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Abstract

MMOGs (massively multiplayer online games) are applications
that require high bandwidth connections to work properly. This
demand for bandwidth is specially critical on the servers that host
the game. This happens because the typical number of simultane-
ous participants in this kind of game varies from a few hundreds to
several tens of thousands, and the server is the one responsible for
mediating the interaction between every pair of players connected
to it. To deal with this problem, decentralized architectures with
multiple servers have been proposed, where each server manages a
region of the virtual environment of the game. Each player, then,
connects only to the server that manages the region where he is
playing. However, to distribute the load among the servers, it is
necessary to devise an algorithm for partitioning the virtual envi-
ronment. In order to readjust the load distribution during the game,
this algorithm must be dynamic. Some work has already been made
in this direction, but with a geometric algorithm, more appropriate
than those found in the literature, it should be possible to reduce
the distribution granularity without compromising the rebalancing
time, or even reducing it. In this work, we propose the use of a
kd-tree for dividing the virtual environment of the game into re-
gions, each of which being designated to one of the servers. The
split coordinates of the regions are adjusted dynamically according
to the distribution of avatars in the virtual environment. We com-
pared our algorithm to some approaches found in the literature and
the simulation results show that our algorithm performed better in
most aspects we analyzed.
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1 Introduction

The main characteristic of MMOGs is the large number of players
interacting simultaneously, reaching the number of tens of thou-
sands [Schiele et al. 2007]. When using a client-server architecture
for the players to communicate with one another, the server inter-
mediates the communication between each pair of players.

To allow the interaction of players, each one of them sends his com-
mands to the server, which calculates the resulting game state and
sends it to all the players to whom the state change is relevant. We
can see that the number of state update messages sent by the server
may grow proportionally to the square of the number of players, if
all players are interacting with one another. Obviously, depending
on the number of players, the cost of maintaining a centralized in-
frastructure like this is too high, restricting the MMOG market to
large companies with enough resources to pay the upkeep of the
server.

In order to reduce this cost, several decentralized solutions have
been proposed. Some of them use peer-to-peer networks, such
as [Schiele et al. 2007; Rieche et al. 2007; Hampel et al. 2006;
El Rhalibi and Merabti 2005; Iimura et al. 2004; Knutsson et al.
2004]. Others propose the use of a distributed server composed
of low-cost nodes connected through the Internet, as in [Ng et al.
2002; Chertov and Fahmy 2006; Lee and Lee 2003; Assiotis and
Tzanov 2006]. Anyway, in all these approaches, the “world”, or
virtual environment of the game is divided into regions and for ev-

ery region is assigned a server – or a group of peers to manage it,
when using peer-to-peer networks. Each of these regions must have
a content such that the load imposed on the corresponding server is
not greater than its capacity.

When an avatar (representation of the player in the virtual environ-
ment) is located in a region, the player controlling that avatar con-
nects to the server associated to that region. That server, then, is re-
sponsible for receiving the input from that player and for sending, in
response, the update messages. When a server becomes overloaded
due to an excessive number of avatars in its region and, therefore,
more players to be updated, the division of the virtual environment
must be recalculated in order to alleviate the overloaded server.

Usually, the virtual environment is divided into relatively small
cells, which are then grouped into regions and distributed among
the servers. However, this approach has a severe limitation in its
granularity, since the cells have fixed size and position. Using
a more appropriate geometric algorithm, it should be possible to
achieve a better player distribution among different servers, making
use of traditional techniques that are generally used for computer
graphics.

In this work, we propose the utilization of a kd-tree to perform
the partitioning of the virtual environment. When a server is over-
loaded, it triggers the load balancing, readjusting the limits of its
region by changing the split coordinates stored in the kd-tree. A
prototype has been developed and used in simulations. The results
found in these simulations have been compared to previous results
from approaches which use the cell division technique.

The text is organized as follows: in section 2, some related works
are described; in section 3, the algorithm proposed here is presented
in detail; in the sections 4 and 5, we present, respectively, the sim-
ulation details and its results and, in section 6, the conclusions of
this work are presented.

2 Related Work

Different authors have tried to address the problem of partitioning
the virtual environment in MMOGs for distribution among multi-
ple servers [Ahmed and Shirmohammadi 2008; Bezerra and Geyer
2009]. Generally, there is a static division into cells of fixed size
and position. The cells are then grouped into regions (Figure 1),
and each region is delegated to one of the servers. When one of
them is overwhelmed, it seeks other servers, which can absorb part
of the load. This is done by distributing one or more cells of the
overloaded server to other servers.

[Ahmed and Shirmohammadi 2008], for example, propose a cell-
oriented load balancing model. To balance the load, their algorithm
finds, first, all clusters of cells that are managed by the overloaded
server. The smallest cluster is selected and, from this cluster, it is
chosen the cell which has the least interaction with other cells of the
same server – the interaction between two cells A and B is defined
by the authors as the number of pairs of avatars interacting with
each other, one of them in A and the other one in B. The selected
cell is then transferred to the least loaded server, considering “load”
as the bandwidth used to send state updates to the players whose
avatars are positioned in the cells managed by that server. This
process is repeated until the server is no longer overloaded or there
is no more servers capable of absorbing more load – in this case,
one option could be to reduce the frequency at which state update
messages are sent to the players, as suggested by [Bezerra et al.
2008].



Figure 1: Division into cells and grouping into regions

Figure 2: Graph representation of the virtual environment

In [Bezerra and Geyer 2009], it is also proposed the division into
cells. To perform the division, the environment is represented by a
graph (Figure 2), where each vertex represents a cell. Every edge in
the graph connects two vertices representing neighboring cells. The
weight of a vertex is the server’s bandwidth occupied to send state
updates to the players whose avatars are in the cell represented by
that vertex. The interaction between any two cells define the weight
of the edge connecting the corresponding vertices. To form the re-
gions, the graph is partitioned using a greedy algorithm: starting
from the heaviest vertex, at each step it is added the vertex con-
nected by the heaviest edge to any of the vertices already selected,
until the total weight of the partition of the graph – defined as the
sum of the vertices’ weights – reaches a certain threshold related
to the total capacity of the server that will receive the region repre-
sented by that partition of the graph.

Although this approach works, there is a serious limitation on the
distribution granularity it can achieve. If a finer granularity is de-
sired, it is necessary to use very small cells, increasing the number
of vertices in the graph that represents the virtual environment and,
consequently, the time required to perform the balancing. Besides,
the control message containing the list of cells designated to each
server also becomes longer. Thus, it may be better to use another
approach to perform the partitioning of the virtual environment,
possibly using a more suitable data structure, such as the kd-tree
[Bentley 1975].

Figure 3: Space partitioning using a BSP tree

This kind of data structure is generally used in computer graphics.
However, as in MMOGs there is geometric information – such as
the position of the avatars in the environment –, space partitioning
trees can be used. Moreover, we cand find in the literature tech-
niques for keeping the partitions defined by the tree with a similar
“load”. In [Luque et al. 2005], for example, it is sought to reduce
the time needed to calculate the collisions between pairs of objects
moving through space. The authors propose the use of a BSP (bi-
nary space partitioning) tree to distribute the objects in the scene
(Figure 3). Obviously, if each object of a pair is completely in-
serted in a different partition, they do not collide and there is no
need to perform a more complex test for this pair. Assuming an
initial division, it is proposed by the authors a dynamic readjust-
ment of the tree as objects move, balancing their distribution on the
leaf-nodes of the tree and, therefore, minimizing the time required
to perform the collision detection. Some of the ideas proposed by
the authors may be used in the context of load balancing between
servers in MMOGs.

3 Proposed approach

The load balancing approach proposed here is based on two criteria:
first, the system should be considered heterogeneous (i.e. every
server may have a different amount of resources) and, second, the
load on each server is not proportional to the number of players
connected to it, but to the amount of bandwidth required to send
state update messages to them.

This choice is due to the fact that every player sends commands to
the server at a constant rate, so the number of messages received by
the server per unit time grows linearly with the number of players,
whereas the number of state update messages sent by the server
may be quadratic, in the worst case.

As mentioned in the introduction, to divide the environment of the
game into regions, we propose the utilization of a data structure
known as kd-tree. The vast majority of MMOGs, such as World of
Warcraft [Blizzard 2004], Ragnarok [Gravity 2001] and Lineage II
[NCsoft 2003], despite having three-dimensional graphics, the sim-
ulated world – cities, forests, swamps and points of interest in gen-
eral – in these games is mapped in two dimensions. Therefore, we
propose to use a kd-tree with k = 2.

Each node of the tree represents a region of the space and, more-
over, in this node it is stored a split coordinate. Each one of the
two children of that node represents a subdivision of the region rep-
resented by the parent node, and one of them represents the sub-
region before the split coordinate and the other one, the sub-region
containing points whose coordinates are greater than or equal to
the split coordinate. The split axis (in the case of two dimensions,
the axes x and y) of the coordinate stored alternates for every level
of the tree – if the first level nodes store x-coordinates, the second
level nodes store y-coordinates and so on. Every leaf node also
represents a region of the space, but it does not store any split coor-
dinate. Instead, it stores a list of the avatars present in that region.
Finally, each leaf node is associated to a server of the game. When
a server is overloaded, it triggers the load balancing, which uses
the kd-tree to readjust the split coordinates that define its region,
reducing the amount of content managed by it.



Figure 4: Balanced kd-trees built with the described algorithm

Every node of the tree also stores two other values: capacity and
load of the subtree. The load of a non-leaf node is equal to the
sum of the load of its children. Similarly, the capacity of a non-leaf
node is equal to the sum of the capacity of its children nodes. For
the leaf nodes, these values are the same of the server associated to
each one of them. The tree root stores, therefore, the total weight
of the game and the total capacity of the server system.

In the following sections, it will be described the construction of
the tree, the calculation of the load associated with each server and
the proposed balancing algorithm.

3.1 Building the kd-tree

To make an initial space division, it is constructed a balanced kd-
tree. For this, we use the recursive function shown in Algorithm 1
to create the tree.

Algorithm 1 node::build tree(id, level, num servers)

if id + 2level ≥ num servers then
left child← right child← NIL;
return;

else
left child← new node();
left child.parent← this;
right child← new node();
right child.parent← this;
left child.build tree(id, level + 1, num servers);
right child.build tree(id+2level, level+1, num servers);

end if

In Algorithm 1, the id value is used to calculate whether each node
has children or not and, in the leaf nodes, it determines the server
associated to the region represented by each leaf of the tree. The
purpose of this is to create a balanced tree, where the number of
leaf nodes on each of the two sub-trees of any node differs, in the
maximum, by one. In Figure 4 (a), we have a full kd-tree formed
with this simple algorithm and, in Figure 4 (b), an incomplete kd-
tree with six-leaf nodes. As we can see, every node of the tree in
(b) has two sub-trees whose number of leaf nodes differs by one in
the worst case.

Figure 5: A load splitting considering only the number os avatars

Figure 6: Relation between avatars and load

3.2 Calculating the load of avatars and tree nodes

The definition of the split coordinate for every non-leaf node of
the tree depends on how the avatars will be distributed among the
regions. An initial idea might be to distribute the players among
servers, so that the number of players on each server is proportional
to the bandwidth of that server. To calculate the split coordinate, it
would be enough to simply sort the avatars in an array along the axis
used (x or y) by the tree node to split the space and, then, calculate
the index in the vector, such that the number of elements before this
index is proportional to the capacity of the left child and the number
of elements from that index to the end of the array is proportional
to the capacity of the right child (Figure 5). The complexity of this
operation is O(nlogn), due to the sorting of avatars.

However, this distribution is not optimal, for the load imposed by
the players depends on how they are interacting with one another.
For example, if the avatars of two players are distant from each
other, there will be probably no interaction between them and,
therefore, the server will need only to update every one of them
about the outcome of his own actions – for these, the growth in the
number of messages is linear with the number of players. On the
other hand, if the avatars are close to each other, each player should
be updated not only about the outcome of his own actions but also
about the actions of every other player – in this case, the number
of messages may grow quadratically with the number of players
(Figure 6). For this reason, it is not sufficient only to consider the
number of players to divide them among the servers.

A more appropriate way to divide the avatars is by considering the
load imposed by each one of them on the server. A brute-force
method for calculating the loads would be to get the distance sepa-
rating each pair of avatars and, based on their interaction, calculate
the number of messages that each player should receive by unit of
time. This approach has complexity O(n2). However, if the avatars
are sorted according to their coordinates on the axis used to divide
the space in the kd-tree, this calculation may be performed in less
time.

For this, two nested loops are used to sweep the avatars array, where
each of the avatars contains a load variable initialized with zero.
As the vector is sorted, the inner loop may start from an index be-
fore which it is known that no avatar aj has relevance to that being
referenced in the outer loop, ai. It is used a variable begin, with
initial value of zero: if the coordinate of aj is smaller than that of



Figure 7: Sweep of the sorted array of avatars

ai, with a difference greater than the maximum view range of the
avatars, the variable begin is incremented. For every aj which is
at a distance smaller than the maximum view range, the load of ai

is increased according to the relevance of aj to ai. When the inner
loop reaches an avatar aj , such that its coordinate is greater than
that of ai, with a difference greater than the view range, the outer
loop moves immediately to the next step, incrementing ai and set-
ting the value of aj to that stored in begin (Figure 7).

Let width be the length of the virtual environment along the
axis used for the splitting; let also radius be the maximum view
range of the avatars, and n, the number of avatars. The num-
ber of relevance calculations, assuming that the avatars are uni-
formly distributed in the virtual environment is O(m× n), where
m is the number of avatars compared in the internal loop, i.e.
m = 2×radius×n

width
. The complexity of sorting the avatars along one

of the axes is O(nlogn). Although it is still quadratic, the execution
time is reduced significantly, depending on the size of the virtual
environment and on the view range of the avatars. The algorithm
could go further and sort each set of avatars aj which are close (in
one of the axes) to ai according to the other axis and, again, perform
a sweep eliminating those which are too far away, in both dimen-
sions. The number of relevance calculations would be O(p× n),
where p is the number of avatars close to ai, considering the two
axes of coordinates, i.e. p = (2×radius)2×n

width×height
. In this case, height

is the extension of the environment in the second axis taken as ref-
erence. Although there is a considerable reduction of the number
of relevance calculations, it does not pay the time spent in sorting
the sub-array of the avatars selected for each ai. Adding up all the
time spent on sort operations, it would be obtained a complexity of:
O(nlogn + n×mlogm).

After calculating the load generated by each avatar, this value is
used to define the load on each leaf node and, recursively, on the
other nodes of the kd-tree. To each leaf node a server and a region
of the virtual environment are assigned. The load of the leaf node
is equal to the server’s bandwidth used to send state updates to the
players controlling the avatars located in its associated region. This
way, the load of each leaf node is equal to the sum of the weights
of the avatars located in the region represented by it.

3.3 Dynamic load balancing

Once the tree is built, each server is associated to a leaf node –
which determines a region. All the state update messages to be sent
to players whose avatars are located in a region must be sent by the
corresponding server. When a server is overloaded, it may transfer
part of the load assigned to it to some other server. To do this, the
overloaded server collects some data from other servers and, using
the kd-tree, it adjusts the split coordinates of the regions.

Every server maintains an array of the avatars located in the region
managed by it, sorted according to the x coordinate. Also, each
element of the array stores a pointer to another element, forming
a chained list that is ordered according to the y coordinated of the
avatars (Figure 8). By maintaining a local sorted avatar list on each
server, the time required for balancing the load is somewhat re-
duced, for there will be no need for the server performing the rebal-
ance to sort again the avatar lists sent by other servers. It will need
only to merge all the avatars lists received from the other servers in

Figure 8: Avatar array sorted by x, containing a list sort by y

Figure 9: Search for an ancestor node with enough resources

an unique list, used to define the limits of the regions, what is done
by changing the split coordinates which define the space partitions.

When the overloaded server initiates the rebalance, it runs an algo-
rithm that traverses the kd-tree, beginning from the leaf node that
defines its region and going one level up at each step until it finds
an ancestor node with a capacity greater then or equal to the load.
While this node is not found, the algorithm continues recursively
up the tree until it reaches the root. For each node visited, a request
for the information about all the avatars and the values of load and
capacity is sent to the servers represented by the leaf nodes of the
sub-tree to the left of that node (Figure 9). With these data, and its
own list of avatars and values of load and capacity, the overloaded
server can calculate the load and capacity of its ancestral node vis-
ited in the kd-tree, which are not known beforehand – these values
are sent on-demand to save up some bandwidth of the servers and
to keep the system scalable.

Reaching an ancestral node with capacity greater than or equal to
the load – or the root of the tree, if no such node is found – the
server that initiated the balance adjusts the split coordinates of the
kd-tree nodes. For each node, it sets the split coordinate in a way
such that the avatars are distributed according to the capacity of
the node’s children. For this, it is calculated the load fraction that
should be assigned to each child node. The avatar list is then swept,
stopping at the index i such that the total load of the avatars before
i is approximately equal to the value defined as the load to be des-
ignated to the left child of the node whose split coordinate is being
calculated (Figure 10). The children nodes have also, in turn, their
split coordinates readjusted recursively, so that they are checked for
validity – the split coordinate stored in a node must belong to the
region defined by its ancestors in the kd-tree – and readjusted to
follow the balance criteria defined.

As the avatar lists received from the other servers are already sorted
along both axes, it is enough to merge these structures with the
avatar list of the server which initiated the rebalance. Assuming
that each server already calculated the weight of each avatar man-



Figure 10: Division of an avatar list between two brother nodes

aged by it, the rebalance time is O(nlogS), where n is the number
of avatars in the game and S is the number of servers. The com-
munication cost is O(n), caused by the sending of data related to
te n avatars. The merging of all avatar lists has O(n) complexity,
for the avatars were already sorted by the servers. At each level of
the kd-tree, O(n) avatars are swept in the worst case, in order to
find the i index whose avatar’s coordinate will be used to split the
regions defined by each node of the tree (Figure 10). As this is a
balanced tree with S leaf nodes, it has a height of dlogSe.

4 Simulations

To evaluate the proposed dynamic load balancing algorithm, a vir-
tual environment across which many avatars moved was simulated.
Starting from a random point in the environment, each avatar moved
according to the random waypoint model [Bettstetter et al. 2002].
To force a load imbalance and stress the algorithms tested, we de-
fined some hotspots – points of interest to which the avatars moved
with a higher probability than to other parts of the map. This way,
a higher concentration of avatars was formed in some areas. Al-
though the movement model used is not very realistic in terms of
the way the players move their avatars in real games, it was only
used to verify the load balance algorithms simulated. For each al-
gorithm tested, we simulated two situations: one with the presence
of hotspots and one without hotspots.

The proposed approach was compared to the ones presented in sec-
tion 2, from other authors. However, it is important to observe
that the model employed by [Ahmed and Shirmohammadi 2008]
considers hexagonal cells, while in our simulations we used rect-
angular cells. Furthermore, the authors considered that there is a
transmission rate threshold, which is the same for all servers in the
system. As we assume a heterogenous system, their algorithm was
simulated considering that each server has its own transmission rate
threshold, depending on the upload bandwidth available in each one
of them. However, we kept what we consider the core idea of the
authors’ approach, which is the selection of the smallest cell clus-
ter managed by the overload server, then choosing that cell with the
lowest interaction with other cells of the same server, and finally the
transferring of this cell to the least loaded server. Besides Ahmed’s
algorithm, we also simulated some of the ones proposed in [Bezerra
and Geyer 2009] – Progrega and BFBCT.

The simulated virtual environment consisted of a two-dimensional
space, with 750 moving avatars, whose players were divided among
eight servers (S1, S2, ..., S8), each of which related to one of the re-
gions determined by the balancing algorithm. For the cell-oriented
approaches simulated, the space was divided into a 15 × 15 cell
grid, or 225 cells. The capacity of each server Si was equal to
i × 20000, forming a heterogeneous system. This heterogeneity
allowed us to evaluate the load balancing algorithms simulated ac-
cording to the criterion of proportionality of the load distribution on
the servers.

In addition to evaluate the algorithms according to the proportion-
ality of the load distribution, it was also considered the number
of player migrations between servers. Each migration involves a

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

P
ow

er
K

D
T

re
e

B
F

B
C

T
P

ro
gr

eg
a

A
hm

ed

P
ow

er
K

D
T

re
e

B
F

B
C

T
P

ro
gr

eg
a

A
hm

ed

P
ow

er
K

D
T

re
e

B
F

B
C

T
P

ro
gr

eg
a

A
hm

ed

P
ow

er
K

D
T

re
e

B
F

B
C

T
P

ro
gr

eg
a

A
hm

ed

P
ow

er
K

D
T

re
e

B
F

B
C

T
P

ro
gr

eg
a

A
hm

ed

P
ow

er
K

D
T

re
e

B
F

B
C

T
P

ro
gr

eg
a

A
hm

ed

P
ow

er
K

D
T

re
e

B
F

B
C

T
P

ro
gr

eg
a

A
hm

ed

P
ow

er
K

D
T

re
e

B
F

B
C

T
P

ro
gr

eg
a

A
hm

ed

Lo
ad

Load
Overhead

Server 8Server 7Server 6Server 5Server 4Server 3Server 2Server 1

Figure 11: Average load on each server (by algorithm, without
hotspots)
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Figure 12: Average load on each server (by algorithm, with
hotspots)

player connecting to the new server and disconnecting from the old
one. This kind of situation may occur in two cases: the avatar
moved, changing the region in which it is located and, conse-
quently, changing the server to which its player is connected; or the
avatar was not moving and still its player had to migrate to a new
server. In the latter case, obviously the player’s transfer was due
to a rebalancing. An ideal balancing algorithm performs the load
redistribution requiring the minimum possible number of player
transfers between servers, while keeping the load on each server
proportional to its capacity.

Finally, the inter-server communication overhead will also be eval-
uated. It occurs when two players are interacting, but each one of
them is connected to a different server. Although the algorithm pro-
posed in this work does not address this problem directly, it would
be interesting to evaluate how the load distribution performed by it
influences the communication between the servers.

5 Results

Figures 11 and 12 present the average load (plus the inter-server
communication overhead) on each server, for each algorithm tested.
The first figure shows the values in a situation without hotspots and,
therefore, a smaller total load. The second, in turn, presents the load
distribution when the server system is overloaded. We can see, in
Figure 11, that all algorithms have met the objective of keeping
the load on each server less than or equal to its capacity, when the
system has sufficient resources to do so. In Figure 12, it is demon-
strated that all the algorithms managed to dilute – in a more or less
proportional manner – the load excess on the servers. It is important
to observe, however, that the load shown in Figure 12 is only theo-
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Figure 13: Average deviation of the ideal balance of the servers
(without hotspots)
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Figure 14: Average deviation of the ideal balance of the servers
(with hotspots)

retical. Each server will perform some kind of “graceful degrada-
tion” in order to keep the load under its capacity. For example, the
update frequency might be reduced and access to the game could
be denied for new players attempting to join, which is a common
practice in most MMOGs.

In figures 13 and 14, it is shown how much the balance generated by
each algorithm deviates from an ideal balance – that is, how much,
on the average, the load on the servers deviate from a value ex-
actly proportional to the capacity of each one of them – over time.
It is possible to observe that, in both situations – with and without
hotspots – the algorithm that uses the kd-tree has the least deviation.
This is the due to the fine granularity of its distribution, which, un-
like the other approaches tested, is not limited by the size of a cell.
In the situation with hotspots, the algorithm that uses the kd-tree is
particularly effective, because rebalance is needed. In a situation
where the system has more resources than necessary, the propor-
tionality of the distribution is not as important: it is enough that
each server manages a load smaller than its capacity.

Regarding player migrations between servers, all the algorithms –
except BFBCT – had a similar number of user migrations in the
absence of hotspots (Figure 15). This happens because the load of
the game is less than the total capacity of the server system, which
required less rebalancing and, thus, caused less migrations of play-
ers between servers. Figure 16, however, demonstrates that the al-
gorithm that uses the kd-tree had a significantly lower number of
user migrations than the other approaches. This is due, in the first
place, to the fact that the regions defined by the leaf nodes of the
kd-tree are necessarily contiguous, and each server was linked to
only one leaf node. An avatar moving across the environment di-
vided into very fragmented regions constantly crosses the borders
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Figure 15: Player migrations between servers (without hotspots)
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Figure 16: Player migrations between servers (with hotspots)
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Figure 17: Inter-server communication for each algorithm over
time (without hotspots)

between these regions and causes, therefore, its player to migrate
from server to server repeatedly. Another reason for this result is
that each rebalancing executed with the kd-tree gets much closer to
an ideal distribution than the cell-based algorithms – again, thanks
to the finer granularity of the kd-tree based distribution –, requiring
less future rebalancing and, thus, causing less player migrations.

Finally, it is shown the amount of communication between servers
for each simulated algorithm, over time. In Figure 17, all algo-
rithms have similar results, and the one which uses the kd-tree is
slightly better than the others. This is also explained by the fact
that the regions are contiguous, minimizing the number of bound-
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Figure 18: Inter-server communication for each algorithm over
time (with hotspots)

aries between them and, consequently, reducing the probability of
occurring interactions between pairs of avatars, each one in a dif-
ferent region. In Figure 18, it is possible to see that the inter-server
communication caused by Progrega was considerably lower than all
the others in a situation of system overload. The reason for this is
that its main goal – besides balancing the load – is precisely to re-
duce the communication between servers. However, even not con-
sidering the additional cost, the algorithm that uses the kd-tree got
second place in this criterion.

6 Conclusions

In this work, we proposed the use of a kd-tree to partition the vir-
tual environment of MMOGs and perform the load balancing of
servers by recursively adjusting the split coordinates stored in its
nodes. One of the conclusions reached was that the use of kd-trees
to make this partitioning allows a fine granularity of the load dis-
tribution, while the readjustment of the regions becomes simpler –
by recursively traversing the tree – than the common approaches,
based on cells and/or graph partitioning.

The finer granularity allows for a better balancing, so that the load
assigned to each server is close to the ideal value that should be
assigned to it. This better balance also helped to reduce the number
of migrations, by performing less rebalancing operations. The fact
that the regions defined by the kd-tree are necessarily contiguous
was one of the factors that contributed to the results of the proposed
algorithm, which was better than the other algorithms simulated in
most of the criteria considered.

In conclusion, it was possible to use methods that can reduce the
complexity of each rebalancing operation. This is due, first, to
the reduction of the number of operations for calculating the rel-
evance between pairs of avatars by sweeping a sorted avatar list
and, secondly, to keeping at each server an avatar list already sorted
in both dimensions, saving the time that would be spent on sort-
ing the avatars when they were received by the server executing the
rebalance.
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