Parameterized verification of fault-tolerant protocols by infinite-state model checking

Francesco Alberti

Formal Verification and Security Group
University of Lugano, Switzerland

March 14, 2011 (AVM 2011)
Outline

1. Parameterized systems and Uniform verification
2. MCMT - Model Checker Modulo Theories
3. Case study - The problem of Reliable Broadcast
4. Future work
Parameterized systems and Uniform verification

- Parameterized system: System given schematically in terms of a parameter n: S_n
 - E.g. Protocols involving n processes in their execution

The problem of Uniform Verification

Verify if a given property ϕ holds in the parameterized system S_n for any value of $n \geq 2$

Problems:
- In theory - This problem is, in general, undecidable [Apt and Kozen, 1986]
 - We will focus on a restricted family of parameterized systems for which it becomes decidable and only on safety properties
- In practice - S_n is intrinsically an infinite-state system
 - How can we handle possibly infinite set of states?
Parameterized systems and Uniform verification

- Parameterized system: System given schematically in terms of a parameter n: S_n

- E.g. Protocols involving n processes in their execution

The problem of Uniform Verification

Verify if a given property ϕ holds in the parameterized system S_n for any value of $n \geq 2$
Parameterized systems and Uniform verification

- **Parameterized system**: System given schematically in terms of a parameter n: S_n
 - E.g. Protocols involving n processes in their execution

The problem of Uniform Verification

Verify if a given property ϕ holds in the parameterized system S_n for any value of $n \geq 2$

Problems:

- **In theory** - This problem is, in general, undecidable
 [Apt and Kozen, 1986]
 - We will focus on a restricted family of parameterized systems for which it becomes decidable and only on safety properties
Parameterized systems and Uniform verification

- Parameterized system: System given schematically in terms of a parameter n: S_n
 - E.g. Protocols involving n processes in their execution

The problem of Uniform Verification

Verify if a given property ϕ holds in the parameterized system S_n for any value of $n \geq 2$

Problems:

- **In theory** - This problem is, in general, undecidable [Apt and Kozen, 1986]
 - We will focus on a restricted family of parameterized systems for which it becomes decidable and only on safety properties

- **In practice** - S_n is intrinsically an infinite-state system
 - How can we handle possibly infinite set of states?
Let’s consider a very simple protocol involving n processes in its execution.

Every process is an instance of the same state-machine.

A process is in the R location if it is in the critical section.
One possible *configuration* of our parameterized system can have 4 processes, and one of them is in the critical section.
Another configuration: 8 processes none in the critical section
Encoding configurations

Problem

How to define a compact representation of states?
Encoding configurations

Problem
How to define a compact representation of states?

Solution
- Symbolic approach: formulae are used to represent set of states
- Topology and data are described in a declarative way using two theories T_I and T_E
- ARRAY state variables
We fix a theory $T_I = (\Sigma_I, C_I)$ for the topology

- T_I has one sort symbol, INDEX
- C_I consists of all (finite) sets, linear orders, forests/trees, graphs, ...
We fix a theory $T_I = (\Sigma_I, C_I)$ for the topology
- T_I has one sort symbol, INDEX
- C_I consists of all (finite) sets, linear orders, forests/trees, graphs, ...

We fix a theory $T_E = (\Sigma_E, C_E)$ for the data
- T_E has one sort symbol, ELEM
- Usually C_E contains just one structure: integers, reals, Booleans, ...
Encoding configurations
Towards Array-based systems [Ghilardi et al., 2008]

- We fix a theory $T_I = (\Sigma_I, C_I)$ for the topology
 - T_I has one sort symbol, INDEX
 - C_I consists of all (finite) sets, linear orders, forests/trees, graphs, ...

- We fix a theory $T_E = (\Sigma_E, C_E)$ for the data
 - T_E has one sort symbol, ELEM
 - Usually C_E contains just one structure: integers, reals, Booleans, ...

- A third theory $A^E_I = (\Sigma, C)$ is obtained from T_I and T_E
We fix a theory $T_I = (\Sigma_I, C_I)$ for the topology
- T_I has one sort symbol, INDEX
- C_I consists of all (finite) sets, linear orders, forests/trees, graphs, ...

We fix a theory $T_E = (\Sigma_E, C_E)$ for the data
- T_E has one sort symbol, ELEM
- Usually C_E contains just one structure: integers, reals, Booleans, ...

A third theory $A^E_I = (\Sigma, C)$ is obtained from T_I and T_E
- A^E_I has three sort symbols: INDEX, ELEM and ARRAY
- Σ contains all the symbols in the disjoint union $\Sigma_I \cup \Sigma_E \cup \text{[-]}$
 - $\text{[-]} : \text{ARRAY} \times \text{INDEX} \rightarrow \text{ELEM}$
encoding configurations

Towards Array-based systems [Ghilardi et al., 2008]

- We fix a theory \(T_I = (\Sigma_I, C_I) \) for the topology
 - \(T_I \) has one sort symbol, INDEX
 - \(C_I \) consists of all (finite) sets, linear orders, forests/trees, graphs, ...

- We fix a theory \(T_E = (\Sigma_E, C_E) \) for the data
 - \(T_E \) has one sort symbol, ELEM
 - Usually \(C_E \) contains just one structure: integers, reals, Booleans, ...

- A third theory \(A^E_I = (\Sigma, C) \) is obtained from \(T_I \) and \(T_E \)
 - \(A^E_I \) has three sort symbols: INDEX, ELEM and ARRAY
 - \(\Sigma \) contains all the symbols in the disjoint union \(\Sigma_I \cup \Sigma_E \cup [-] \)
 - \([-] : \text{ARRAY} \times \text{INDEX} \rightarrow \text{ELEM} \)
 - \(\mathcal{M} \in C \) if symbols of sort ARRAY are interpreted as (total) functions from \(\text{INDEX}^{\mathcal{M}} \) to \(\text{ELEM}^{\mathcal{M}} \)
An **array-based system** on A^E_1 with ARRAY state variable a is the following pair of formulae:

$$S_n = \langle I(a); \tau(a, a') \rangle$$
An **array-based system** on A^E_i with ARRAY state variable a is the following pair of formulae:

$$S_n = \langle I(a); \tau(a, a') \rangle$$

A state of an array-based system is an assignment to the variable a in a model of A^E_i.
An array-based system on A_i^E with ARRAY state variable a is the following pair of formulae:

$$S_n = \langle I(a); \tau(a, a') \rangle$$

A state of an array-based system is an assignment to the variable a in a model of A_i^E
The initial set of states will be represented by a \forall^I-formula

- E.g. all the processes are in the blue location: $\forall x. (L[x] = B)$
- \forall^I-formulae can also be used to express invariants
The initial set of states will be represented by a $\forall I$-formula
- E.g. all the processes are in the blue location: $\forall x. (L[x] = B)$
- $\forall I$-formulae can also be used to express invariants

The unsafe set of states will be represented by an $\exists I$-formula
- E.g. violation of the mutual exclusion:
 $\exists x, y. (x \neq y \land L[x] = R \land L[y] = R)$
The initial set of states will be represented by a \forall^I-formula
- E.g. all the processes are in the blue location: $\forall x. (L[x] = B)$
- \forall^I-formulae can also be used to express invariants

The unsafe set of states will be represented by an \exists^I-formula
- E.g. violation of the mutual exclusion:
 $\exists x, y. (x \neq y \land L[x] = R \land L[y] = R)$

Transition relation is represented by a disjunction of formulae of kind \exists^I.
 $\exists i. (\phi(i, a[i]) \land a' = \lambda j. F(i, a[i], j, a[j]))$
- F is a case-defined function
Encoding configurations

Array-based systems

\[\exists x, y. \ (x \neq y \land L[x] = R \land L[y] = B) \]

\[\exists x, y. \ (x \neq y \land L'[x] = R \land L'[y] = R) \]

\[\tau = \exists x. \ (L[x] = B \land L' = \lambda j. (\text{if } x = j \text{ then } R \text{ else } L[j])) \]
Encoding configurations
Array-based systems

\[\exists x, y. (x \neq y \land L[x] = R \land L[y] = B) \]

\[\exists x, y. (x \neq y \land L'[x] = R \land L'[y] = R) \]

\[\tau = \exists x. (L[x] = B \land L' = \lambda j. (\text{if } x = j \text{ then } R \text{ else } L[j])) \]

ARRAY variable \(L \)
Encoding configurations
Array-based systems

\[\exists x, y. (x \neq y \land L[x] = R \land L[y] = B) \]

\[\exists x, y. (x \neq y \land L'[x] = R \land L'[y] = R) \]
Encoding configurations
Array-based systems

\[\exists x, y. (x \neq y \land L[x] = R \land L[y] = B) \]

\[\exists x, y. (x \neq y \land L'[x] = R \land L'[y] = R) \]

\[\begin{array}{cccc}
L & \cdots & R & \cdots & B & \cdots \\
\end{array} \]

\[\tau \]

\[\begin{array}{cccc}
L' & \cdots & R & \cdots & R & \cdots \\
\end{array} \]
Encoding configurations
Array-based systems

ARRAY variable L

$\exists x, y. (x \neq y \land L[x] = R \land L[y] = B)$

$\exists x, y. (x \neq y \land L'[x] = R \land L'[y] = R)$

$L \cdots R \cdots B \cdots \xrightarrow{\tau} L' \cdots R \cdots R \cdots$

$\tau = \exists x. \left(L[x] = B \land L' = \lambda j. (\text{if } (x = j) \text{ then } R \text{ else } L[j]) \right)$
Model checking

The safety problem [Ghilardi et al., 2008]

Ingredients:

- Theories T_I, T_E
- Array-based system $S = \langle l(a); \tau(a, a') \rangle$ on A^E_I
- \exists^I-formula $U(a)$ describing a set of unsafe states

Safety problem - Backward reachability algorithm

Check the (un)reachability of an unsafe state $U(a)$ by executing a (fully symbolic) backward reachability procedure $Br(a)$:

$$Br(a) := \text{Pre}(\tau, U(a)) = \exists a'. (\tau(a, a') \land U(a'))$$

Can be proved that $Br(a)$ is \exists^I-equivalent to an effectively computable \exists^I-formula F. Alberti (USI)
Model checking

The safety problem [Ghilardi et al., 2008]

Ingredients:

- Theories T_I, T_E
- Array-based system $S = \langle I(a); \tau(a, a') \rangle$ on A^E_I
- \exists^I-formula $U(a)$ describing a set of unsafe states

Safety problem - Backward reachability algorithm

Check the (un)reachability of an unsafe state U by executing a (fully symbolic) backward reachability procedure

$$Br(a) := \text{Pre}(\tau, U) = \exists a'. (\tau(a, a') \land U(a'))$$
Model checking

The safety problem [Ghilardi et al., 2008]

Ingredients:
- Theories T_I, T_E
- Array-based system $S = \langle I(a); \tau(a, a') \rangle$ on A^E_I
- \exists^I-formula $U(a)$ describing a set of unsafe states

Safety problem - Backward reachability algorithm

Check the (un)reachability of an unsafe state U by executing a (fully symbolic) backward reachability procedure

$$Br(a) := \text{Pre}(\tau, U) = \exists a'. (\tau(a, a') \land U(a'))$$

Can be proved that $Br(a)$ is A^E_I-equivalent to an effectively computable \exists^I-formula
We iteratively compute the preimage of U applying backward τ
We iteratively compute the preimage of U applying backward τ.
We iteratively compute the preimage of U applying backward τ.
We iteratively compute the preimage of U applying backward τ.
We iteratively compute the preimage of U applying backward τ

... until we find an intersection with the set of initial states...
We iteratively compute the preimage of U applying backward τ

... until we find an intersection with the set of initial states...

... or a (global) fix-point.
Reduce intersection and fix-point test to SMT problems:

- Intersection test: is $I \land U_n \ A^E_I$-satisfiable?
Reduce intersection and fix-point test to SMT problems:

- Intersection test: is $I \land U_n \ A_I^E$-satisfiable?
- Fix-point test: is $U_{n+1} \rightarrow U_n \ A_I^E$-valid?
- ...or dually: is $U_{n+1} \land \neg U_n \ A_I^E$-unsatisfiable?
Architecture (v1) [Ghilardi and Ranise, 2010]

- **client** - Computes the preimages and generates the instances of *safety* and *fix-point* checks (handling of quantifiers)
- **server** - SMT-solver: decides the (un)satisfiability of the formulae ϕ encoding safety and fix-point checks

\[I(a), U(a), \tau(a, a'), T_I, T_E \]
1. \(SMT(T_I) \) and \(SMT(T_E) \) problems for quantifier-free formulae are decidable

2. \(\Sigma_I \) and \(\Sigma_E \) contain only constants and predicates

3. The class of models of \(T_I \) is closed under substructures

4. The preorder \(\preceq \) on \(A^E_I \)-configurations is a well-quasi order \(^1\)

\(^1\) A reflexive, transitive binary relation that neither contains infinite strictly decreasing sequences nor infinite sequences of pairwise incomparable elements.
1. $SMT(T_I)$ and $SMT(T_E)$ problems for quantifier-free formulae are decidable

2. Σ_I and Σ_E contain only constants and predicates

3. The class of models of T_I is closed under substructures

4. The preorder \preceq on A_I^E-configurations is a well-quasi order \(^1\)

\Rightarrow backward reachability always terminates.
Parameterized verification

Why MCMT?

- Fully symbolic (formulae represent set of states)
Parameterized verification

Why MCMT?

- Fully symbolic (formulae represent set of states)
- Declarative specification of topology and data with first order theories
Parameterized verification

Why MCMT?

- Fully symbolic (formulae represent set of states)
- Declarative specification of topology and data with first order theories
- Counterexample (if any)
Parameterized verification

Why \textsc{mcmt}?

- Fully symbolic (formulae represent set of states)
- Declarative specification of topology and data with first order theories
- Counterexample (if any)
- High degree of automation
 - As much as possible automatic verification
 - Avoid the introduction of bugs from user interaction by accepting “candidate invariants”
An inductive invariant is a \forall^I-formula $\phi(a)$ s.t.

- $A^E_i \models l(a) \rightarrow \phi(a)$
- $A^E_i \models \phi(a) \land \tau(a, a') \rightarrow \phi(a')$
- $\phi(a)$ is A^E_i-inconsistent with the formula $U(a)$ describing unreachable states
An inductive invariant is a \forall^l-formula $\phi(a)$ s.t.

- $A_i^E \models I(a) \rightarrow \phi(a)$
- $A_i^E \models \phi(a) \land \tau(a, a') \rightarrow \phi(a')$
- $\phi(a)$ is A_i^E-inconsistent with the formula $U(a)$ describing unreachable states

- Declarative approach: if S_n is safe w.r.t. ϕ, then $\neg \phi$ is a safe invariant for the system.
- Make a “plan of work”!
- We can tell to MCMT:
 1. Try to check these invariants: $\phi_1, \phi_2, \phi_3, ...$
 2. Use **only** those you have found to be *real* safe invariants in the main verification process.
Case study: The problem of Reliable Broadcast
[Hadzilacos and Toueg, 1993]

- A process \(p \) of a distributed system wants to send a message \(m \) to all other processes
- Broadcast primitives not available
 \(\Rightarrow \) \(p \) must send \(m \) to each process \textit{separately}
Case study: The problem of Reliable Broadcast

[Hadzilacos and Toueg, 1993]

- A process p of a distributed system wants to send a message m to all other processes.
- Broadcast primitives not available.

\Rightarrow p must send m to each process separately.

Sender/receiver’s failures may cause inconsistencies!
Case study: The problem of Reliable Broadcast
[Hadzilacos and Toueg, 1993]
- A process \(p \) of a distributed system wants to send a message \(m \) to all other processes
- Broadcast primitives not available
 \(\Rightarrow \) \(p \) must send \(m \) to each process separately

Sender/receiver’s failures may cause inconsistencies!

Failures of processes are described by means of failure models
[Tanenbaum and Steen, 2006]
- E.g. Stopping-failure, Omission, Timing, Response, ...
Parameterized verification of Fault-tolerant protocols

The problem of Reliable Broadcast - A solution [Hadzilacos and Toueg, 1993]
Parameterized verification of Fault-tolerant protocols

The problem of Reliable Broadcast - A solution [Hadzilacos and Toueg, 1993]
Safety property: *agreement*

If a correct process delivers m, all correct processes deliver m.
The description of protocols in [Chandra and Toueg, 1990] requires several array variables:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Domain</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>round</td>
<td>[1; 7]</td>
<td>The location of each process</td>
</tr>
<tr>
<td>message</td>
<td>Boolean</td>
<td>The local message of the process</td>
</tr>
<tr>
<td>delivered</td>
<td>Boolean</td>
<td>The process has delivered the message</td>
</tr>
<tr>
<td>coord</td>
<td>Boolean</td>
<td>The process is the coordinator of the network</td>
</tr>
<tr>
<td>done</td>
<td>Boolean</td>
<td>The process has done the round operations</td>
</tr>
<tr>
<td>id</td>
<td>\mathbb{Z}</td>
<td>The id of the sender of the message</td>
</tr>
<tr>
<td>faulty</td>
<td>Boolean</td>
<td>The process is faulty</td>
</tr>
</tbody>
</table>

...
Encoding systems
An example from our case study - Unsafe configuration

Safety property: agreement
If a correct process delivers a message m, then all correct processes deliver the same message m.

$$U := \exists x, y. \left(x \neq y \land \right.$$
$$\left. \begin{array}{l}
delivered[x] = \top \land faulty[x] = \bot \land \\
delivered[y] = \top \land faulty[y] = \bot \land \\
message[x] \neq message[y]
\end{array} \right)$$
Our case study: Reliable Broadcast

Results [Alberti et al., 2010]

First formal parametrized verification of protocols from [Chandra and Toueg, 1990] (to the best of our knowledge)

<table>
<thead>
<tr>
<th></th>
<th>Crash, pr. 1</th>
<th>S-O, pr.1</th>
<th>S-O, pr.1 (e)</th>
<th>S-O, pr.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Result</td>
<td>SAFE</td>
<td>UNSAFE</td>
<td>UNSAFE</td>
<td>SAFE</td>
</tr>
<tr>
<td># State variables</td>
<td>8</td>
<td>95</td>
<td>11</td>
<td>15</td>
</tr>
<tr>
<td># Transitions</td>
<td>13</td>
<td>16</td>
<td>22</td>
<td>28</td>
</tr>
<tr>
<td># Nodes</td>
<td>113 (-21)</td>
<td>464 (-26)</td>
<td>9.679 (-770)</td>
<td>11.158 (-1.290)</td>
</tr>
<tr>
<td># SMT calls</td>
<td>2.792</td>
<td>20.009</td>
<td>1.338.058</td>
<td>2.558.986</td>
</tr>
<tr>
<td>Length unsafe trace</td>
<td>×</td>
<td>11 tr.</td>
<td>33 tr.</td>
<td>×</td>
</tr>
<tr>
<td># Invariants</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>19 (+7)</td>
</tr>
<tr>
<td>Max # processes</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Time</td>
<td>1 s</td>
<td>18 s</td>
<td>28 mins</td>
<td>78 mins</td>
</tr>
</tbody>
</table>

Intel i7 @ 2.66 GHz, 4 GB RAM, Mac OSX 10.6
First formal parametrized verification of protocols from [Chandra and Toueg, 1990] (to the best of our knowledge)

<table>
<thead>
<tr>
<th></th>
<th>Crash, pr. 1</th>
<th>S-O, pr.1</th>
<th>S-O, pr.1 (e)</th>
<th>S-O, pr.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Result</td>
<td>SAFE</td>
<td>UNSAFE</td>
<td>UNSAFE</td>
<td>SAFE</td>
</tr>
<tr>
<td># State variables</td>
<td>8</td>
<td>95</td>
<td>11</td>
<td>15</td>
</tr>
<tr>
<td># Transitions</td>
<td>13</td>
<td>16</td>
<td>22</td>
<td>28</td>
</tr>
<tr>
<td># Nodes</td>
<td>113 (-21)</td>
<td>464 (-26)</td>
<td>9.679 (-770)</td>
<td>11.158 (-1.290)</td>
</tr>
<tr>
<td># SMT calls</td>
<td>2.792</td>
<td>20.009</td>
<td>1.338.058</td>
<td>2.558.986</td>
</tr>
<tr>
<td>Length unsafe trace</td>
<td>×</td>
<td>11 tr.</td>
<td>33 tr.</td>
<td>×</td>
</tr>
<tr>
<td># Invariants</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>19 (+7)</td>
</tr>
<tr>
<td>Max # processes</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Time</td>
<td>1 s</td>
<td>8 s</td>
<td>28 mins</td>
<td>78 mins</td>
</tr>
</tbody>
</table>

Shorter than [Chandra and Toueg, 1990]
Our case study: Reliable Broadcast

Results [Alberti et al., 2010]

First formal parametrized verification of protocols from [Chandra and Toueg, 1990] (to the best of our knowledge)

<table>
<thead>
<tr>
<th></th>
<th>Crash, pr. 1</th>
<th>S-O, pr.1</th>
<th>S-O, pr.1 (e)</th>
<th>S-O, pr.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Result</td>
<td>SAFE</td>
<td>UNSAFE</td>
<td>UNSAFE</td>
<td>SAFE</td>
</tr>
<tr>
<td># State variables</td>
<td>8</td>
<td>95</td>
<td>11</td>
<td>15</td>
</tr>
<tr>
<td># Transitions</td>
<td>13</td>
<td>16</td>
<td>22</td>
<td>28</td>
</tr>
<tr>
<td># Nodes</td>
<td>113 (-21)</td>
<td>464 (-26)</td>
<td>9.679 (-770)</td>
<td>11.158 (-1.290)</td>
</tr>
<tr>
<td># SMT calls</td>
<td>2.792</td>
<td>20.009</td>
<td>1.338.058</td>
<td>2.558.986</td>
</tr>
<tr>
<td>Length unsafe trace</td>
<td>×</td>
<td>11 tr.</td>
<td>33 tr.</td>
<td>×</td>
</tr>
<tr>
<td># Invariants</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>19 (+7)</td>
</tr>
<tr>
<td>Max # processes</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Time</td>
<td>1 s</td>
<td>18 s</td>
<td>28 mins</td>
<td>78 mins</td>
</tr>
</tbody>
</table>

Intel i7 © 2.66 GHz, 4 GB RAM, Mac OSX 10.6
MCMT v2

- New data structures to better handling formulae
- Full integration with OpenSMT
- More flexible input language
Conclusion and Future work

MCMT v2

- New data structures to better handling formulae
- Full integration with OpenSMT
- More flexible input language

Formal verification:

- Apply MCMT to imperative programs verification
 - Assumptions required for termination are not satisfied
Conclusion and Future work

jww Roberto Bruttomesso, Silvio Ghilardi, Silvio Ranise, Natasha Sharygina

- **MCMT v2**
 - New data structures to better handling formulae
 - Full integration with OpenSMT
 - More flexible input language

- **Formal verification:**
 - Apply MCMT to imperative programs verification
 - Assumptions required for termination are not satisfied
 - Invariant-search procedure
Conclusion and Future work

MCMT v2
- New data structures to better handling formulae
- Full integration with OpenSMT
- More flexible input language

Formal verification:
- Apply MCMT to imperative programs verification
 - Assumptions required for termination are not satisfied
- Invariant-search procedure
- Abstraction/refinement techniques
Thank you!
Questions?

Francesco Alberti
francesco.alberti@usi.ch

