
A3: a Novel Interest Management Algorithm for Distributed Simulations of

MMOGs

Carlos Eduardo B. Bezerra, Fábio R. Cecin, Cláudio F. R. Geyer

Universidade Federal do Rio Grande do Sul

{carlos.bezerra,fcecin,geyer}@inf.ufrgs.br

Abstract

Traditionally, a central server is utilized to provide

support to MMOGs (massively multiplayer online games),

where the number of participants is in the order of tens

of thousands. Much work has been done trying to create

a fully peer-to-peer model to support this kind of applica-

tion, in order to minimize the maintenance cost of its in-

frastructure, but critical questions remain. Examples of the

problems relative to peer-to-peer MMOG support systems

are: vulnerability to cheating, overload of the upload links

of the peers and difficulty to maintain consistency of the

simulation among the participants. In this work, we pro-

pose the utilization of geographically distributed lower-cost

nodes, working as a distributed game server. The distri-

bution model and some related works are also presented.

To address the communication cost imposed to the servers,

we specify the A3 algorithm, which is a novel refinement

of the interest management technique, significantly reduc-

ing the necessary bandwidth. Simulations have been made

with ns-2 and their results demonstrate that our approach

achieves the least bandwidth utilization, with a 33.10%

maximum traffic reduction and 33.58% average traffic re-

duction, when compared to other algorithms.

1. Introduction

In the last years, electronic games have become very

popular, specially MMOGs (massively multiplayer online

games), where the number of simultaneous players is in the

order tens of thousands [3]. Usually, the network support

for this kind of application consists of a central server with

plenty of resources (processing power and available band-

width), which accepts connections from the clients. Each

player interacts through one of these clients, which sends

his actions to the server, that processes them, calculating

their influence over the game, and broadcasts the actions’

results to everyone. Due to the number of simultaneous

participants that this kind of game usually has, these tasks

demand a significant amount of resources from the server,

which receives and processes the actions from all the play-

ers and broadcasts state updates to all of them.

Recently, some alternatives to the central server ap-

proach have been researched. One of them is to distribute

among the own participants the game simulation and the

task to broadcast the state updates when they perform ac-

tions. The communication between them is peer-to-peer,

forming a decentralized network [17]. This approach would

be the ideal if it did not have some critical inherent draw-

backs. For example, as the player computers participate on

the simulation, they need to agree on the resulting state of

the game match. If this agreement does not happen, some

inconsistency on the game state may occur.

There is another question, concerning the number of

transmissions that each peer needs to execute. In the client-

server model, each player only needs to send his actions

to the server, which processes them and broadcasts the re-

sulting game state to the other players. In the peer-to-peer

model, each peer becomes responsible for processing its

own player’s actions and send the resulting state to every-

one else to whom that state change is relevant. The problem

is that we cannot assume that every peer has enough band-

width to do this. Besides, without a central server, the game

becomes dependent on the peers’ simulation, which may be

corrupted in order to result in an invalid state that benefits a

player, or even invalidate the whole game session.

Besides the peer-to-peer model, another alternative is to

use a distributed server, in which nodes connected to one an-

other divide the game simulation and the state update broad-

casts [1]. Such approach allows the use of lower-cost com-

puters to form the distributed server system, reducing the

cost of the support infrastructure. Also, consistency main-

tenance becomes easier than with the peer-to-peer model,

because a single server decides the simulation for its as-

signed portion of the world, and problems related to mali-

cious players may be abstracted, since the servers are able

to verify the simulation and detect cheating. Finally, with

less bandwidth and processing power requirements for the

clients, the game becomes accessible for a wider public.

However, to avoid the distributed server system main-

tenance cost to be the same as the central server’s, it is

necessary to perform some optimizations, in order to re-

duce the necessary bandwidth for each server node. The

present work proposes an algorithm to reduce the band-

width usage caused by the game traffic between servers and

clients, through a refinement of the players’ interest man-

agement technique [2]. The basic principle of this technique

is that the participants of the game need only to receive state

updates that are relevant to them. Simulations have been

made, comparing our proposed algorithm to existing ones,

obtaining significant results.

This paper is organized as follows: in section 2, some

related works with proposed distribution models are pre-

sented; in section 3, some necessary definitions are made;

in section 4, we propose a distribution model to be used as

basis of our optimization; in section 5, we review the in-

terest management technique; in section 6, we explain the

principle of using variable update intervals; in section 7, we

present in detail the A3 algorithm; in sections 8 and 9, the

simulation and its results, respectively, are described and in

section 10, we make our final considerations.

2. Related Work

In the past few years, many works have been done try-

ing to distribute the network support for massively mul-

tiplayer online games. One approach is the peer-to-peer

model [4, 6, 9], which has some issues concerning game

state consistency among the participating peers, vulnerabil-

ity to cheating, and increased bandwidth usage by each peer.

There are some proposals that try to minimize these prob-

lems. One of them is presented in [17], where it is suggested

the division of the virtual simulated game environment into

regions, and for each region, a peer is chosen to be its coor-

dinator. The function of this peer will be manage the play-

ers’ interest. It will check who really needs each state up-

date, so each player does not receive every update packet.

This way, the peers’ bandwidth usage is reduced. However,

it will be still higher than with a server performing all the

broadcasts. In the peer-to-peer model, each player usually

must send updates to more than one other player. Also, the

chosen peer must be trustable to be the region coordinator.

Another work focused on the peer-to-peer model [7]

uses an approach similar to the one presented in [17], but

suggests, for each region of the virtual environment, the

creation of a “zoned federation” formed by peers chosen

among the participants in that region. Since different nodes

will work together, and thus will need to agree in order

to proceed with the game, the simulation becomes more

trustable. However, the risk of the chosen peers commit col-

lusion cheating [20] is not eliminated. Besides, the agree-

ment itself between the peers creates a fair amount of extra

traffic between the participants of the federation, possibly

delaying each simulation step.

A key problem in the peer-to-peer architectures, in what

concerns the use of interest management, is that some peers

are responsible for part of the simulation and for deciding to

whom each state update interests. Assuming that there are

only trustable players, the interest management technique

may be useful. However, supposing that a player is mali-

cious, he could hack his client software and avoid sending

state updates to certain players, who would be in disadvan-

tage. Consequently, the distributed server model [1, 14, 16]

is considered more suitable to use the interest management

technique.

An example of this kind of model is described in [1],

where a distributed architecture for MMOGs is proposed. It

is also based on the division of the virtual environment into

regions, but each one with a server node assigned to it. The

player whose avatar is situated in a particular region of the

game world should connect to the server responsible for that

region. This way, each server would group different players,

based on their locality on the virtual space. To achieve con-

sistency between the different server nodes performing the

simulation, it is used the concept of locks. When a server

node needs to alter the state of some entity of the game, it

first needs to obtain exclusive access to that entity. To do

that, it negotiates with the other server nodes which might

also need to make some change in the same object, and then

obtains the lock. When it finishes changing the state, it re-

leases the lock and notifies the other servers

The first major restriction in the proposal of [1], how-

ever, is the assumption that all server nodes are connected

to one another through a high speed and low latency net-

work, what cannot be assumed when using lower-cost geo-

graphically distributed nodes. Another problem is that the

scalability question is addressed simply via the expansion

of the virtual environment area, supposing that the players

will spread over it. Finally, they suggest to solve the hot

spot problem through successive recursive environment par-

titioning, until the number of players per server is below a

certain threshold. However, there is a practical limit to the

repartitioning of the virtual environment, and they do not

suggest what to do when this limit is reached.

Regarding the interest management technique, works

such as [12, 13, 15, 22] and [11] may be cited. In [15], it

is proposed an interest management scheme based on a vir-

tual environment divided into a grid of cells. Each cell is

assigned to a multicast group. Each participant of the sim-

ulation subscribes then to the multicast group of the cell

where he is, as well as of the neighboring cells if they are

within his field of view. Each participant then sends his state

updates to the multicast group of his region.

In [22], multicast-based interest management schemes

are also considered. A comparison is made between cell-

based grouping, where each group is associated with a cell

of a grid that represents the virtual environment, and group-

ing based on objects, where there is a multicast group for

each object. It was found that there is a tradeoff between

the cost of multicast group formation control messages and

the cost of the state updates themselves.

An interest management scheme using a message ori-

ented middleware is presented in [12]. This scheme predicts

what will be of interest to a participant in the future, based

on his current position and velocity vector in the virtual en-

vironment. Thus, each participant starts receiving state up-

dates from entities that are not yet within his field of view,

but probably will be in the near future, making their status

available as soon as they can be seen.

In [13], it is made a survey of systems that use the inter-

est management technique, describing the purpose, scope

and what criteria are used by the management scheme em-

ployed by each one of them. A taxonomy of such systems

is presented, classifying them according to: communication

model, filtering focus and domain of responsibility. The

model may be unicast, multicast or broadcast. The filtering

focus refers to what characteristics are observed for each

object to perform the filtering: they may be intrinsic, such

as the values of the object’s attributes (e.g. the exact coor-

dinates of its location), or extrinsic, such as which multicast

group it is subscribed to. Finally, the domain of responsibil-

ity assigned to an interest manager, which checks for whom

each state update is relevant, can be static or dynamic. For

instance, if an interest manager is assigned to a fixed area

of the virtual environment, its domain of responsibility is

static, but if it controls an area that may increase or decrease

in size, its domain of responsibility is dynamic.

Considering that the multicast communication model is

not widely supported in the Internet [5], in this work we

opted to follow the unicast model. Each broadcast consists

then of a set of unicast transmissions, one for each desti-

nation. Moreover, intrinsic filtering and dynamic domain

of responsibility were used, in order to increase the preci-

sion of the interest management and consequently achieve

a greater reduction in the state update traffic [13].

3. Definitions

It is necessary to describe the network support model on

which the proposed interest management algorithm is in-

tended to be utilized. Therefore, some terms will be used

throughout the text, and their definitions are given here:

Avatar is the player’s representation in the virtual en-

vironment. Through his avatar, a player interacts with the

game world and with the other players.

Entities are the constituent parts of the virtual world.

Examples of entities are the avatars of the players as well

as avatars controlled by artificial intelligence of the server

- monsters, for example - and objects in the environment,

such as doors, weapons and items with which avatars can

interact.

State is the set of properties that can be observed in the

various entities of the game. The overall state of the sim-

ulated world is composed of the individual states of all the

entities present in it.

The players interact with the game world through ac-

tions. An action is a command of the player as, for exam-

ple, moving his avatar to a particular location in the virtual

world, attacking another player, taking some object avail-

able in the environment and so on. In general, actions

change the state of one or more entities in the game.

A region is a partition of the virtual environment, under

the responsibility of a single server. Thus, players whose

avatars are located in the same region will have its interac-

tion improved, since their clients are connected to the same

server.

The border between two regions is the line that divides

the areas that these regions occupy. When an avatar is lo-

cated near a border, the server responsible for the region be-

yond this border is notified about its presence by the server

of the region where that avatar is situated.

4. Distribution Model

This work is part of the P2PSE [4] project, which is cur-

rently based on a peer-to-peer distribution, but still looking

for an ideal model. Hence, we propose here an alternative

that consists of a virtual environment partitioned into re-

gions - each managed by a different server - on which the

A3 algorithm is based. The regions are contiguous, explor-

ing the locality of the players’ avatars. Thus, avatars next to

each other will probably be located in the same region and,

therefore, their clients will tend to be connected to the same

server, so that their interaction is faster (Figure 1).

One issue related to that type of partitioning of the vir-

tual environment concerns the borders between regions. If

an avatar is close to the border between two regions, it will

be necessary some exchange of information between the

servers which manage them. This information consists of

state updates of the entities that are interacting with each

other despite being located in different regions. Such situa-

tions imply a higher bandwidth usage, as it is also required

some sort of negotiation between the servers to which the

different players are connected, in order to maintain the

state of the simulation consistent. Furthermore, the hop

count of each message between the clients will be increased,

since there will be two intermediary servers.

For example, let Si be the server responsible for the re-

gion Ri where the avatar of the client Ci is located and let

Sj be the server responsible for another region, Rj , where

the avatar of the client Cj is situated. When the avatar of

Ci gets close to the border with Rj , Si sends to Sj a mes-

sage notifying it about the presence of that avatar near its

region’s border. If the avatar of Cj also gets close to the

border with Ri and to the avatar of Ci, Sj sends another

Region 1 Region 2

Region 4Region 3

Avatar

Server 1

Server 3
Server 4

Server 2

Figure 1. Distribution model

message, notifying Si. Then, Ci and Cj start exchanging

state updates of their avatars through the servers.

It must be decided how the simulation of actions per-

formed by players whose avatars are located in different re-

gions will be executed. As the focus of this work is not

the simulation itself, but the bandwidth usage optimization

through a new interest management algorithm, it was de-

cided that the simulation will simply be performed by the

server to which that player is connected. Thus, if the player

whose avatar is in region Ri performs an action near the

border involving entities in Rj , it is the server Si who will

decide the outcome of these actions, forwarding only the

already calculated new state to Sj . This way, the details

of the simulation mechanism will not interfere in the inter-

est management. The server Si, responsible for the player

Pi, simulates his actions, calculates the resulting state and

sends it to the neighbor server, Sj , as if it was sending to

its own clients. Similarly, when Sj receives the resulting

state of the action of Pi, it forwards the received state to its

clients as if one of his clients had executed that action.

5. Interest Management

In order to provide an identical sense of the environment

among the players, each one of them must maintain a lo-

cal copy of the entities’ states, which must be the same for

everyone. The simplest way to do this is to broadcast the

states of all entities to everyone. The problem of this ap-

proach is that it generates a heavy traffic between the servers

and clients, preventing the game to scale well, as the num-

ber of participants increase. To save bandwidth, both of the

players, as of the servers that intermediate them, a technique

known as interest management is employed. This technique

reduces the number of updates that the players will receive

- and send, in the case of a peer-to-peer architecture.

In short, the interest management technique works as fol-

lows: for every state change of each entity, it is calculated to

whom it will be relevant. For example, if an avatar is miles

away from another one in the virtual environment, it is most

likely that their state alterations are irrelevant to each other.

Thus, it is not necessary for them to exchange information

on their state. This principle - locality - is used as the main

criterion in the interest management algorithms.

The algorithms described in the following sections are

mainly based on the euclidean distance between each avatar

and every other entity in the virtual environment. This could

create a scalability problem due to the calculation of the dis-

tances, but a distributed architecture is assumed, where the

processing can and should be parallelized. In the distribu-

tion model defined previously, each server controls a region

of the map. Therefore, each one of them manages only a

subset of the entities of the game, checking only the dis-

tances between each pair of them, in addition to the entities

that are in a neighboring region, close to its border.

In the next sections, some versions of this technique,

such as circular area based and avatar’s field of view based

interest management, will be presented. In section 6, it is

introduced the approach of attenuating the frequency of up-

dates, and in section 7 our proposed algorithm is detailed.

5.1. Circular area of interest

A simple way to execute interest management is to de-

fine a circular area, whose center is determined by the co-

ordinates of the avatar’s location in the virtual environment.

After that, the euclidean distance between the avatar and ev-

ery other entity in the game world is calculated. Let A be

an avatar, whose area of interest is a circle of radius rad. If

an entity E is at a distance less than rad from A, then its

state updates will be relevant to A. A will not receive state

updates from entities which are at a distance greater than

rad. Figure 2 illustrates this type of area of interest.

5.2. Field of view based area of interest

A more refined method to manage the players’ interests

is to take into account what each one of them can see. The

area within which the player perceives state changes can be

defined as a circular sector. This is similar to the circular

area of interest described in the previous section, but con-

siders that the player can only see objects in front.

One issue to be observed, however, is that the player will

not receive state updates from entities that are close to his

avatar, but behind it. This could cause some problems. For

example, if the avatar turns 180◦, the player might not be

able to see a particular entity that should be there, needing

some time to receive its state information. This happens

because, though the entity was near the avatar, it was outside

the player’s field of view. In Figure 3, it is illustrated an area

of interest that takes into account the player’s view angle.

Avatar

Not relevant

Relevant

View distance

Figure 2. Circular area of interest

Field of view

Avatar

View distance

180°
Not relevant

Relevant

Figure 3. Field of view based area of interest

6. Graded Area of Interest

The principle behind the approach proposed here is

based on the fact that the more distant an entity is from the

avatar in the virtual environment, the lower its update fre-

quency for that avatar may be. Therefore, the state updates

from entities which are more distant may be received with a

longer interval between them. On the other hand, if an entity

is very close, it is desirable that the player receives its most

recent state information as soon as possible. To achieve this

objective, it is necessary to define some parameters:

Relevance - real value ranging from 0 to 1, which deter-

mines how much an entity’s state is relevant to an avatar.

Update frequency - number of updates received by a

player from each entity in the environment, divided by time.

Normal update interval - lowest time interval between

the arrival of two consecutive state updates of the same en-

tity to a client. It is used when the state has a relevance value

of 1. Thus, it determines the maximum update frequency.

View distance - maximum distance from which an

avatar may be from the entities so its player may see them.

Critical distance - radius of the circle around the avatar,

inside which all entities have a relevance value of 1.

Before sending the state of an entity to a client, the last

transmission time is checked. The next transmission is then

scheduled to occur after a certain interval. If the relevance

of that state is 1, the normal update interval will be used.

If it is less than 1, the normal interval is divided by the rel-

evance. For example, let the normal update interval of a

game be 200 ms. Also, let Ai be the avatar of a player who

just received a state update packet from Aj . If Aj is at a dis-

tance from Ai such that its relevance is 0.5, the next trans-

mission will only happen after an interval of 200 divided by

0.5. Therefore, the player controlling Ai will only receive

another update from Aj after 400 ms. Despite this interval

is still less than a half second, it represents a reduction of

the state update frequency of Aj in 50%, to the player of

Ai. As they are at a greater distance from one another, and

the interval was increased only by 200 ms, this variation

will probably be imperceptible by the player.

It is important to note that the reduction of the entities’

update frequency may be combined with other interest man-

agement techniques. In [2], various interest management

algorithms are described, and they can be further improved

if the idea of different transmission intervals based on the

relevance of the updates is used. Generally the state of each

entity is classified into one of only two extremes: it is rel-

evant or it is not relevant, ignoring the fact that there is a

wide range of intermediate values. The question is how to

define the relevance value for each state update.

A simple form of using various update intervals based

on the relevance value would be utilizing the circular area

of interest. To obtain the relevance of an entity relative to

an avatar, the value may be set to 1 when they are at the

same position and gradually reduce it as the distance be-

tween them increases, until it reaches 0 and stops decreas-

ing no matter how farther the entity goes. This is a way

that, although simple, has shown a significant reduction in

traffic between clients and servers. In Figure 4, it is illus-

trated how this area of interest would be, with entities’ state

update frequency attenuation for a given avatar.

In the next section, it will be presented the proposed A3

algorithm, which employs, besides other principles, the up-

date frequency attenuation. The simulations and their re-

sults are shown in sections 8 and 9, respectively.

7. The A3 algorithm

In the previous sections, we have hinted that filtering

based on an avatar’s field of view of 180◦, for instance,

instead of using a full circle around it could result in sig-

nificant reduction in update traffic from the server to the

player’s machine. However, that would bring an important

drawback, which is the large but temporary inconsistencies

that would ensue whenever a player would turn around his

Avatar

Relevance

1 0

View distance

Figure 4. Circular area of interest with update

frequency attenuation

avatar quickly to see what objects are behind it. We have

also reminded that reducing update frequencies for objects

that are farther away from the observer is a good optimiza-

tion, especially for large virtual worlds where the avatar

may be on an open field with potentially hundreds of other

avatars in its sighting distance. In this case, the player will

not benefit at all from receiving updates at maximum fre-

quency from objects that are sufficiently distant.

In our envisioned distributed MMOG scenario, the field

of view optimization cannot be missed. We need to use the

avatar’s field of view information to further improve on fil-

tering gains. Furthermore, as it has the mentioned draw-

back, we combined it with a smaller circle around the avatar.

This addresses the field of view blind spot because, even if

the game allows players to turn their avatars 180◦ quasi-

instantly, the only objects which will be affected negatively

due to abrupt turning will be the more distant ones. Some

time will be taken for the client to inform the server about

the new facing angle of its avatar and to receive the state up-

dates of the entities which were far behind it. Nevertheless,

this delay will affect only distant objects, what is acceptable

for most games, even action or shooter ones, which are the

most demanding in terms of consistency due to presence of

long-range hit-scan weapons, for instance.

Therefore, the interest management algorithm proposed

in this work, A3 (view angle with close area and update fre-

quency attenuation), takes into account three main factors:

• Avatar’s view angle, to determine which entities the

player must be able to see because they are in front of

his avatar and within the maximum view distance;

• Close area, whose purpose is to improve the game qual-

ity in the space near the avatar. Its radius is the critical

distance;

Close area

Field of view

Avatar

180°

Relevance

1 0

View distance

Critical
distance

Figure 5. A3 area of interest

• Update frequency attenuation.

The resulting area of interest then takes the shape of a cir-

cular sector, which represents the player’s field of view. The

origin of this circular sector is also the center of a smaller

circle, which defines the area close to the avatar. In the close

area, all entities have a relevance value of 1, so their update

frequency to that avatar is set to the maximum value. This

way, the most up-to-date game state becomes available to

the player in the area around his avatar, improving the in-

teraction with entities next to it. Even if some of them are

outside the player’s field of view, he will be able to see them

if his avatar turns rapidly in their direction. Figure 5 illus-

trates the area of interest which has just been described.

As for entities that are outside the area nearby, but still

within the avatar’s field of view, their relevance must be cal-

culated. It is proposed that the relevance of each entity de-

cline gradually as the distance between it and the avatar in

question increases. The farther they are, the less frequent

will be their state updates. This is possible because even if

the interval update is doubled, it will most likely still be a

fraction of a second, which is hardly noticeable for a player

whose avatar is located at a great distance from that entity.

Moreover, short delays between the arrival of state updates

can be easily masked by extrapolation techniques, such as

dead-reckoning [18]. Algorithm 1 defines the operation of

our interest management technique.

8. Simulation

In order to perform the simulation of the proposed al-

gorithm, it was first necessary to create a simulated virtual

environment, with avatars present on it, since the algorithm

is based on locality and view angle information. The envi-

ronment consists of a two-dimensional space, which corre-

sponds to the region managed by one of the servers. There

are various avatars present, whose number varies from one

simulation to another. Each one of them randomly chooses

a destination point in the environment and then moves there.

Algorithm 1 Calculate relevance of entity E to avatar A

dist← distance(A, E)
if dist ≤ critical distance then

relevance← 1
else

if A can see E in its field of view then

relevance← 1− dist−critical distance
view distance−critical distance

if relevance < 0 then

relevance← 0
end if

else

relevance← 0
end if

end if

After reaching its destination, it stays there for a random

time and then chooses a new destination to move to.

The ns-2 simulator [10] was used to compare the inter-

est management algorithms described in this paper. This

simulator allows the user to create code of the specific ap-

plication which will be simulated. In our case, it was simu-

lated a server managing a certain region where there was an

avatar whose client should receive state updates of the other

avatars present in that region. Based on their locations and

on the chosen interest management algorithm, the server de-

cided which other avatars had a relevant state to the client

in question.

Through the simulations, it was obtained the server up-

load bandwidth usage for one client. It was not considered

necessary to simulate every client connected to the server

simultaneously because every one of them had the same

behavior. To find the total upload bandwidth usage, we

just multiply the value measured with the simulation by the

number of clients connected to that server. Also, there was

no point in simulating or measuring the download band-

width usage of the server, since it would keep receiving

the players’ actions at the same rate no matter what inter-

est management algorithm was used.

Some works, such as [21], [8] and [19], analyse the net-

work traffic generated by large scale games. Based on these

analyses, and adopting a conservative posture, the following

parameters have been decided to be used in the simulations:

Normal update interval: 250 ms;

State update for one entity: 100 bytes UDP packet;

Duration of each simulated game session: 20 min;

Virtual environment area: 750 × 750 area units;

View distance: 120 length units;

Critical distance: 40 length units;

View angle: 180◦.

Several simulations were executed, in order to compare

the described interest management algorithms. The number

of avatars in the environment was varied in order to measure

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 25 50 75 100 125 150 175 200

M
a
x
im

u
m

 b
a
n
d
w

id
th

 p
e
r

c
lie

n
t
(b

y
te

s
/s

)

Number of avatars

No interest management
Circle

Circle with attenuation
Field of View

A
3

Figure 6. Maximum bandwidth usage

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 25 50 75 100 125 150 175 200

A
v
e
ra

g
e
 b

a
n
d
w

id
th

 p
e
r

c
lie

n
t
(b

y
te

s
/s

)

Number of avatars

No interest management
Circle

Circle with attenuation
Field of View

A
3

Figure 7. Average bandwidth usage

the scalability. The algorithms compared were the ones with

circle, circle with attenuation and field of view based area

of interest and the proposed algorithm, A3. To demonstrate

how much traffic reduction each one of these achieve, sim-

ulations in which no type of interest management was used

- and the server sent to the client state updates of all entities

in the environment - were also performed.

9. Results

The results were collected as follows: to measure the av-

erage upload bandwidth usage by the server, the sizes of all

packets sent in the session were added up and then divided

by the session duration; to determine the maximum usage,

it was measured how many bytes had been sent each second

and the highest value was selected.

In Figure 6 and Figure 7, the results are presented for

each number of simulated avatars and interest management

algorithm - circular area based, circular area based with at-

tenuated update frequency, field of view based and A3 - and

it is also shown how much would be the upload bandwidth

usage if no technique at all was employed.

Just by using different update frequencies with circular

area based interest management, the average upload band-

width usage by the server decreased 41.59%. The maxi-

mum upload bandwidth usage was also reduced, decreasing

36.19%. These values represent the average usage reduc-

tion among all different numbers of avatars, compared to

the circular area of interest algorithm with no frequency up-

date attenuation.

Regarding the proposed algorithm, A3, it has been ob-

tained an average upload bandwidth usage reduction of

63.51% and 33.58%, compared to the circular area of in-

terest and the field of view based algorithms, respectively.

The maximum upload bandwidth usage was also reduced,

decreasing 52.03% and 33.10%, compared to the same al-

gorithms. Table 1 shows the saving percentage of the max-

imum and average bandwidth usage with the A3 algorithm,

compared to the other simulated techniques. For example,

the maximum bandwidth utilization with A3 is 24.81% less

than with a circular area of interest based algorithm with

update frequency attenuation.

Table 1. Bandwidth saving with A3 algorithm
Usage None C C & A FoV

Maximum 60.10% 52.03% 24.81% 33.10%

Average 81.64% 63.51% 37.48% 33.58%

10. Conclusion

In this work, we presented the A3 interest management

algorithm, whose main idea is to vary the state update fre-

quency of the game entities according to their relevance

to each client that will receive the updates. The A3 area

of interest consists of a circular sector, corresponding to

the player field of view, plus a smaller circle, which repre-

sents the area close to that player’s avatar. The goal of this

close area is to maintain the game state inside it the most

up-to-date possible, in order to improve the game near the

avatar. Joining these characteristics, we obtained an algo-

rithm that achieved a significant reduction of the maximum

upload bandwidth utilization by the server, which decreased

52.03% and 33.10%, compared to circle and field of view

based interest management algorithms, respectively. The

average utilization also decreased, 63.51% and 33.58%.

Acknowledgment

This work was supported by the Funding for Studies

and Projects (FINEP), through the P2PSE project (P2PSE-

5849-1), and by the National Research Council (CNPq).

References

[1] M. Assiotis and V. Tzanov. A distributed architecture for

MMORPG. Proc. of NetGames ’06, 2006.

[2] J. Boulanger, J. Kienzle, and C. Verbrugge. Comparing

interest management algorithms for massively multiplayer

games. Proc. of NetGames ’06, 2006.
[3] F. Cecin, R. Real, R. de Oliveira Jannone, C. Geyer, M. Mar-

tins, and J. Barbosa. FreeMMG: A Scalable and Cheat-

Resistant Distribution Model for Internet Games. Proc. of

DS-RT 2004, pages 83–90, 2004.
[4] M. Crippa, F. Cecin, and C. Geyer. Peer-to-peer support for

instance-based massively multiplayer games. 2007. Pre-

sented in 6th SBGames.
[5] A. El-Sayed. Application-Level Multicast Transmission

Techniques over the Internet. University of Paris, 2004.
[6] T. Hampel, T. Bopp, and R. Hinn. A peer-to-peer archi-

tecture for massive multiplayer online games. Proc. of

NetGames ’06, 2006.
[7] T. Iimura, H. Hazeyama, and Y. Kadobayashi. Zoned fed-

eration of game servers: a peer-to-peer approach to scalable

multi-player online games. Proc. of NetGames ’04, 2004.
[8] J. Kim, J. Choi, D. Chang, T. Kwon, Y. Choi, and E. Yuk.

Traffic characteristics of a massively multi-player online

role playing game. Proc. of NetGames ’05, pages 1–8, 2005.
[9] B. Knutsson, H. Lu, W. Xu, and B. Hopkins. Peer-to-peer

support for massively multiplayer games. Infocom, 2004.
[10] S. McCanne, S. Floyd, et al. Network simulator ns-2. Avail-

able for download at http://www.isi.edu/nsnam/ns.
[11] R. Minson and G. Theodoropoulos. An adaptive interest

management scheme for distributed virtual environments.

Proc. of PADS ’05, pages 273–281, 2005.
[12] G. Morgan, F. Lu, and K. Storey. Interest management mid-

dleware for networked games. Proc. of SIGGRAPH 2005,

3(06):57–64, 2005.
[13] K. Morse et al. Interest management in large-scale dis-

tributed simulations. Technical Report ICS-TR-96-27, Uni-

versity of California, Irvine, 1996.
[14] B. Ng, A. Si, R. Lau, and F. Li. A multi-server architecture

for distributed virtual walkthrough. Proc. of VRST ’02, 2002.
[15] S. Rak and D. Van Hook. Evaluation of grid-based relevance

filtering for multicast group assignment. Proc. of 14th DIS

workshop, pages 739–747, 1996.
[16] S. Rieche, M. Fouquet, H. Niedermayer, L. Petrak,

K. Wehrle, and G. Carle. Peer-to-Peer-based Infrastructure

Support for Massively Multiplayer Online Games. Proc. of

CCNC 2007, pages 763–767, 2007.
[17] G. Schiele, R. Suselbeck, A. Wacker, J. Hahner, C. Becker,

and T. Weis. Requirements of Peer-to-Peer-based Massively

Multiplayer Online Gaming. Proc. of CCGrid ’07, 2007.
[18] J. Smed, T. Kaukoranta, and H. Hakonen. A Review on Net-

working and Multiplayer Computer Games. Turku Centre

for Computer Science, 2002.
[19] P. Svoboda, W. Karner, and M. Rupp. Traffic Analysis and

Modeling for World of Warcraft. Proc. of ICC’07, 2007.
[20] J. Yan and B. Randell. A systematic classification of cheat-

ing in online games. Proc. of NetGames ’05, 2005.
[21] Y. Yu, Z. Li, L. Shi, Y. Chen, and H. Xu. Network-Aware

State Update For Large Scale Mobile Games. Proc. of IC-

CCN 2007, pages 563–568, 2007.
[22] L. Zou, M. Ammar, and C. Diot. An evaluation of grouping

techniques for state dissemination in networked multi-user

games. Proc. of MASCOTS ’01, pages 33–40, 2001.

