep cached values do not
wait for a cache-validation message before reading a cached
entry; instead, a read(x) operation returns the cached value
immediately. If after reading some variable x from the cache,
during the execution of command C, server s receives a
message from a server in Px that invalidates the cached

value, s rolls back the execution to some point before the
read(x) operation and resumes the command execution,
now with the up-to-date value of x. Server s can only reply
to the client that issued C after every variable read from the
cache has been validated.

D. Correctness

In this proof, we denote the order given by atomic
multicast with “≺”. Given any two messages m1 and m2,
“m1 ≺ m2” means that both messages are delivered by the
same group and m1 is delivered before m2, or there is some
message m′ such that m1 ≺ m′ and m′ ≺ m2, which can
be written as m1 ≺ m′ ≺ m2.

We argue that, if every command in execution E of S-SMR
is execution atomic, then E is linearizable. Suppose, by
means of contradiction, that there exist two commands x
and y, where x finishes before y starts, but y ≺ x in the
execution. There are two possibilities for this: (i) x and y
access some variable in common v, or (ii) x and y access
no variable in common.

In case (i), at least one partition Pv (which contains v)
delivers both x and y. As x finishes before y starts, then Pv

delivers x, then y. From the properties of atomic multicast,
and since each partition is mapped to a multicast group,
no partition delivers y, then x. Moreover, atomic multicast
ensures acyclic order, so there are no commands z1, ..., zn
such that their atomic order is y ≺ z1 ≺ · · · ≺ zn ≺ x. So,
we reached a contradiction in this case.

In case (ii), if there were no other command in E , then
the execution of x and y could be done in any order, which
would contradict the supposition that y ≺ x. Therefore, there
are commands z0, ..., zn such that their atomic order is y ≺
z0 ≺ · · · ≺ zn ≺ x. As y ≺ z0, then some partition Py

delivers y, then z0. Also, since z0 ≺ z1, then some partition
P1 delivers z0, then z1, and so on: partition Pi delivers zi−1,
then zi, where i ∈ {1, ..., n}. Finally, partition Px delivers
zn, then x.

We now claim that for every Rx ∈ Px, Rx finishes
executing x only after some R0 ∈ P0 delivered z0. We prove
our claim by induction.

Induction basis: As zn ≺ x, every Rx ∈ Px executes
command x only after the execution of zn at Rx finished. As
zn is execution atomic, for every Rx ∈ Px, there is a server
Rn ∈ Pn that delivered zn before Rx finished executing zn,
which was before Rx even started executing command x.
Therefore, every Rx ∈ Px finishes executing x only after
some Rn ∈ Pn delivered zn.

Induction step: Assume that every Rx ∈ Px finishes
executing x only after some Ri ∈ Pi delivered zi. As zi is
execution atomic, there is some Ri−1 ∈ Pi−1 that delivered
zi before Ri finished executing zi. As zi−1 ≺ zi and Ri−1
delivers both, then Ri−1 delivers zi−1 before executing zi.
Thus, Rx ∈ Px finishes executing x only after some Ri−1
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has delivered zi−1, for every Rx ∈ Px. This proves our
claim.

Finally, for every R0 ∈ P0, there is a server Ry ∈ Py

that delivers z0 before R0 finishes executing z0. Since every
Ry delivers and executes y, then z0, and from the claim
above, for every Rx ∈ Px, there is an Ry ∈ Py that
delivers y before Rx finishes executing x. This contradicts
the assumption that x precedes y in real-time, i.e., that the
reply to x is received before y is invoked by a client.

V. IMPLEMENTATION

In this section, we describe Eyrie, a library that im-
plements S-SMR, and Volery, a service that provides
Zookeeper’s API. Both Eyrie and Volery were implemented
in Java.

A. Eyrie

One of the main goals of Eyrie is to make the implementa-
tion of services based on Scalable SMR as easy as possible.
To use Eyrie, the user (i.e., service designer) must ex-
tend two classes, PRObject and StateMachine. Class
PartitioningOracle has a default implementation, but
the user is encouraged to override its methods.

1) The PRObject class: Eyrie supports partial replica-
tion (i.e., some objects may be replicated in some partitions,
not all). Therefore, when executing a command, a replica
might not have local access to some of the objects involved
in the execution of the command. The user informs to Eyrie
which object classes are partially replicated by extending the
PRObject class. Each object of such class may be stored
locally or remotely, but the application code is agnostic to
that. All calls to methods of such objects are intercepted by
Eyrie, transparently to the user.

Eyrie uses AspectJ2 to intercept method calls for
all subclasses of PRObject. Internally, the aspect re-
lated to such method invocations communicates with the
StateMachine instance in order to (i) determine if the
object is stored locally or remotely and (ii) ensure that the
object is up-to-date when each command is executed.

Each replica has a local copy of all PRObject objects.
When a remote object is received, replicas in the local par-
tition PL must update their local copy of the object with an
up-to-date value. For this purpose, the user must provide im-
plementations for the methods getDiff(Partition p)
and updateFromDiff(Object diff). The former is
used by the remote partition PR, which owns the object, to
calculate a delta between the old value currently held by PL

and the newest value, held by PR. Such implementations
may be as simple as returning the full object, which is
then serialized and, upon deserialization in PL, completely
overwrites the old copy of the object. However, it also allows
the user to implement caching mechanisms. Since getDiff

2http://eclipse.org/aspectj

takes a partition as parameter, the user may keep track of
what was the last value received by PL, and then return a
(possibly small) diff, instead of the whole object, which is
then applied to the object with the user-provided method
updateFromDiff.

To avoid unnecessary communication, the user may op-
tionally mark some methods of their PRObject subclasses
as local, by annotating them with @LocalMethodCall.
Calls to such methods are not intercepted by the library,
sparing communication when the user sees fit. Although
the command that contains a call to such a method still
has to be delivered and executed by all partitions that
hold objects accessed by the command, that particular local
method does not require an up-to-date object. For example,
say a command C accesses objects O1 and O2, respectively,
in partitions P1 and P2. C completely overwrites objects
O1 and O2, by calling O1.clear() and O2.clear().
Although C has to be delivered by both partitions to ensure
linearizability, a write method that completely overwrites an
object, regardless of its previous state, does not need an up-
to-date version of the object before executing. Because of
this, method clear() can be safely annotated as local,
avoiding unnecessary communication between P1 and P2.

2) The StateMachine class: This class must be ex-
tended by the user’s application server class. To execute
commands, the user must provide an implementation for the
method executeCommand(Command c). The code for
such a method is agnostic to the existence of partitions. In
other words, it can be exactly the same as the code used to
execute commands with classical state-machine replication
(i.e., full replication). Eyrie is responsible for handling all
communication between partitions transparently. To start the
server, method runStateMachine() is called.
StateMachine ensures linearizability by making sure

that each command is execution atomic (as defined in
Section IV-A). As soon as each command C is delivered,
StateMachine sends signal(C) to all remote partitions
that deliver C, in order to reduce waiting time. A command
can only conclude its execution after it has received a signal
from at least one server in every other partition that delivered
the command—remote object updates received from other
partitions count as signals for linearizability purposes.

In order to reduce communication, it is sufficient that
a single replica in each partition sends object updates and
signal messages to other partitions. If the designated replica
fails, the other replicas in the same partition will suspect the
failure and one of the operational replicas will retransmit the
information.

3) The PartitioningOracle class: Clients multi-
cast each command directly to the partitions affected by
the command, i.e., those that contain objects accessed by
the command. Although Eyrie encapsulates most details
regarding partitioning, the user must provide an oracle that
tells, for each command, which partitions are affected by
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the command. The set of partitions returned by the oracle
needs to contain all partitions involved, but does not need
to be minimal. In fact, the default implementation of the
oracle simply returns all partitions for every command,
which although correct, is not efficient. For best perfor-
mance, the partition set returned by the oracle should be
as small as possible, which requires the user to extend
PartitioningOracle and override its methods.

Method getDestinations(Command c) is used by
the oracle to tell what partitions should receive each com-
mand. It returns a list of Partition objects. The user
can override this method, which will parse command c
and return a list containing all partitions involved in the
execution of c. The getDestinations method can en-
capsulate any kind of implementation, including one that
involves communicating with servers, so its execution does
not necessarily need to be local to clients. If the set of
partitions involved in the execution of a command cannot
be determined a priori, the oracle can communicate with
servers to determine such set and then return it to the client,
which then multicasts the command to the right partitions.

Another important method in PartitioningOracle
is getLocalObjects(Command c), which is used by
servers before executing c. The method returns a list of
objects in the partition of the server that will be accessed
by c. This list does not need to be complete, but any
kind of early knowledge about what objects need to be
updated in other partitions helps decrease execution time,
as the objects can be sent as soon as the server starts
executing the command. The default implementation of this
method returns an empty list, which means that objects are
exchanged among partitions as their methods are invoked
during execution. Depending on the application, the user
may provide an implementation for this method.

4) Other classes: In the following, we briefly describe a
few accessory classes provided by Eyrie.

The Partition class has two relevant methods,
getId() and getPartitionList(), which return, re-
spectively, the partition’s unique identifier and the list of all
partitions in the system. The oracle can use this information
to map commands to partitions.

When sending commands, the client must multicast a
Command object, which is serialized and sent to the par-
titions determined by the client’s oracle. To the user, a
command object is simply a container of objects, which
are typically parameters for the command. The Command
class offers methods addItems(Objects... objs),
getNext(), hasNext() and so on. How the server will
process such parameters is application-dependent and deter-
mined by the user’s implementation of StateMachine.

Eyrie uses atomic multicast to disseminate commands
from clients and handle communication between parti-

tions. Internally, it uses an implementation3 of Multi-Ring
Paxos [8]. To map rings to partitions, each server in partition
Pi is a learner in rings Ri and Rall (merge is deterministic);
if message m is addressed only to Pi, m is sent to Ri, oth-
erwise, to Rall (and discarded by non-addressee partitions).

B. Volery

We implemented the Volery service on top of Eyrie, pro-
viding an API similar to that of Zookeeper [5]. ZooKeeper
implements a hierarchical key-value store, where each value
is stored in a znode, and each znode can have other znodes
as children. The abstraction implemented by ZooKeeper
resembles a file system, where each path is a unique string
(i.e., a key) that identifies a znode in the hierarchy. We
implemented the following Volery client API:
• create(String path, byte[] data):

creates a znode with the given path, holding data
as content, if there was no znode with that path
previously and there is a znode with the parent path.

• delete(String path): deletes the znode that has
the given path, if there is one and it has no children.

• exists(String path): returns True if there exists
a znode with the given path, or False, otherwise.

• getChildren(String path): returns the list of
znodes that have path as their parent.

• getData(String path): returns the data held by
the znode identified by path.

• setData(String path, byte[] data): sets
the contents of the znode identified by path to data.

Zookeeper ensures a mix of linearizability (for write
commands) and session consistency (for read commands).
Every reply to a read command (e.g., getData) issued
by a client is consistent with all write commands (e.g.,
create or setData) issued previously by the same client.
With this consistency model, Zookeeper is able to scale for
workloads composed mainly of read-only requests. Volery
ensures linearizability for every execution, regardless of
what kind of commands are issued. In order to be scalable,
Volery makes use of partitioning, done with Eyrie.

Distributing Volery’s znodes among partitions was done
based on each znode’s path: a function f(path) returned
the id of the partition responsible for holding the zn-
ode at path. Function f is used by Volery’s oracle to
help clients determine which partitions must receive each
command. Each command getData, setData, exists
and getChildren is multicast to a single partition, thus
being called a local command. Commands create and
delete are multicast to all partitions and are called global
commands; they are multicast to all partitions to guarantee
that every (correct) replica has a full copy of the znodes
hierarchy, even though only the partition that owns each
given znode surely has its contents up-to-date.

3https://github.com/sambenz/URingPaxos
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VI. PERFORMANCE EVALUATION

In this section, we assess the performance of Volery with
on-disk and in-memory deployments, and local and global
commands.

A. Environment setup and configuration parameters

We ran all our experiments on a cluster that had two
types of nodes: (a) HP SE1102 nodes, equipped with two
Intel Xeon L5420 processors running at 2.5 GHz and with 8
GB of main memory, and (b) Dell SC1435 nodes, equipped
with two AMD Opteron 2212 processors running at 2.0
GHz and with 4 GB of main memory. The HP nodes were
connected to an HP ProCurve Switch 2910al-48G gigabit
network switch, and the Dell nodes were connected to an HP
ProCurve 2900-48G gigabit network switch. Those switches
were interconnected by a 20 Gbps link. All nodes ran
CentOS Linux 6.3 with kernel 2.6.32 and had the Oracle
Java SE Runtime Environment 7. Before each experiment,
we synchronize the clocks of the nodes using NTP. This is
done to obtain accurate values in the measurements of the
latency breakdown involving events in different servers.

In all our experiments with Volery and Zookeeper, clients
submit commands asynchronously, that is, each client can
keep submitting commands even if replies to previous
commands have not been received yet, up to a certain
number of outstanding commands. Trying to issue new
commands when this limit is reached makes the client
block until some reply is received. Replies are processed
by callback handlers registered by clients when submitting
commands asynchronously. We allowed every client to have
up to 25 outstanding commands at any time. By submitting
commands asynchronously, the load on the service can be
increased without instantiating new client processes. Local
commands consisted of calls to setData, while global
commands were invocations to create and delete.
“Message size” and “command size”, in the next sections,
refer to the size of the byte array passed to such commands.

We compared Volery with the original Zookeeper and
with ZKsmr, which is an implementation of the Zookeeper
API using traditional state-machine replication. For the
Zookeeper experiments, we used an ensemble of 3 servers.
For the other approaches, we used Multi-Ring Paxos for
atomic multicast, having 3 acceptors per ring: ZKsmr had
3 replicas that used one Paxos ring to handle all communi-
cation, while Volery had 3 replicas per partition, with one
Paxos ring per partition, plus one extra ring for commands
that accessed multiple partitions. Since Zookeeper runs the
service and the broadcast protocol (i.e., Zab [9]) in the same
machines, each ZKsmr/Volery replica was colocated with
a Paxos acceptor in the same node of the cluster. We had
workloads with three different message sizes: 100, 1000 and
10000 bytes. Volery was run with 1, 2, 4 and 8 partitions. We
conducted all experiments using disk for storage, then using
memory (by means of a ramdisk). For on-disk experiments,

we configured Multi-Ring Paxos with ∆ [8] of 40 ms,
batching timeout of 50 ms and batch size threshold of
250 kilobytes; for in-memory experiments, these parameters
were 5 ms, 50 ms and 30 kilobytes, respectively.

B. Experiments using on-disk storage

In Figure 2, we show results for local commands only.
Each Paxos acceptor wrote its vote synchronously to disk
before accepting each proposal. Zookeeper also persisted
data to disk. In Figure 2 (top left), we can see the maxi-
mum throughput for each replication scheme and message
size, normalized by the throughput of Volery with a single
partition. In all cases, the throughput of Volery scaled with
the number of partitions and, for message sizes of 1000
and 10000 bytes, it scaled linearly (ideal case). For small
messages (100 bytes), Zookeeper has similar performance
to Volery with a single partition. As messages increase
in size, Zookeeper’s throughput improves with respect to
Volery: with 1000-byte messages, Zookeeper’s throughput
is similar to Volery’s throughput with two partitions. For
large messages (10000 bytes), Zookeeper is outperformed by
Volery with four partitions. Comparing S-SMR with tradi-
tional SMR, we can see that for small messages (100 bytes),
ZKsmr performed better than Volery with one partition.
This is due to the additional complexity added by Eyrie
in order to ensure linearizability when data is partitioned.
Such difference in throughput is less significant with bigger
commands (1000 and 10000 bytes).

We can also see in Figure 2 (bottom left), the latency
values for the different implementations tested. Latency
values correspond to 75% of the maximum throughput.
Zookeeper has the lowest latency for 100- and 1000-byte
command sizes. For 10000-byte commands, Volery had
similar or lower latency than Zookeeper. Such lower latency
of Volery with 10000-byte commands is due to a shorter
time spent with batching: as message sizes increase, the size
threshold of the batch (250 kilobytes for on-disk storage) is
reached faster, resulting in lower latency.

Figure 2 (right) shows the latency breakdown of com-
mands executed by Volery. Batching is the time elapsed from
the moment the client sends command C to the instant when
C is proposed by the ring coordinator as part of a batch.
Multicasting is the time between the propose is executed
until the batch that contains C is delivered by a server
replica. Waiting represents the time between the delivery
and the moment when C finally starts executing. Executing
measures the delay between the start of the execution of
command C until the client receives C’s response. We
can see that more than half of the latency time is due
to multicasting, which includes saving Multi-Ring Paxos
instances synchronously to disk. There is also a significant
amount of time spent with batching, done to reduce the
number of disk operations and allow higher throughput:
each Paxos proposal is saved to disk synchronously, so
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Figure 2. Results for Zookeeper, ZKsmr and Volery (with 1, 2, 4 and 8 partitions) using disk. Throughput was normalized by that of Volery with a single
partition (absolute values in kilocommands per second are shown). Latencies reported correspond to 75% of the maximum throughput.
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Figure 3. Cumulative distribution function (CDF) of latency for different command sizes (on-disk storage).

increasing the number of commands per proposal (i.e., per
batch) reduces the number of times the disk is accessed.
This allows performance to improve, but increases latency.

In Figure 3, we show the cumulative distribution functions
(CDFs) of latency for all experiments where disk was used
for storage. The results show that the latency distributions
for ZKsmr and Volery with a single partition are similar,
while latency had more variation for 2, 4 and 8 partitions. An
important difference between deployments with a single and
with multiple partitions is related to how Multi-Ring Paxos
is used. In ZKsmr and in Volery with a single partition,
there is only one Paxos ring, which orders all commands
from all clients and delivers them to all replicas. When
there are multiple partitions, each replica delivers messages
from two rings: one ring that orders messages related to
the replica’s partition only, and another ring that orders
messages addressed to more than one partition—each replica
deterministically merges deliveries from multiple rings. As
the time necessary to perform such deterministic merge is
influenced by the level of synchrony of the rings, latency is
expected to fluctuate more when merging is involved.

C. Experiments using in-memory storage

In Figure 4, we show the results for local commands when
storing data in memory only. Volery’s throughput scales

with the number of partitions (Figure 4 (top left)), specially
for large messages, in which case the scalability is linear
with the number of partitions (i.e., ideal case). We can also
see that latency values for Volery and ZKsmr are less than
half of what they are for on-disk storage (Figure 4 (bottom
left)), while Zookeeper’s latency decreased by an order of
magnitude. These results suggest that further improvements
should be achievable in the in-memory Volery configuration
with additional optimizations and finer tuning of the atomic
multicast parameters.

Figure 4 (right) shows the latency breakdown. Even
though no data is saved to disk, multicasting is still responsi-
ble for most of the latency, followed by batching. Differently
from the experiments described in Section VI-B, batching
here had a size threshold of 30 kilobytes, which helps to
explain why batching time is roughly the same for different
message sizes. In these experiments, although there are no
disk writes, batching is still used because it reduces the
number of Paxos proposals and the number of messages
sent through the network, which allows higher throughput.
Figure 5 shows the latency CDFs for the in-memory experi-
ments, where we can see that Volery with multiple partitions
(i.e., deployments where Multi-Ring Paxos uses multiple
rings) tends to have more variation in latency.
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Figure 5. Cumulative distribution function (CDF) of latency for different command sizes (in-memory storage).

D. Experiments with global commands

In this section, we analyze how Volery performs when
the workload includes commands that are multicast to all
partitions (global commands). This is the least favorable
(non-faulty) scenario for S-SMR, as having commands mul-
ticast to all partitions effectively reduces scalability: if all
commands go to all partitions, adding more partitions will
not increase throughput.

We ran experiments with different rates of global com-
mands (i.e., create and delete operations): 0%, 1%, 5% and
10% of all commands. We chose such rates for two reasons:
(i) it is obvious that high rates of global commands will
prevent the system from scaling, plus (ii) it is common for
large scale services to have a high rate of read requests
(which are local commands in Volery). An example of such
a service is Facebook’s TAO [3], which handles requests to
a social graph; it allows, for instance, pages to be generated
based on the user’s connections in the social network. In
Facebook’s TAO, 99.8% of all requests are read-only [3].

We can see in Figure 6 (top left) that Volery scales
throughput with the number of partitions for all configu-
rations but the exceptional case of 10% of global com-
mands when augmenting the number of partitions from 4
to 8. Moreover, Volery with two partitions outperforms the

Zookeeper in all experiments. The major drawback of Volery
under global commands is that to ensure linearizability,
partitions must exchange signals: as create and delete
commands are multicast to all partitions, no server can send
a reply to a client before receiving a signal from all other
partitions when executing such a command. This explains
the significant increase in latency shown in Figure 6 (bottom
left), as global commands are added to the workload: as the
number of partitions increases, so does the average latency.
As we can see in Figure 6 (right), this extra latency comes
from the servers waiting for signals from other partitions.

Figure 7 shows the latency CDFs for the workloads with
global commands. For experiments with more than one
partition, the rate of messages with high latency is much
higher than the rate of global commands. This happens due
to a “convoy effect”: local commands may be delivered after
global commands, having to wait for the latter to finish.

VII. RELATED WORK

State-machine replication is a well-known approach to
replication and has been extensively studied (e.g., [1], [2],
[10], [11], [12]). State-machine replication requires repli-
cas to execute commands deterministically, which implies
sequential execution. Even though increasing the perfor-
mance of state-machine replication is non-trivial, different

10



Global commands

 50

 100

 150

 200

 250

 300

T
hr

ou
gh

pu
t (

kc
ps

) Zookeeper
ZKsmr

Volery 1p
Volery 2p
Volery 4p
Volery 8p

 0

 20

 40

 60

 80

 100

 120

 140

0.0 0.01 0.05 0.1

La
te

nc
y 

(m
s)

Rate of create/delete commands

 0

 20

 40

 60

 80

 100

 120

 140

1p 2p 4p 8p 1p 2p 4p 8p 1p 2p 4p 8p 1p 2p 4p 8p

La
te

nc
y 

(m
s)

 

Latency breakdown for S-SMR (global commands)

Rate of create/delete commands

Batching
Multicasting

Waiting
Executing

0.10.050.010.0

Figure 6. Throughput and latency versus rate of create/delete commands (in-memory storage, 1000-bytes commands). Throughput is shown in units of a
thousand commands per second (kcps). Latencies shown corresponds to 75% of the maximum throughput.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100  120  140
Latency (ms)

0.01 create/delete rate

Zookeeper
ZKsmr

Volery 1p
Volery 2p
Volery 4p
Volery 8p

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100  120  140
Latency (ms)

0.05 create/delete rate

Zookeeper
ZKsmr

Volery 1p
Volery 2p
Volery 4p
Volery 8p

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100  120  140
Latency (ms)

0.1 create/delete rate

Zookeeper
ZKsmr

Volery 1p
Volery 2p
Volery 4p
Volery 8p

Figure 7. Cumulative distribution function (CDF) of latency for different rates of create/delete commands (in-memory storage, 1000-bytes commands).

techniques have been proposed for achieving scalable sys-
tems, such as optimizing the propagation and ordering of
commands (i.e., the underlying atomic broadcast algorithm).
In [13], the authors propose to have clients sending their
requests to multiple clusters, where each of such clusters
executes the ordering protocol only for the requests it
received, and then forwards this partial order to every server
replica. The server replicas, then, must deterministically
merge all different partial orders received from the ordering
clusters. In [14], Paxos [15] is used to order commands, but
it is implemented in a way such that the task of ordering
messages is evenly distributed among replicas, as opposed
to having a leader process that performs more work than the
others and may eventually become a bottleneck.

State-machine replication seems at first to prevent multi-
threaded execution since it may lead to non-determinism.
However, some works have proposed multi-threaded imple-
mentations of state-machine replication, circumventing the
non-determinism caused by concurrency in some way. In
[10], for instance, the authors propose organizing the replica
in multiple modules that perform different tasks concur-
rently, such as receiving messages, batching and dispatching
commands to be executed. The execution of commands is
still done sequentially, by a single thread, but the replica
performs all other tasks in parallel. We also implemented

such kind of parallelism in Eyrie.
Some works have proposed to parallelize the execution of

commands in SMR. In [11], application semantics is used
to determine which commands can be executed concurrently
without reducing determinism (e.g., read-only commands
can be executed in any order relative to one another). Upon
delivery, commands are directed to a parallelizer thread that
uses application-supplied rules to schedule multi-threaded
execution. Another way of dealing with non-determinism is
proposed in [12], where commands are speculatively exe-
cuted concurrently. After a batch of commands is executed,
replicas verify whether they reached a consistent state; if
not, commands are rolled back and re-executed sequentially.
Both [11] and [12] assume a Byzantine failure model and in
both cases, a single thread is responsible for receiving and
scheduling commands to be executed. In the Byzantine fail-
ure model, command execution typically includes signature
handling, which can result in expensive commands. Under
benign failures, command execution is less expensive and the
thread responsible for command reception and scheduling
may become a performance bottleneck.

In [16], the authors propose to partition the service
state and use atomic broadcast to totally order commands
submitted by the clients. To ensure that linearizability holds
for read-only commands that span multiple partitions, there
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is a single sequencer that ensures acyclic order; therefore,
the approach cannot scale with the number of partitions,
as the sequencer eventually becomes a bottleneck. Also, the
approach can only handle single-partition update commands.

Many database replication schemes also aim at improving
the system throughput, although commonly they do not
ensure strong consistency as we define it here (i.e., as
linearizability). Many works (e.g., [4], [17], [18], [19])
are based on the deferred-update replication scheme, in
which replicas commit read-only transactions immediately,
not necessarily synchronizing with each other. This provides
a significant improvement in performance, but allows non-
linearizable executions to take place. The consistency criteria
usually ensured by database systems are serializability [20]
and snapshot isolation [21]. Those criteria can be considered
weaker than linearizability, in the sense that they do not take
into account real-time precedence of different commands
among different clients. For some applications, this kind of
consistency is good enough, allowing the system to scale
better, but services that require linearizability cannot be
implemented with such techniques.

VIII. CONCLUSION

This work introduces S-SMR, a scalable variant of the
well-known state-machine replication technique. S-SMR dif-
fers from previous related works in that it allows throughput
to scale with the number of partitions without weakening
consistency. To evaluate S-SMR, we developed the Eyrie
library and implemented Volery, a Zookeeper clone, with
Eyrie. Our experiments demonstrate that in deployments
with 8 partitions (the largest configuration we can de-
ploy in our infrastructure) and under certain workloads,
throughput experienced an 8-time improvement, resulting in
ideal scalability. Moreover, Volery’s throughput proved to be
significantly higher than Zookeeper’s.
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