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Abstract

The requirements for availability, performance, and latency in today’s online ser-
vices are strict. State machine replication (SMR), a fundamental technique for
increasing the availability of services without compromising consistency, offers
configurable availability but limited scalability in terms of performance. Scal-
ability in SMR is limited due to the fact that every replica has to execute the
same set of requests, and therefore adding servers does not increase the maxi-
mum throughput. Scalable State Machine Replication (S-SMR) systems achieve
scalable performance by partitioning the service state and coordinating the or-
dering and execution of commands to preserve the default consistency guarantee
of SMR. While current S-SMR systems scale performance of single-partition re-
quests with the number of partitions, replica coordination and object migration
incur substantial overhead in the execution of multi-partition requests.

In this thesis, we first develop DynaTree, a distributed B+Tree algorithm over
state-of-the-art S-SMR systems to study the implications of the partitioned SMR
model on the development of complex distributed applications. We then look
into improving performance and reducing latency of S-SMR systems. We lever-
age RDMA technology to enable systems with enhanced communication per-
formance. RDMA provides the potential for high throughput and low latency
communication by bypassing the kernel and implementing network stack lay-
ers in hardware. In this direction, we propose and implement two novel sys-
tems: (i) RamCast, the first genuine atomic multicast protocol tailor-made for
shared-memory, and (ii) Heron, the first scalable state machine replication sys-
tem on shared memory. RamCast leverages RDMA to reduce the latency of atomic
multicast to microseconds by using RDMA mechanisms to protect memory from
concurrent writes. Heron relies on RamCast to consistently order and deliver
requests at partitions. It builds on RDMA’s shared memory to coordinate and ex-
ecute distributed operations while ensuring strong consistency. The performance
evaluation of the proposed systems show substantial improvement in comparison
to their message-passing variants.
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Chapter 1

Introduction

1.1 Context and goal of the thesis

Many modern online applications require performance scalability and high avail-
ability while operating at sub-millisecond latency to accommodate the most de-
manding services. Performance scalability ensures that by increasing system re-
sources (e.g., servers), an application is able to accommodate additional client
requests. High availability guarantees that the application will continue to func-
tion despite server failures and datacenter catastrophes.

Redundancy by replication can increase both scalability and availability. By
having several copies of the application running on multiple replicas, the failure
of one replica does not result in the interruption of the service. Requests from
users can be distributed across multiple replicas, dividing the workload across
multiple machines and resulting in better scalability. Moreover, the failure of
one replica does not result in an interruption of the service if there are multi-
ple copies of the application running on several replicas. A main difficulty with
replicating an application though is managing consistency among replicas. A
strong consistency system provides programmers with an intuitive model for the
effects of concurrent updates, reducing the likelihood of unexpected behavior.
Designing latency-critical systems that combine scalability and fault tolerance
while ensuring strong consistency is quite challenging.

State machine replication (SMR) is an established software replication tech-
nique, also known as active replication, to build highly available services [66;
92]. Essentially, the idea is to model the application as a state machine whose
states are transitioned deterministically by executing client requests. Servers
replicate the service state and solve a distributed problem known as consensus
[38] to agree on the execution order of the requests submitted by the clients.

1



2 1.1 Context and goal of the thesis

When replicas execute the same sequence of deterministic operations, they reach
the same state and generate the same output. SMR aspires to behave just like
a single server, with the required redundancy to make failures transparent to
clients. SMR increases the availability of a service but does not improve its per-
formance since each replica stores the complete service state and executes all the
requests.

Scalable state machine replication (S-SMR) approaches propose to partition
the service state (sharding) to scale performance and replicate each partition
to tolerate failures [15; 27; 50; 101]. Requests are ordered consistently within
partitions (e.g., with consensus) and across partitions (e.g., using an ad hoc or-
dering protocol [28; 101] or a communication abstraction like atomic multicast
[47]). The system throughput (i.e., the number of requests that can be executed
per unit of time) ideally increases linearly with the number of partitions if the
service state can be partitioned such that requests access only one partition and
are evenly distributed across partitions. The majority of applications, however,
cannot be partitioned in such a way that requests always fall within a single par-
tition. Therefore, S-SMR systems must cope with multi-partition requests, that
are, requests that span multiple partitions. S-SMR systems must coordinate the
execution of multi-partition requests in order to maintain the strong consistency
guarantee of the system. Handling multiple-partition requests efficiently is a
well-known challenge for such systems [51].

A golden rule in designing systems that can tolerate failures is that abstrac-
tions can significantly reduce complexity, and avoid design and programming er-
rors. Atomic multicast is a group communication abstraction useful in the design
of highly available and scalable systems. It allows messages to be addressed to
a subset of the processes in the system reliably and consistently. Since messages
can be multicast to different sets of destinations and interleave in non-obvious
ways, implementing message order in a distributed setting is challenging. Some
atomic multicast protocols address this challenge by ordering all messages us-
ing a fixed group of processes, regardless of the destination of the messages. To
be efficient, however, an atomic multicast algorithm must be genuine: only the
message sender and destination processes should communicate to propagate and
order a multicast message [44]. A genuine atomic multicast is the foundation of
scalable and fault-tolerant systems, since it does not depend on a fixed group
of processes, and ensures reliable communication [25]. Current state-of-the-art
genuine atomic multicast algorithms require several hundreds of microseconds to
deliver requests for single-partition requests and 5x as much for multi-partition
requests, which results in substantial delays in the delivery of requests for mod-
ern applications.



3 1.2 Research contributions

Message-passing communication has been used to develop practical distributed
systems for years. Recent advances in shared memory technology, such as RDMA,
have enabled systems to benefit from improved communication performance.
RDMA provides the potential for high throughput and low latency communica-
tion by bypassing the kernel and implementing network stack layers in hardware.
By bypassing the kernel and building the network stack layers directly into the
hardware, RDMA offers the possibility of several microsecond latency communi-
cation. This allows building systems that serve latency-critical applications.

RDMA has been used to design high-performance SMR systems (e.g., [1; 87;
102]). Although servers can access remote memories without involving the host
server’s CPU, RDMA introduces the complication of race conditions, i.e., concur-
rent accesses to the same memory regions by different servers. RDMA-based SMR
systems encounter this problem while ordering requests since once a request is
ordered, each replica executes the request locally. Despite being fast, RDMA-
based SMR systems do not scale performance similar to their message-passing
counterparts. It is possible to apply partitioning in order to scale performance,
although the solution requires careful deployment to guarantee that consistency
is maintained. If not done right, consistency may be violated in requests that
span multiple partitions.

This thesis addresses the introduced challenges related to SMR and S-SMR
systems from different perspectives: it studies the implications of state parti-
tioning on application design, presents the first shared memory atomic multicast
algorithm that reduces the latency of multicast primitive to the level of microsec-
ond, and proposes a shared-memory S-SMR system that substantially improves
the performance of linearizable operations in comparison to message-passing
systems.

1.2 Research contributions

In this section, we outline the main contributions of this thesis and provide a short
description of each one. We defer detailed discussions to the next chapters.

Applications over scalable state machine replication: Some recent studies
aim to increase the performance of S-SMR systems by optimizing data placement
through dynamic repartitioning [50; 101]. In our first contribution, we investi-
gate the challenges involved in developing complex applications over S-SMR sys-
tems. In particular, we develop DynaTree, a distributed B+tree algorithm that
distributes tree nodes over a set of partitions, and each partition is replicated



4 1.3 Thesis outline

for availability. The experiment results show that both read and update opera-
tions scale linearly with the number of partitions and insert operations do not
lose performance with the growing number of partitions. The techniques used
in DynaTree can be easily extended to other data structures and applications.

Shared-memory atomic multicast: Many atomic multicast algorithms have
been designed for the message-passing system model over the years. RDMA’s
microsecond latency communication allows developing group communication
primitives, such as atomic multicast, that targets latency-critical applications. In
our second contribution, we have developed RamCast, the first atomic multicast
protocol for the shared-memory system model. RamCast is designed by lever-
aging RDMA technology and by carefully combining techniques from message-
passing and shared-memory systems. We show experimentally that RamCast
outperforms current state-of-the-art atomic multicast protocols, increasing over-
all throughput and reducing latency to some microseconds.

Scalable state machine replication on shared memory: The last contri-
bution of this thesis is devoted to the design and implementation of Heron, a
scalable state machine replication system that delivers scalable throughput and
microsecond latency. Heron achieves scalability through partitioning (shard-
ing) and microsecond latency through a careful design that leverages one-sided
RDMA primitives. Heron relies on RamCast to consistently order requests within
and across partitions. It relies on RDMA’s shared memory model to coordinate
and execute distributed requests while ensuring strong consistency. Heron re-
ally shines when executing multi-partition requests, where objects in multiple
partitions are accessed in a request, the Achilles heel of most partitioned sys-
tems. According to our findings, Heron improves the performance of executing
complex workloads by one order of magnitude in comparison to state-of-the-art
S-SMR systems and reduces the latency of coordinating linearizable executions
to the level of microseconds.

1.3 Thesis outline

The rest of the thesis is organized as follows. Chapter 2 provides the founda-
tions for the thesis, outlining the system model and definitions used throughout
of the text. Chapter 3 presents DynaTree, a scalable and highly available B+tree
algorithm over partitioned state machine replication. Chapter 4 discusses Ram-
Cast, an atomic multicast protocol designed specifically for the shared-memory
architecture. Chapter 5 introduces Heron, the first scalable state machine repli-
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cation system on shared memory. Chapter 6 surveys related work on the topics
discussed in this thesis. Finally, Chapter 7 concludes the thesis by outlining our
main findings.
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Chapter 2

System model and definitions

In this chapter, we present the system model (§2.1), then define consensus (§2.2),
atomic multicast (§2.3) and our correctness criterion (i.e., linearizability) (§2.4).
The discussion is followed by introducing state machine replication (SMR) (§2.5),
a scalable variant of SMR (§2.6), and Remote Direct Memory Access (RDMA)
(§2.7).

2.1 System model

We make the following assumptions about processes, communication, failures,
and system synchrony.

Processes. We consider a distributed system consisting of an unbounded set
of client processes C = {c1, c2, ...} and a bounded set of server processes (repli-
cas) S = {s1, ..., sn}. Set S is divided into disjoint groups of servers S0, ...,Sk

called partitions.
Failure model. We assume the crash failure model. Processes are either

correct, if they never fail, or faulty, otherwise. In either case, processes do not
experience arbitrary behavior (i.e., no Byzantine failures).

Message-passing communication. Processes communicate through mes-
saging, using either one-to-one or one-to-many communication. One-to-one com-
munication uses primitives send(p, m) and receive(m), where m is a message
and p is the process m is addressed to. If sender and receiver are correct, then
every message sent is eventually received. Moreover, a message is received at
most once, and only if it was previously sent. One-to-many communication re-
lies on atomic multicast, defined in Section 2.3.

Shared-memory communication. Processes can also communicate by ac-
cessing portions of each other’s memory. A process can share memory regions

7



8 2.2 Consensus

with other processes and define permissions for those regions. Process q can
read and write a register v in p’s memory region mr with primitives read(p, v)
and write(p, v, value), respectively. If both ends are correct, then every read and
write operations are executed successfully. A permission associated with memory
region mr defines disjoint sets of processes, Rmr , Wmr , and RWmr , that can read,
write, and read-write the registers in region mr. Process q has permission to read
(respectively, write and read-write) v in p’s mr if q ∈ Rmr (resp., Wmr , RWmr). A
process can initially assign permissions for its shared memory regions and later
change these permissions.

Synchrony model We consider a system that is partially synchronous [34]:
the system is initially asynchronous and eventually becomes synchronous. When
the system is asynchronous, there are no bounds on the time it takes for messages
to be transmitted and actions to be executed; when the system is synchronous,
such bounds exist but are unknown to the processes. Protocols ensure safety
under both asynchronous and synchronous execution periods. The partially syn-
chronous assumption allows consensus defined in Section 2.2, to be implemented
under realistic conditions [39; 67].

2.2 Consensus

Consensus is a fundamental coordination problem of distributed computing [66;
90]. The problem is related to replication and appears when implementing
atomic broadcast, group membership, or similar services. Given a set of servers
proposing values, it is the problem of deciding on one value among the servers.
The consensus problem is defined by the primitives propose(v) and decide(v),
where v is an arbitrary value. Any uniform consensus must satisfy the following
three properties:

– If a process decides v, then v was previously proposed by some process
(uniform integrity).

– If one or more correct processes propose a value then eventually some value
is decided by all correct processes (termination).

– No two processes decide different values (uniform agreement).
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2.3 Atomic multicast and atomic broadcast

Atomic multicast allows messages to be addressed to a subset of the processes in
the system. Atomic multicast ensures that the destination processes of every mes-
sage agree either to deliver or to not deliver the message, and no two processes
deliver any two messages in different order. A process atomically multicasts a
message m to a set of groups γ by invoking primitive a-mcast(γ, m). A process
delivers m with primitive a-deliver(m). We define delivery order < as follows:
m < m′ iff there exists a process that delivers m before m′. Atomic multicast
ensures the following properties:

– If a correct process a-mcasts m, then some correct process p ∈ g, where g ∈
γ eventually a-delivers m or no process in that group is correct (validity).

– If a correct process p ∈ g, where g ∈ γ a-delivers m, then every correct
process q ∈ h, where h ∈ γ eventually a-delivers m (uniform agreement).

– For any message m, every process p ∈ g, where g ∈ γ a-delivers m at most
once, and only if some process has a-mcast m previously (integrity).

– If a process a-mcasts m and then m′ to group γ, then no process in g, where
g ∈ γ a-delivers m′ before m (fifo order).

– The delivery order is acyclic (atomic order).

– For any messages m and m′ and any processes p and q such that p ∈ g, q ∈ h
and {g, h} ⊆ γ, if p delivers m and q delivers m′, then either p delivers m′

before m or q delivers m before m′ (prefix order).

Atomic broadcast is a special case of atomic multicast in which there is a single
group of processes. Atomic multicast offers strong communication guarantees
and should not be confused with network-level communication primitives (e.g.,
IP-multicast), which offer “best-effort” guarantees.

2.4 Consistency

An object that can be concurrently accessed by many processes is called a con-
current object [48]. Interleaving accesses to the same object can sometimes lead
to unexpected behavior. The effect of this issue can be captured by defining a
consistency criterion over the shared object, which specifies how operations can
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interleave in accessing the object. Informally, systems that provide strong consis-
tency are easier to interact with, because they behave in an intuitive way: they
behave as the system had only one copy of the object, and all operations modi-
fied and read that object atomically. In this thesis, we specifically focus on strong
consistency.

Strong consistency commonly refers to the formal concept of either strict se-
rializability or linearizability [48]. A system is strictly serializable if the outcome
of any sequence of operations, as observed by its clients, is equivalent to a seri-
alization of those operations in which the temporal ordering of non-overlapping
operations is respected (i.e., if an operation o1 is acknowledged by the system
before another operation o2 is proposed by some clients, then o1 comes before o2

in the equivalent serialization). Linearizability is a sub-case of strict serializabil-
ity in which every operation reads or updates a single object. Linearizability is a
“local” and “non-blocking” property. Linearizability is local in that it is sufficient
for a system to linearize operations for each individual object to achieve global
linearizability. Linearizability is non-blocking in that pending operations do not
have to wait for other pending operations to complete.

Linearizability is defined with respect to a sequential specification. The se-
quential specification of a service consists of a set of commands and a set of
legal sequences of commands, which define the behavior of the service when it is
accessed sequentially. In a legal sequence of commands, every response to the
invocation of a command immediately follows its invocation, with no other invo-
cation or response in between them. For example, a sequence of operations for
a read-write variable v is legal if every read command returns the value of the
most recent write command that precedes the read, if there is one, or the initial
value, otherwise. An execution E is linearizable if there is some permutation
of the commands executed in E that respects (i) the service’s sequential specifi-
cation and (ii) the real-time precedence of commands. Command C1 precedes
command C2 in real-time if the response of C1 occurs before the invocation of C2.

2.5 State machine replication

State machine replication, also called active replication, is a common approach
to building fault-tolerant systems [66; 93]. State machines model deterministic
applications. They atomically execute commands issued by clients. This results
in a modification of the internal state of the state machine and also in the pro-
duction of an output to a client. An execution of a state machine is completely
determined by the sequence of commands it executes and is independent of exter-
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nal inputs such as timeouts. A fault-tolerant state machine can be implemented
by replicating it over multiple servers. Commands must be executed by every
replica in a consistent order, despite the fact that different replicas might receive
them in different orders. To guarantee that servers deliver the same sequence
of commands, SMR can be implemented with atomic broadcast: commands are
atomically broadcast to all servers and all correct servers deliver and execute the
same sequence of commands [19; 29]. In this thesis, we consider implementa-
tions of state machine replication that ensure linearizability.

2.6 Scaling state machine replication

State machine replication yields configurable availability but limited scalabil-
ity. Adding resources (i.e., replicas) results in a service that tolerates more fail-
ures, but does not translate into sustainable improvements in throughput. This
happens for a couple of reasons. First, the underlying communication protocol
needed to ensure ordered message delivery may not scale itself (i.e., a commu-
nication bottleneck). Second, every command must be executed sequentially by
each replica (i.e., an execution bottleneck).

Several approaches have been proposed to address SMR’s scalability limita-
tions. To cope with communication overhead, some proposals have suggested
to spread the load of ordering commands among multiple processes (e.g., [76;
79; 84]), as opposed to dedicating a single process to determine the order of
commands (e.g., [67]).

Two directions of research have been suggested to overcome execution bot-
tlenecks. One approach (scaling up) is to take advantage of multiple cores to
execute commands concurrently without sacrificing consistency [45; 61; 64; 77].
Ideally, one could use a replication technique that supports parallelism (multi-
threading) to scale up a replicated service. But existing techniques have at least
one sequential part in their execution. Another approach (scaling out) is to par-
tition the service’s state (also known as sharding) and replicate each partition
(e.g., [40; 81]). The idea is to divide the state of a service in multiple partitions so
that most commands access one partition only and are equally distributed among
partitions. Unfortunately, most services cannot be “perfectly partitioned,” that is,
the service state cannot be divided in a way that commands access one partition
only. As a consequence, partitioned systems must cope with multi-partition com-
mands. Long [70] has reviewed some approaches in the second category, which
include Scalable State Machine Replication (S-SMR) [15], Google Spanner [27],
and some other techniques.
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2.7 Remote Direct Memory Access (RDMA)

Remote Direct Memory Access (RDMA) is a protocol that enables direct data ac-
cess to the memory of a remote machine without involving the operating system
and processor of the remote machine. RDMA implements the network stack in
hardware, and provides both low latency and high bandwidth by bypassing the
kernel and supporting zero-copy communication.

RDMA provides one-sided operations (e.g., read, write), two-sided operations
(e.g., send, receive), and atomic operations (e.g., compare-and-swap). The two-
sided operations rely on memory copies in user space and involve the CPU of the
remote host. Thus, when compared to one-sided RDMA verbs, they introduce
additional overhead [31]. Previous studies have established guidelines to use
RDMA operations efficiently [58; 59; 82]. We restrain the use of read or write
primitives depending on the use case with the goal of having simpler logic.

RDMA offers three transport modes which are Unreliable Datagram (UD), Un-
reliable Connection (UC), and Reliable Connection (RC). UD supports both one-
to-one and one-to-many transmission without establishing connections, whereas
UC and RC are connection-oriented and only support one-to-one data transmis-
sion. RC guarantees that the data transmission is reliable and correct in the
network layer, while UC does not have such a guarantee. In this thesis, we em-
ploy RC to provide in-order and reliable delivery. The RDMA-enabled network
card (RNIC) on each remote host creates a logical RDMA endpoint known as a
Queue Pair (QP), which includes a send queue and a receive queue for storing
data transfer requests, to establish a connection between two remote hosts. Op-
erations are posted as Work Requests (WRs) to QPs to be served and executed
by the RNIC. A completion event is pushed to a Completion Queue (CQ) when
an RDMA operation is completed. By setting a flag in the WR, operations can be
made unsignaled; these verbs do not create a completion event, and the applica-
tion detects completion via application-specific methods. By asking the operating
system to pin the memory pages that the RNIC would use, each host makes local
Memory Regions (MR) available for remote access. Different access modes (i.e.,
read-only or read-write) can be set for QPs and MRs. The access mode can be
specified when initializing the QP or registering the MR and it can be updated
later. The host can register the same memory for various MRs.



Chapter 3

Applications atop partitioned SMR

State machine replication (SMR) is a classic approach to fault tolerance [67]. Par-
titioned state machine replication shares the basic characteristics of classic SMR,
namely, requests are ordered and then deterministically executed. In order to
achieve good performance, only the partitions involved in a request must order
and execute the request. Consequently, the partitions involved in the execution
of a request must be known before the request is ordered and executed. Prior
work has considered classes of applications in which this information is readily
available (e.g., key-value stores, file systems). In this chapter, we share our ex-
periences with developing complex applications with partitioned state machine
replication. By complex we mean applications in which the partitions involved
in a request cannot be easily identified a priori.

This chapter introduces DynaTree, a scalable and highly available B+tree over
partitioned state machine replication. B+tree is a self-balancing tree data struc-
ture that preserves sorting order and guarantees lower bounds for accessing data.
DynaTree employs the scalable state machine replication model proposed by Le
et al. [51]. This model partitions the application state and replicates each par-
tition for availability. It maintains a location oracle with a global view of the
application state to help clients locate them in partitions. By having the set of
partitions involved in the execution of a requests, clients atomically multicast
requests to the destination partitions where the requests get executed. For ex-
ecuting a request, the model ensures that all the states accessed in the request
are gathered in one partition before execution. Atomic multicast ensures that
requests are properly ordered across partitions [26].

The S-SMR model provides scalability and fault tolerance at the cost of ad-
ditional requirements: clients must identify the data and partitions accessed in
a request before the request is executed. This poses some challenges in the case

13
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of complex data structures, such as B+trees. For example, to insert a key in the
tree, a client must know in advance whether the insert will lead to a split and the
nodes and partitions involved in the insertion. To satisfy this requirement, clients
in DynaTree lazily cache inner nodes of the tree. Therefore, clients first traverse
the cached tree to find the appropriate nodes and then issue the request to the
involved partitions for execution. This scheme, however, introduces additional
complications. Since the client cache may be stale, partitions must verify the
validity of the cached information before executing a request. In case a partition
finds that the client cache is stale, it informs the client to update the cache and
re-try the request.

In addition to proposing a novel scalable and fault-tolerant distributed B+tree
key-value store, we discuss the inherent challenges involved in designing a dis-
tributed data structure in partitioned state machine replication. We fully imple-
mented DynaTree and assessed its performance extensively. Our results show
that DynaTree scales read and update requests with the number of partitions,
and outperforms a well-established database that relies on a B-tree, deployed in
high-availability mode.

The reminder of the chapter is structured as follows. Section 3.1 introduces
DynaTree and explains the challenges involved. Section 3.2 discusses imple-
mentation details and presents experimental results. Section 3.3 concludes the
chapter.

3.1 General idea

DynaTree implements a distributed B+tree. The tree consists of a set of nodes
with variable number of child nodes within some pre-defined range. Tree nodes
may split into two half-size nodes to maintain the pre-defined range. In a B+tree,
leaf nodes store key-value pairs and inner nodes store key-pointers. When a node
is full, it is split into two half-size nodes. With the exception of the root node,
which may contain a single key, all other nodes contain k < n < 2k − 1 keys,
where n is the node size and k is the minimum size of a node [10].

DynaTree distributes tree nodes in a number of partitions with the goal of in-
creasing performance. Yet, distributing tree nodes raises challenges in executing
tree operations. Searching for a key, for instance, is not an obvious task while
nodes are distributed. In the following, we demonstrate how DynaTree deal with
executing operations while tree nodes are distributed.

DynaTree is composed of three main components: the client process, the
server process, and the oracle process. Figure 3.1 shows different components
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Figure 3.1. The client cache, the oracle map, and the distributed tree nodes in
DynaTree.

and how they are connected.
The client provides an interface with search, update and insert operations.

Clients cache internal B+tree nodes. Whether a client searches for a key or inserts
a new key in the tree, it traverses the tree in its cache from the root down to the
appropriate leaf. After finding the leaf, the client issues a request to the partitions
to execute the request. While traversing the tree, the client either has the node
in its cache or reads the required nodes from the partitions.

Each server process contains a subset of tree nodes. A partition receives client
requests if it is in the destination of the request. A partition is in the destination
of a request when the request involves nodes of the tree from that partition. The
partitions deliver and execute requests respecting their realtime order so they
contain the most updated version of the objects for each request execution to
guarantee strong consistency (i.e., linearizability).

The oracle is responsible for storing a location map from tree nodes to par-
titions. The oracle plays the role of a directory to guide clients to find nodes
in partitions. This allows clients to forward requests to the partitions that are
involved in the execution of the request.

In the following, we first discuss client cache and its importance in the execu-
tion of requests. Then we discuss tree operations and explain the corresponding
algorithms.

3.1.1 Client cache

In DynaTree, clients store internal tree nodes and thus are able to traverse the
tree locally rather than reading nodes from the partitions each time. This cache
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Algorithm 1 Data structures
1: The tree contains the following information:
2: root Id: The root node of the tree
3: MAX-SIZE: Maximum size of a node
4: cache: Client cache of internal nodes
5: storage: List of tree nodes that a partition owns
6: childParent: A map of nodes to their parents
7: ancestorl ist: List of ancestors of the node
8: numReservedOb jIds: Number of requested object Ids asked by request
9: reservedOb jIds: The oracle reserves object Ids declared in numReservedObjIds and ap-

pend to the request
10: resul t: Result of looking up a key in node; contains value if the key is available
11: RootSpli t(): Splits the root of the tree
12: NodeSpli t(): Splits a tree node

13: Each tree node contains the following information:
14: nid: Node ID
15: size: Node size
16: ke ys: Keys stored in the node
17: values: Values associated with the keys
18: child ren: Pointer to child nodes (if any)
19: isLea f (): Returns true if the node is leaf
20: isRoot(): Returns true if the node is root
21: lookup(ke y): Looks up the key in node
22: update(ke y, value): Updates the value of a key
23: inser t(ke y, value): Inserts the key/value pair
24: spl i t(parent, node): Splits and move half of keys into node; updates the parent node
25: isInFenceKe ys(ke y): true if key is in node’s fence keys

becomes invalid when the structure of the tree changes (e.g., when a node splits).
Upon executing a request, the partition notifies the client to invalidate its cache
and try again when the client’s cache is not valid.

We use fence keys to validate client requests at partitions [72]. Fence keys are
essentially two integers determining the range of the keys a node is responsible
for, even though the node may not contain all keys in the range (i.e., a key never
inserted). Fence keys optimize the cache invalidation by decreasing the number
of unnecessary invalidations. While splitting nodes, their fence keys are changed.
DynaTree guarantees continuous, non-overlapping ranges for the nodes in each
tree level in the presence of concurrent node split requests.

A client reads the inner nodes from the partitions and stores them for travers-
ing the tree. The lazy replicated nodes in the client cache may become stale. For
example, when a client traverses its stale cache to find a key, it finds leaf T that
should be looked up for the key. So, the client issues a request for searching node
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Algorithm 2 Reading a node from cache or partitions

1: GetNode(nid, parentid, key) {Client side}
2: if cache.contains(nid) then
3: return cache.get(nid) {read node from local cache}
4: <nid, node>← command(READ, nid)
5: if node.isInFenceKeys(ke y) then
6: cache.add(nid, node) {add node to client’s cache}
7: childParent.add(nid, parentid)
8: return node
9: else

10: parent← childParent.get(nid)
11: InvalidateNode(parent.nid) {cache invalidation}
12: return null

13: InvalidateNode(nid) {Client side}
14: node← cache.get(nid)
15: for child in node.children do
16: InvalidateNode(child)
17: cache.remove(node)

18: Read(nid) {Server side}
19: node ← storage.get(nid)
20: return node

T for the provided key. The partition that receives the request first check if the
request is valid. The request is valid if the key is in the fence keys of node T . If
node T has split and the key is not in the range of its fence keys anymore, the
request is not valid, and therefore, the partition asks the client to invalidate its
cache and try again. Otherwise, the partition searches for the key in T and sends
back the response to client.

Cache invalidation is optimized by invalidating one node at a time. When
a request performing an operation on node T is asked to retry, the algorithm
invalidates node T ’s parent, called T ′. The retry asked by the partition implies
that the node T ′ has changed. By reading the parent node again, the client will
likely find the correct child next time. In case reading the parent node also results
in a retry, the invalidation proceeds one level up. This can go up to the root node
where the client clears its cache and starts reading the root node again.

Algorithm 2 shows the steps executed by clients to read a tree node. The
GetNode method starts by searching the client’s cache for a node. In case the
client does not contain a node, it issues a request to read the node from the
partitions. We invoke a DynaStar command by specifying the operation and the
arguments passed to the command (line 3). The request is later processed by the
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Algorithm 3 Searching for a key

1: Search(key) {Client Side}
2: node ← SearchUtil(key) {find the appropriate leaf}
3: <RESPONSE,value>← command(SEARCH, node.nid, ke y)
4: if RESPONSE = SEARCHFOUND then
5: return value {key is available in the tree}
6: else if RESPONSE = SEARCHNOTFOUND then
7: return null {key is not available}
8: else if RESPONSE = SEARCHRETRY then
9: parent ← childParent.get(node.nid)

10: InvalidateNode(parent) {invalidate parent node}
11: return Search(ke y)

12: SearchUtil(key) {Client Side}
13: node ← GetNode(root Id, null, ke y) {read the root node}
14: while !node.isLeaf() do
15: <nid, resul t, childid>← node.lookup(ke y)
16: node ← GetNode(childid, nid, ke y)
17: if node = null then {retry traversing the tree}
18: return SearchUtil(ke y)
19: return node

20: Search(nid, key) {Server Side}
21: node ← storage.get(nid)
22: if !node.isInFenceKeys(ke y) then {check fence keys}
23: return <SEARCHRETRY>

24: resul t ← node.lookup(ke y)
25: if resul t.isAvailable() then
26: return <SEARCHFOUND, resul t.value>
27: else
28: return <SEARCHNOTFOUND>

server-side logic in the destination partition (18-20). Here, the partition simply
returns the node asked by the request. The client checks if the node is valid.
Otherwise, the client invalidates its cache and tries again (5-12). Algorithm 1
summarizes the fields and methods in the algorithms.

3.1.2 Search and update

Algorithm 3 presents the steps to search for a key. Updating the value of a node
follows a similar execution path, where the client provides the new value for the
node. The client starts searching for a key by reading the root node (line 13) and
looks up this node to find the next node to read (15). It continues reading nodes
and looking them up down to the leaf (14-18).
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After finding the appropriate leaf, the client asks the corresponding partition
to search for the key (3). The partition validates the request before execution
(22-23). The validation is necessary since the client cache may be stale. The
partition uses the leaf’s fence keys to find out if the request is valid. If so, the
partition is able to search the leaf and return the result to the client (25-28).

3.1.3 Insert

Algorithm 4 details the insert operation. The client starts the insert request by
traversing the tree in its cache. This leads to a leaf which is the node for inserting
the key. Next, the client issues a request for inserting the key (lines 4-5). When
a partition delivers the request, it checks if the insertion is valid. In case the
request is not valid due to stale client cache, the client is asked to invalidate its
cache and try again (9-10). The client cache is stale when it asks to insert a key
in a node out of the node’s fence keys.

In case the insert operation is valid, the node is looked up to see if it already
contains the key. In this case, the algorithm only needs to update the value of
the key (12-14). If the node does not contain the key and the node is not full,
the partition inserts the key in the tree (15-17). In the last case, where the node
is full, the partition needs to split the node before inserting the key. Therefore,
the partition notifies the client that the node is full (18-19). This case involves
additional communication steps and is discussed in the next section.

3.1.4 Splitting nodes

In the B+tree algorithm, a tree node splits when its size hits the node’s maximum
size. While splitting, the node is divided into two nodes, each containing half of
the key-value pairs. To split a node, the request needs to involve the node and its
parent. The parent node is necessary because a separator key for the new node
is inserted in the parent node.

Splitting a node is a more complex operation than the other operations. There
are three main reasons for this complexity. First, splitting a node involves cre-
ating a new node. The oracle has to be aware of all objects in the system. So,
the oracle has to be involved in the request. Second, the split operation can lead
to further splits. When a node needs to split while its parent node is full, the
operation needs to cascade the split up to the parent node. Third, clients may try
to split a node concurrently. The algorithm needs to check if concurrent requests
have changed the node before applying changes. In the following, we explain
how we deal with these cases.
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Algorithm 4 Inserting a key-value pair

1: Insert(key, value) {Client side}
2: node ← SearchUtil(ke y)
3: <RESPONSE, nid, ke y , value, ancestorl ist>←
4: command(INSERT, node.nid, ke y , value)
5: InsertRespone(RESPONSE,nid,ke y ,value,ancestorl ist)

6: Insert(nid, key, value) {Server side}
7: node ← storage.get(nid)
8: if !node.isInFenceKeys(ke y) then
9: return <INSERTRETRY>

10: resul t ← node.lookup(ke y)
11: if resul t.isAvailable() then {update the value}
12: node.update(ke y , value)
13: return <UPDATED>

14: else if node.size < MAX-SIZE then {insert new key}
15: node.insert(ke y , value)
16: return <INSERTED>

17: else if node.size = MAX-SIZE then {split needed}
18: return <RETRYSPLIT,nid,ke y ,value,null>

19: InsertResponse(RESPONSE, nid, key, value, ancestorlist)
20: if RESPONSE ∈ {INSERTED,UPDATED} then {Client side}
21: return true {success}
22: else if RESPONSE = INSERTRETRY then {stale cache}
23: parent ← childParent.get(nid)
24: InvalidateNode(parent)
25: return Insert(ke y , value)
26: else if RESPONSE = RETRYSPLIT then {split needed}
27: if ancestorl ist.isEmpty() then
28: parent ← childParent.get(nid)
29: ancestorl ist.add(parent)
30: numReservedOb jIds ← 1
31: else if !ancestorl ist.last().isRoot() then
32: ancestor ← childParent.get(ancestorl ist.last())
33: ancestorl ist.add(ancestor)
34: numReservedOb jIds ← 1
35: else
36: numReservedOb jIds ← 2
37: command.allocate(numReservedOb jIds)
38: <RESPONSE, nid, ke y , value, ancestorl ist>←
39: command(INSERTSPLIT,nid,ke y ,value,ancestorl ist)
40: InsertRespone(RESPONSE,nid,ke y ,value,ancestorl ist)
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Algorithm 5 Splitting a node

1: Split (nid, key, value, ancestorlist) {Server side}
2: node← storage.get(nid)

3: if !node.isInFenceKeys(ke y) then
4: inval idNode ← node.nid
5: return <SPLITRETRY, inval idNode>

6: resul t ← node.lookup(ke y)
7: if resul t.isAvailable() then
8: node.update(ke y , value) {update the value}
9: return <UPDATED>

10: if node.size<MAX-SIZE then
11: node.insert(ke y , value) {insert the new key-value pair}
12: return <INSERTED>

13: for i =ancestorl ist.size−1; i >=0; i−− do
14: ancestor ← ancestorl ist[i]
15: if !ancestor.isInFenceKeys(ke y) then
16: inval idNode ← ancestor {return the invalid node}
17: return <SPLITRETRY, inval idNode>

18: for i =0; i <ancestorl ist.size; i++ do
19: ancestor ← ancestorl ist[i] {check if ancestors need split}
20: if ancestor.size<MAX-SIZE then
21: for j =ancestorl ist.size−1; j > i; j−− do
22: ancestorl ist.remove( j)

23: reservedOb jIds ← command.getReservedObjIds()

24: lastNode ← nodes.get(ancestorl ist.last())
25: if lastNode.size<MAX-SIZE or lastNode.isRoot() then
26: if lastNode.isRoot then
27: RootSplit(lastNode, reservedOb jIds)
28: pos ← ancestorl ist.size−1
29: for pos; pos>=0; pos−− do
30: NodeSplit(pos, node, ancestorl ist, reservedOb jIds)
31: node.insert(ke y , value) {insert the new key-value}
32: return <INSERTED>

33: else {upmost parent is full}
34: return <RETRYSPLIT,nid,ke y ,value,ancestorl ist>
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The split operation starts when a client receives RETRYSPLIT as the result of
an insert request (lines 38-40 in Algorithm 4). The client starts a new request by
adding the node id, the key and the value. There is one more field appended to
the arguments list called ancestorlist, which contains the ancestors of the node.
Ancestor nodes are added to the list one at a time. When a partition asks the
client to retry an insertion with split, the client adds its parent node to the list.
If the parent node is also full and needs to split, the client retries by adding the
parent of the parent node to the list. The list contains all ancestors of the leaf
when the root needs to split.

The Split operation is shown in Algorithm 5. The algorithm starts by checking
whether the request is valid (lines 3-5). Next, it checks whether the key has been
inserted concurrently. In this case, it is enough to update the key’s value (6-9).
The node might split with a request from another client. In this case, the key can
be inserted into the node without an additional split (10-12).

For the other cases, we ensure that modifications to the tree deal with concur-
rent requests to maintain a consistent tree. Starting from line 13, the algorithm
verifies that the insertion is valid. Next, the algorithm verifies whether ancestor
nodes need to split. We clarify this verification with an example. Assume that
there are two splits needed before insertion, which means that there are two
items in the ancestorlist. However, it is possible that the immediate parent of the
node has split with concurrent requests from a different client. In this case, we
avoid splitting the parent node again.

In the last step, the algorithm splits the nodes. The invocation of the split
method finishes by moving half of the key-value pairs to the new node and by
adding the first element of the new node to the parent node. Now, the algorithm
is able to insert the key in the leaf node (31-32).

3.2 Evaluation

In this section, we evaluate the performance of DynaTree. In particular, we in-
vestigate the scalability of tree operations with the growing number of partitions.
Our prototype is written in Java. The source code is publicly available.1

Experimental environment We conducted all experiments on a cluster with two
types of nodes: (a) Forty nodes (HP SE1102), equipped with two Intel Xeon
L5420 processors running at 2.5 GHz and with 8 GB of main memory, and (b)

1https://github.com/meslahik/dynatree
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Forty eight nodes (Dell SC1435), equipped with two AMD Opteron 2212 proces-
sors running at 2.0 GHz and with 4 GB of main memory. The HP nodes were
connected to an HP ProCurve 2920-48G gigabit network switch, and the Dell
nodes were connected to another, identical switch. Those switches were inter-
connected by a 20 Gbps link. All nodes ran CentOS Linux 7.1 with kernel 3.10
and had the OpenJDK Runtime Environment 8 with the 64-Bit Server VM.

3.2.1 BerkeleyDB High Availability

BerkeleyDB [85] is a well-known embedded key-value store that provides high
performance data management service to applications. BerkeleyDB Java Edi-
tion is a native Java implementation that we use in our evaluation as a baseline.
BerkeleyDB JE uses a B-tree as its underlying data structure. We use BerkeleyDB
with high availability mode enabled. High availability mode adds replication
with master-slave model. It provides fault tolerance and increases the perfor-
mance of BerkeleyDB under certain workloads. All changes in data have to be
performed by the single read-write replica and then propagated to the read-only
replicas. We configure the read-write replica to wait for acknowledgements from
all read-only replicas to ensure strong consistency (i.e., linearizability) and make
it comparable to the strong properties offered by DynaTree.

3.2.2 Workloads

In all experiments, unless stated otherwise, the tree is initially populated with
100K key-values pairs. The tree node’s minimum size is 100 keys. This results
in a initial tree of height 4. The tree is configured to maintain three replicas per
partition. Keys and values are 4-byte integers and taken from integer’s positive
range, chosen randomly using an uniform distribution. Each experiment lasts
two minutes; we ignore the first and last 15 seconds. We report peak through-
put, achieved by increasing the number of clients to saturate the system, and
contention-free latency, by configuring the experiments with a single client. In
both setups, DynaTree and BerkeleyDB, we configured the system so that there
is enough memory to keep all data in memory.

3.2.3 Node size

We assess the effect of tree node size on the peak throughput. There is a per-
formance tradeoff involving the tree node size. A large node results in fewer
splits, which can improve the throughput of insertions. However, a large node



24 3.2 Evaluation

Node min size 10 50 100 200 1000

Throughput (cps) 7858 19077 31443 20108 15866

Table 3.1. Peak throughput versus tree node size

leads to expensive serialization and deserialization costs when nodes are moved
from one partition to another. The nodes are moved between partitions while
splitting a node or when a client fetches an inner node while traversing the tree.
The results reveal the tradeoff between the node size and the throughput. Table
3.1 shows the peak throughput for 8 partitions versus tree node minimum size
with insert workload. Motivated by these results, we have configured all other
experiments with a tree node minimum size equal to 100.

3.2.4 Search scalability

In this experiment, we investigate the ability of DynaTree to scale with the in-
creasing number of partitions. Figure 3.3 shows the throughput and latency of
DynaTree and the BerkeleyDB-HA for 1 to 16 partitions, the maximum number
of partitions we can accommodate in our experimental environment.

Since BerkeleyDB is fully replicated, for a workload with only search requests,
replicas can individually respond the requests. Therefore, BerkeleyDB scales al-
most linearly with the number of replicas for search requests. DynaTree also
scales linearly for search requests, though it incurs higher overhead than Berke-
leyDB, due to ordering requests before execution, which explains its lower peak
throughput than BerkeleyDB’s. Moreover, since BerkeleyDB replicas have a full
copy of the data, the execution of a search in BerkeleyDB is local to a replica with
no additional roundtrips to fetch tree nodes by clients, which results in lower la-
tency than DynaTree.

These performance advantages come with a cost though. In the BerkeleyDB
setup, each replica must contain the entire data set. In particular, for the con-
figuration with 16 partitions, BerkeleyDB demands 16 times as much memory
in each partition/replica as DynaTree. In case servers do not have enough re-
sources to keep all data in memory, they will rely on expensive I/O to read data
from disk. DynaTree does not suffer from this drawback as it partitions the data.

3.2.5 Update scalability

We now examine the throughput under an update-intensive workload. In the
beginning of each experiment, 100K keys, chosen randomly from a uniform dis-
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Figure 3.2. Peak throughput and contention-free latency for search and update
workloads in DynaTree and BrekeleyDB.

tribution, have been inserted in the tree. Then, clients in a closed loop choose a
key from the inserted keys and update their value. The number of keys show the
system behavior in the presence of contention.

BerkeleyDB scales poorly with updates as each update involves all replicas.
In DynaTree, however, updates scale linearly with the number of partitions. This
is due to the fact that updates do not change the structure of the tree. Thus,
updates are single-partition requests to update the key’s value.

The latency graph in Figure 3.3 shows how the two systems behave when the
number of partitions increases. The difference between the latency of requests
in one partition/replica configuration is due to the fact that in DynaTree, the re-
quests pass the ordering process. This implies some delays even for requests sub-
mitted to one partition. However the latency does not increase with the number
of partitions since update operation is a single-partition request. In BerkeleyDB,
the latency increases when there are more replicas. The master replica has to
wait for acknowledgements from all replicas. Therefore, the more replicas in the
system, the more master has to wait for the completion of updates.
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Figure 3.3. Peak throughput and contention-free latency for insertion and
mixed workloads in DynaTree and BrekeleyDB.

3.2.6 Insert scalability

In order to show how DynaTree scales out for the 100% insert workload, we
conducted experiments where we insert keys randomly, chosen from a uniform
distribution. Figure 3.3 shows the peak throughput and contention-free latency
of both DynaTree and BerkeleyDB as we vary the number of partitions and repli-
cas, respectively.

Insertions scale well up to four partitions in DynaTree. Performance stops
growing when the oracle is saturated with the high number of node creations.
Each node, when it is full, does not accept a new key and asks the client to
retry the request by splitting the node. Each split request involves the oracle for
the creation of the new node. When the oracle gets saturated, it cannot handle
more requests and the throughput stops growing. However, performance does
not decrease with the number of partitions.

BerkeleyDB has good performance with one partition but loses performance
with the growing number of partitions. Each replica added to the system has
to receive all insertions, and the read-write replica waits for acknowledgements
from all other replicas before responding to the client. This explains why the
throughput for insertion decreases with the number of replicas.
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3.2.7 Mixed workload

In this experiment, we assess the performance of DynaTree and BerkeleyDB with
a mixed workload consisting of 80% of search requests, 15% of update requests,
and 5% of insert requests.

In the mixed workload, shown in Figure 3.3, BerkeleyDB’s performance in-
creases from one to two partitions, then remains stable up to eight partitions,
after which it decreases. The expensive updates and inserts affect the mixed
workload even with 5 percent of inserts. DynaTree scales well up to 16 parti-
tions. The reason is that DynaTree scales linearly with searches and updates,
and the rate of inserts in the mixed workload is within the range that the oracle
can handle. Both BerkeleyDB and DynaTree experience little variation in latency
with the number of replicas and partitions, respectively.

3.2.8 Client cache impact

The client cache plays an important role in DynaTree. Thanks to cached data,
clients can identify the partitions involved in the execution of a request before
the request is executed by the servers. However, requests based on outdated
cached data may lead to expensive retries. One question that arises is whether
the client cache indeed improves performance.

When the tree structure changes, cached data must be invalidated and clients
may need to retry requests based on stale data. Retries are expensive since clients
need to interactively rebuild their cached tree, starting from an up-to-date tree
node, or the tree root, in the worst case. Notice that while the client cache
reduces the probability of retrying a request, it does not eliminate retries due to
concurrent accesses to common parts of the tree.
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We mitigate the effect of cache invalidation by invalidating the client cache
one level at a time rather than invalidating the whole cache. Since the changes
in the tree are propagated bottom-up, it is probable that only a small part of a
branch has been modified.

Figure 3.4 shows the performance of DynaTree with and without the client
cache. We conducted experiments with search-only and insert-only requests in
deployments with 4 and 8 partitions. With no cache stored locally, clients start
with fetching root node for each traversal. This affects both search and insert
requests considerably, with direct implications on performance. As the graphs
show, the insertion workloads, which expect high frequency of cache invalida-
tion, do gain performance improvement from the client cache. Search workloads
gain even higher performance improvement due to no cache invalidation.

3.3 Conclusion

In this chapter, we presented DynaTree, a distributed B+tree that is both scal-
able and fault-tolerant. DynaTree provides an architectural design for a B+tree
whose nodes are distributed among a number of partitions in a partitioned state
machine replication system. It is shown that building a complex data structure
such as a B+tree in partitioned SMR implies a number of challenges. We dis-
cussed those challenges and presented distributed algorithms for tree operations
that handle concurrent tree modifications while ensuring strong consistency. The
results show that both read and update operations scale linearly with the num-
ber of partitions. Moreover, insert operations do not lose performance with the
growing number of partitions.



Chapter 4

RDMA-based Atomic Multicast

Today’s online services are expected to operate uninterruptedly despite server
failures. Some services are also latency-critical and require to operate at mi-
crosecond scale to handle ever-increasing demand. Services that match these
expectations are deemed highly available and scalable. Many years of research
in dependable distributed systems have deepened the understanding of how to
design systems that can tolerate failures. A golden rule is that abstractions can
significantly reduce complexity, and avoid design and programming errors.

In order to both scale performance and tolerate failures, service state is typi-
cally sharded and each shard is replicated (e.g., [7; 27; 51]). Atomic multicast is
a group communication abstraction that generalizes atomic broadcast [22; 46]
by allowing requests to be propagated to groups of processes (in this case shards)
with reliability and order guarantees. Intuitively, all correct processes addressed
by a request must deliver the request and processes must agree on the order of
delivered requests. Over the years, many atomic multicast algorithms have been
designed for the message-passing system model (e.g., [14; 20; 25; 30; 42; 80]).

This chapter presents RamCast, the first atomic multicast protocol tailor-
made for the shared-memory model. Our motivation is practical: recent years
have seen widespread development and adoption of Remote Direct Memory Ac-
cess (RDMA) technology. RDMA extends the traditional send and receive com-
munication primitives with read and write operations on shared memory. RDMA’s
shared-memory primitives provide inter-node communications with microsec-
ond latency. In addition, RDMA offers the possibility for a process to safeguard
its memory by specifying which processes can read or write which regions of its
memory. This guarantee is quite powerful. In particular, if every process revokes
the write permission of other processes before writing to shared memory, then a
process that writes successfully knows that it executed in isolation, without hav-

29
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ing to take additional steps (e.g., reading the memory). Protocols can leverage
this property to optimize performance [2].

In order to deliver performance that largely outperforms the most efficient
message-passing atomic multicast protocols, RamCast combines ideas from Skeen’s
genuine atomic multicast algorithm [19], a blocking algorithm that has been
used as the basis for fault-tolerant atomic multicast protocols (e.g., [25; 42]),
the leader-follower replication model, explored by atomic multicast and broad-
cast protocols (e.g., [1; 9; 42; 57]), and RDMA technology, recently used to boost
the performance of distributed systems (e.g., [2; 58; 59; 82]). RamCast can or-
der messages multicast to a single group after 2 RDMA write delays, at the leader
process, and order messages multicast to multiple groups after 3 RDMA write de-
lays, at both the leader and followers. As a reference, the most delay-efficient
message-passing atomic multicast algorithm orders messages after 3 commu-
nication delays at the leader process and after 4 communication delays at the
followers [42]. We have implemented and evaluated RamCast under various
conditions. We show that RamCast outperforms current state-of-the-art atomic
multicast protocols, increasing throughput by up to 3.7× and reducing latency
by up to 28×.

The remainder of the chapter is structured as follows. Section 4.1 provides a
short description of the ideas that have inspired RamCast. Section 4.2 details the
RamCast protocol by describing its normal behavior, in the absence of failures,
and how it handles failures. Section 4.3 presents our prototype, and Section 4.4
details its performance. Section 4.5 concludes the chapter.

4.1 General idea

In this section, we recall the problem statement (§4.1.1) and the building blocks
that inspired RamCast (§4.1.2) and an initial experiment that evaluates the per-
formance of RDMA primitives (§4.1.3).

4.1.1 Problem statement

RamCast implements atomic multicast as defined in Section 2.3 We assume par-
titions, as defined Section 2.1, contain n = 2 f + 1 processes, where f is the
maximum number of faulty processes per partition. The assumption about dis-
joint partitions has little practical implication since it does not prevent collocat-
ing processes that are members of different groups on the same machine. Yet,
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it is important since atomic multicast requires strong assumptions when groups
intersect [44]. A set of f + 1 processes in group g is a quorum in g.

We require atomic multicast to be genuine [44]: an atomic multicast algo-
rithm is genuine if in any run in which a message m is multicast, then for every
process p that participates in ordering m, p is the process that multicasts m or
p ∈ g and g ∈ m.dst.

4.1.2 Building blocks

RamCast leverages two ideas, Skeen’s atomic multicast algorithm [19] and Pro-
tected Memory Paxos [2]. Skeen’s algorithm orders messages multicast to mul-
tiple processes consistently but it does not tolerate failures. Protected Memory
Paxos takes advantage of RDMA permissions to improve the efficiency of Paxos
[68]. Like Paxos, it implements atomic broadcast (i.e., it assumes a single group
of processes).

Skeen’s atomic multicast

In Skeen’s algorithm, there is one process per group, and each process assigns
unique timestamps to multicast messages based on a logical clock [66]. The
correctness of the algorithm stems from two basic properties: (i) processes in
the destination of a multicast message first assign tentative timestamps to the
message and eventually agree on the message’s final timestamp; and (ii) pro-
cesses deliver messages according to their final timestamp. These properties are
implemented as follows.

(i) To multicast a message m to a set of processes, p sends m to the destina-
tions. Upon receiving m, each destination updates its logical clock, assigns
a tentative timestamp to m, stores m and its timestamp in a buffer, and
sends m’s timestamp to all destinations. Upon receiving timestamps from
all destinations in m.dst, a process computes m’s final timestamp as the
maximum among all received tentative timestamps for m.

(ii) Messages are delivered respecting the order of their final timestamp. A pro-
cess p delivers m when it can ascertain that m’s final timestamp is smaller
than the final timestamp of any messages p will deliver after m (intuitively,
this holds because logical clocks are monotonically increasing).
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Figure 4.1. Performance comparison between communication primitives.

Protected Memory Paxos

In Paxos [68], to order a message m, the leader proposes m in a consensus in-
stance. In the normal case, where there is a single leader, the followers accept
the proposed message and reply to the leader. In Protected Memory Paxos, the
followers grant exclusive write permission to their memory to the leader. If a new
leader takes over, then it revokes the permission of the previous leader. To order
m, the leader writes m in the memory of the followers. If the leader succeeds
in writing the message in the memory of a quorum of followers, then no other
leader took over, and the message is ordered.

Just like Paxos, to ensure that the new leader makes decisions that are con-
sistent with the decisions of the previous leader, each leader associates a round
to its proposed message. Rounds are unique across the system. When process q
becomes leader, upon suspecting the failure of the current leader p, q must pick a
round bigger than p’s round. Process q then proceeds in two steps. First, q needs
to acquire permission from a quorum of processes, which it does by contacting
all processes and providing its chosen round. Processes grant write permission
to q if the provided round is bigger than the round of the process that currently
holds the write permission. Second, q must check whether other processes have
already accepted any values. If so, q must propose the value that has been ac-
cepted in the largest round; otherwise, q can propose a new value.
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4.1.3 Performance of RDMA

Designing an efficient RDMA-based atomic multicast protocol is not trivial, since
RDMA’s communication primitives vary substantially in performance [58; 82].
Figure 4.1 compares the latency of TCP/IP to RDMA’s send/receive and read-
/write operations (setup details are presented in Section 4.4.2). RDMA prim-
itives largely outperform TCP/IP communication because they bypass the net-
work stack. RDMA shared-memory primitives deliver performance superior to
message-passing primitives, although the advantage depends on the message
size. In our environment, RDMA read and write operations have similar perfor-
mance, unless the write operation can “inline” data (i.e., with 64-byte messages
in our case) [82]. This happens because the interface adapter has the data avail-
able and does not need to retrieve data from the memory.

RamCast uses remote writes only and avoids remote reads. There are two
reasons for this design. First, most writes are small (e.g., acknowledgments) and
can be inlined. Second, a process detects a write in shared memory with busy-
polling reads, and reading from a process’s own memory is faster than reading
from the memory of another process. Consequently, process p can read process
q’s write more efficiently when q issues a (remote) write on p’s memory and p
issues busy-polling reads on its own memory.

4.2 RamCast design and architecture

In this section, we present RamCast’s design and algorithms. We start with an
overview of RamCast (§4.2.1), then detail its data structures (§4.2.2) and algo-
rithms in the absence of failures (§4.2.3) and in the presence of failures (§4.2.4).
We argue for the correctness of RamCast (§4.2.5) and conclude with a few ex-
tensions to the protocol (§4.2.6).

4.2.1 Design

Figure 4.2 depicts the various components and memory layout of RamCast. Pro-
cesses within each group coordinate using the leader-follower model [1; 9; 42;
57]. Each server process has a fixed-size buffer per client, analogously to other
RDMA-based systems [1; 31; 87; 103]. A buffer in RamCast is divided into two
parts, a message buffer M , and a timestamp buffer T . Message buffer M is a
shared memory region that can be read and written by any processes, including
the client process the buffer is associated with. Timestamp buffer T is protected
and can only be written by the leader of each group; the buffer can be read by
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Figure 4.2. RamCast’s memory layout.

any processes. Each slot in M , with a multicast message m, has a corresponding
slot in T , with m’s timestamp.

Clients keep a copy of the remote head and tail pointer of their buffer at each
server. A client increases the remote tail after writing to the shared memory. The
server process updates the head pointer on the client buffer after handling the
message. Each process p periodically polls the memory cell at the head position
of each connected QPs to detect new messages.

RamCast consists of the following main components:

• Memory management. This component handles the shared buffer and the
protected buffer (detailed in Section 4.2.2). While all processes have read
and write access to the shared buffer of a process, only the leader of each
group has write permission to the protected buffer of a process.

• RDMA communication. This component provides functions to read and
write remote memory, used by the normal execution component, and to
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send and receive messages, used by the failure handling module.

• Normal execution. The normal protocol execution (detailed in Section 4.2.3)
is invoked when there is a sole leader per group with support of at least
a majority of processes in its group. A leader is responsible for propos-
ing the group’s timestamp for a new multicast message, and propagating
timestamps from other groups to followers of its own group.

• Failure handling. Upon detecting the failure of a leader, processes in a
group elect a new leader. The new leader must ensure that its execution
is consistent with the execution of the previous leader (detailed in Section
4.2.4).

• Leader election. RamCast requires processes to detect a slow or crashed
leader, and elect a new leader. Leader election is not assumed to be perfect:
the protocol ensures safety despite multiple leaders in a group. To ensure
progress, though, eventually every group should elect a single operational
and stable leader [2; 68]. Stable leader election can be implemented in
the partially synchronous model [3].

4.2.2 Data structures

Algorithm 6 presents the data structures used by processes in RamCast. Every
server process has a shared buffer M per client c, where slot M[c, i] contains the
i-th message msg multicast by client c, the groups dst the message is addressed
to, and an address vector pt r, where pt r[g, p] = j means that at process p in
group g message msg is stored in slot M[c, j]. The address vector is used by
a process to know where to write in the memory of another process addressed
by the message. Servers compute the message’s timestamp tmp, based on the
timestamps proposed by the leader of each destination group, and the acknowl-
edgements from the members of the leader’s group, stored in vector ack. A mul-
ticast message state stat can be null (⊥), pending a final timestamp (MCAST),
assigned a final timestamp (ORDERED) or delivered (DONE).

To compute a message’s timestamp, each server process has a protected buffer
T , where the i-th slot T[c, i]matches the corresponding slot M[c, i] in the shared
buffer M associated with c. The slot contains a timestamp vector tmp and a
round vector rnd, each one with an entry per group g: tmp[g] contains the
timestamp proposed by the current leader in g in round rnd[g]. Timestamps and
rounds are tuples 〈cnt, pid〉, where cnt is a scalar and pid is a process identifier,
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Algorithm 6 Data structures
1: Each server has a shared buffer M and a protected buffer T per client c; each slot in M stores

a multicast message; the corresponding slot in T stores the message’s timestamps

2: Each slot M[c, i] contains the following information:
3: msg: the message m multicast by client c
4: dst: destination groups m is addressed to
5: pt r[1..k, 1..n]: for each g in destination, slot with msg at processes in g; null if g is not

in the message’s destination
6: tmp: the timestamp of m, initially 〈0,0〉
7: ack[1..k, 1..n]: for each g in destination, acknowledgment of timestamp in T[c, i].tmp[g]

from processes in g
8: stat: state of m: ⊥ (initially), MCAST, ORDERED or DONE

9: Each entry T[c, i] contains the following information:
10: tmp[1..k]: timestamp proposed by leader of group g
11: rnd[1..k]: the round of g ’s leader, initially 〈0, 0〉
12: Each client c has vector cpt r[1..k, 1..n], with the next available slot in buffers M and T per

group g and process p

13: Each server p at group g also has:
14: clock: logical timestamp counter at p, initially 〈0, p〉
15: round: the round of p, when leader, initially 〈0, p〉
16: Leader[1..k]: the leader at each group
17: Round[1..k]: last accepted round at each group

unique across the system. It follows that 〈cnt, pid〉 > 〈cnt ′, pid ′〉 iff cnt > cnt ′,
or cnt = cnt ′ and pid > pid ′. We further assume that t ime(〈cnt, pid〉) = cnt.

To multicast a message, a client writes the message in the shared buffer of
each process in the groups addressed by the message. To know in which entry
the multicast message must be written, the client keeps an address vector cpt r
with an entry per group and per process in the group.

Process p’s local state includes a clock, used to compute logical timestamps,
p’s current round, used when p is the leader of the group, vector Leader with
p’s view on the current leader of each group, and vector Round, where entry
Round[g] contains the largest round p has accepted from Leader[g].

4.2.3 Normal execution

RamCast is optimized for the normal case, when a message is addressed to groups
whose leaders are operational and stable. The normal execution proceeds in
three steps. In step 1, the client writes a multicast message in the memory of
all destination processes. In step 2, the leader of each destination group pro-



37 4.2 RamCast design and architecture

Task 5

Task 5

Task 5

L2

F2.2

F2.1

C

L1

F1.2

F1.1

Task 1

Task 2

Task 2

Task 6Task 5Task 4

Step ɠ Step ɡ Step ɢ

Task 4

     Task 3             

     Task 3             Task 6

Task 6

Task 6≈
≈

RDMA write Permissioned RDMA write

Figure 4.3. Normal execution of RamCast (i.e., group leaders are operational
and stable). We show the steps at one follower per group only to avoid clut-
tering.

poses and writes a timestamp for the message in the memory of its followers and
other leaders. In step 3, the leaders propagate the timestamp written by other
leaders, and the followers acknowledge the proposed timestamps. The message
is delivered after step 3. Algorithm 7 presents RamCast’s normal execution, and
Figure 4.3 illustrates one normal execution. We explain next the behavior of each
one of the tasks in Algorithm 7.

• Task 1. To multicast message m, client c first calculates the next avail-
able slot in the buffer of every process addressed by m. Then, c invokes
the Rela y procedure, which copies the message, its destination, and the
address vector for m in the message buffer of every process addressed by
m.

• Task 2. Once leader process L in group g reads m from its message buffer,
it computes a group-wise timestamp for m and writes the proposed times-
tamp in the protected timestamp buffer of all follower processes in the
leader’s group g, and all leader processes of other groups in the destina-
tion of m. If a remote write is denied, then L ends the task since another
process in g became leader.

• Task 3. When a follower detects that a multicast message has been assigned
a timestamp by the group leader, it updates its clock. This is done to ensure
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Algorithm 7 Normal case (stable leader)
1: Client c multicasts message m to groups in m.dst as follows:

2: for each h in m.dst, for each q in h {Task 1}
3: cpt r[q]← cpt r[q] + 1
4: Rela y(c, m, m.dst, cpt r)

5: Server p in group g executes as follows:

6: when ∃c, i : M[c, i].stat=MCAST and p= Leader[g] {Task 2}
7: clock← clock+ 1
8: for each follower q in g and each leader q in M[c, i].dst
9: j← M[c, i].pt r[q]

10: write(q, T[c, j].tmp[g], 〈clock, p〉)
11: write(q, T[c, j].rnd[g], round)
12: if write denied then end task

13: when ∃c, i : M[c, i].stat=MCAST and T[c, i].rnd[g] = Round[g] {Task 3}
14: clock← max(clock, t ime(T[c, i].tmp[g]))
15: for each h in M[c, i].dst, for each q in h
16: j← M[c, i].pt r[q]
17: write(q, M[c, j].ack[p], Round[g])

18: when ∃c, i, h: M[c, i].stat = MCAST and T[c, i].rnd[h] = Round[h] and h 6= g {Task 4}
19: clock← max(clock, t ime(T[c, i].tmp[g]))
20: for each follower q in g
21: j← M[c, i].pt r[q]
22: write(q, T[c, j].tmp[h], T[c, i].tmp[h])
23: if write denied then end task

24: when ∃c, i, h: M[c, i].stat = MCAST and ∃quorum Q in h: for each q in Q:
M[c, i].ack[q] = Round[h] {Task 5}

25: M[c, i].tmp← max(M[c, i].tmp, T[c, i].tmp[h])
26: if for each group h in M[c, i].dst: ∃quorum Q in h: for each q in Q:

M[c, i].ack[q] = Round[h] then
27: M[c, i].stat ← ORDERED

28: when ∃c, i : M[c, i].stat = ORDERED and >d, j : M[d, j].stat ∈ {ORDERED, MCAST}
and M[d, j].tmp < M[c, i].tmp {Task 6}

29: deliver m
30: M[c, i].stat ← DONE

31: procedure Rela y(c, msg, dst, pt r)
32: for each h in dst: for each q in h
33: write(q, M[c, pt r[q]].msg, msg)
34: write(q, M[c, pt r[q]].dst, dst)
35: write(q, M[c, pt r[q]].pt r, pt r)
36: write(q, M[c, pt r[q]].stat, MCAST)
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that timestamps from a group are monotonically increasing (necessary in
case the process becomes leader). Then, the follower acknowledges that
it has read this timestamp by writing the round used by the leader in its
entry in the ack vector of every process in the destination of the message.
The follower detects the leader proposed timestamp by checking whether
the round of the timestamp matches the round associated with the leader.
This assumes that both the timestamp and the round have been updated
by the leader. We discuss in Section 4.3 how we ensure this with RDMA.

• Task 4. When the leader L in g reads a timestamp written by a leader in
another group, L updates its local clock with the timestamp, to ensure that
any future proposed timestmaps will be bigger, and writes the read times-
tamp in the memory of each one of its followers. This task is executed by
the leader of a group only, since only the leader is updated with timestamps
from the leader of another group (see Task 2). The reason why only the
leader of a group is updated is to ensure that any timestamps assigned by
the leader are consistent with any other timestamps assigned by the group.

• Task 5. When a message has a timestamp proposed by a leader from each
destination group of the message, and a quorum of processes in each des-
tination group agrees with the proposed timestamp, the message becomes
ordered.

• Task 6. A process delivers an ordered message when it can assert that no
other messages can be assigned a smaller timestamp.

In the normal case, a message multicast by a client to multiple groups is
delivered by the leaders and the followers of the addressed groups after three
RDMA write delays (see Figure 4.3). In Section 4.2.6, we discuss how messages
addressed to a single group can be delivered by the group’s leader after two
RDMA write delays.

4.2.4 Handling failures

RamCast handles the failure of a leader using a mechanism similar to Paxos. As
a consequence, it can tolerate multiple processes that believe to be leader in a
group without violating safety. In order to ensure progress, however, eventually
there should be only one operational leader process per group. When a process
becomes leader, it needs to catch up with the previous leader. In the following,
we describe how the newly elected leader does this. The procedure uses both
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shared memory and message passing for communication. In RDMA, message
passing is less efficient than shared memory, but it reduces complexity, as we
do not have to handle concurrent accesses to shared memory. Since failures are
hopefully rare, we consider that trading performance for simplicity is acceptable.

• Task 7. When a process that will become the next leader of the group
suspects the current leader, it determines its first undecided slot (FUS) per
client in its shared buffers. A slot is undecided if its state is equal to MCAST.
Then, the new leader chooses a round and sends a catch-up message to
every server process in the system. Since slot i in the new leader’s buffer
may correspond to a different slot at another process, the new leader must
convert its FUS into one that is meaningful for the contacted process (line
7).

• Task 8. A process p will consider a catch-up message from new leader q
in group h if q has picked a round bigger than the current round for h
at p. This is a requirement from Paxos, to ensure that a new leader will
not decide on a value different than a previously decided value. If the
catch-up message can be considered, then p revokes permissions to the
previous leader, grants permission to the shared buffer T to q, collects all
information requested by q, and sends it to q. Finally, p updates h’s round
and leader.

• Task 9. When the new leader receives responses for a catch-up request from
a quorum of processes in a group, it handles each entry i for every client c
received as follows. First, the process selects the response with the largest
round. From Paxos, this ensures that if a timestamp has been chosen, it
can only be the one with the largest round. The next steps depend on
whether the process received the responses from its own group or not. If
the process received the responses from its own group, then it picks the
timestamp in the selected response, if any, or picks a timestamp using its
own clock. In either case, the process proposes the picked timestamp to all
other members of its group and the leaders of the other involved groups.
If the process received the responses from another group, then it forwards
the timestamp in the selected response to the followers in its group.

We also consider the case of faulty clients, who may fail to update all desti-
nations of a multicast message.

• Task 10. When a process detects the failure of a client, it relays all the
messages multicast by the faulty client that have not been ordered yet.
This means that only messages in the MCAST state need to be relayed.
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Algorithm 8 Handling failures and suspicions
1: when suspect Leader[g] and p is g ’s next leader {Task 7}
2: for each c do
3: FUS[c]← i, where M[c, i] is the first undecided entry
4: round ← 〈t ime(round) + 1, p〉
5: for each h in Γ
6: for each q in h
7: for each c: xFUS[c]← M[c, FUS[c]].pt r[h, q]
8: send (CATCH_UP, xFUS, round) to q

9: when receive (CATCH_UP, FUS, round) from q in h and round > Round[h] {Task 8}
10: revoke previous permissions and grant permission to q
11: pend ← ;
12: for each c do
13: let j be the last entry in M such that M[c, j] 6=⊥
14: for i in FUS[c].. j do
15: if h ∈ M[c, i].dst then
16: pend ← pend ∪ (c, i, M[c, i].msg, M[c, i].dst, M[c, i].pt r, T[c, i].tmp[g],

T[c, i].rnd[g])
17: send (MY_STATE, pend) to q
18: Round[h]← round
19: Leader[h]← q

20: when receive (MY_STATE, pend) from quorum Q in h,
including p’s response if g = h {Task 9}

21: bag ← union of all received pend from h
22: let max ts be the largest timestamp tmp in bag
23: clock← max(clock, t ime(max ts))
24: for each (c, i,−,−,−,−,−) in bag
25: let (c, i, msg, dst, pt r, tmp, rnd) in bag be such that >(c, i,−,−,−,−, rnd ′) in bag

and rnd ′ > rnd
26: if g = h then
27: if rnd > 0 then
28: t ← tmp
29: else
30: clock← clock+ 1
31: t ← 〈clock, g〉
32: for each q in g and each leader q in dst
33: write(q, T[c, pt r[q]].tmp[g], t)
34: write(q, T[c, pt r[q]].rnd[g], round)
35: if write denied then end task
36: else
37: for each q in g
38: write(q, T[c, pt r[q]].tmp[h], tmp)
39: if write denied then end task

40: when suspect client c {Task 10}
41: for each i such that M[c, i].stat = MCAST

42: Rela y(c, M[c, i].msg, M[c, i].dst, M[c, i].pt r)
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4.2.5 Correctness

In this section, we argue that RamCast implements atomic multicast, as defined
in Section 2.3.

Proposition 1 (Uniform integrity) For any message m, every process p delivers m
at most once, and only if p is a destination of m and m was previously multicast.

PROOF: Process p delivers m at Task 6 if m’s state is ORDERED. After delivering
m, p sets m’s state to DONE, and thus m cannot be delivered more than once.

Let c be the client that multicasts m to groups in dst, and let p be in group g.
From Task 6, p only delivers m if it is in p’s M buffer and m’s state is ORDERED.
Message m’s state is set to ORDERED in Task 5 if its current state is MCAST. A
message’s state is set to MCAST in procedure Rela y , which is invoked in two
cases: (a) by client c upon multicasting m (Task 1) to groups in dst, in which
case g ∈ dst; or (b) by some process q that suspects c (Task 10), has m in its
buffer in state MCAST, and g is a destination of m. In case (b), m was written
in q’s buffer either (b.1) directly by c or (b.2) indirectly by some other process.
In any case, there is some process r such that m is included in r ’s buffer by c. It
follows from Task 1 that p is a destination of m and m was multicast by client c.
�

Lemma 1 If all correct processes in the destination of an atomically multicast mes-
sage m have m in their M buffer in the MCAST state, then they eventually set m to
the ORDERED state.

PROOF: Let m be addressed to groups in dst and q be a correct process addressed
by m. We claim that for each h ∈ dst, q will have a timestamp for h that is ac-
knowledged by a quorum of processes in h. By the leader election oracle and
the fact that each group has a majority of correct processes, group h eventually
has a stable correct leader l. Either (a) l executes Task 2 and proposes its clock
value as h’s timestamp or (b) l executes Task 7 to replace a suspected leader. In
(b), l sends a CATCH_UP message to all processes and will receive for each group
g ∈ dst the timestamp proposed in g, if any, and the corresponding acknowl-
edgements from processes in g (Task 8). For the case where h = g, l will pick
the timestamp decided by a previous leader or choose one if no timestamp has
been decided (Task 9). Thus, in both cases (a) and (b), the leader writes the cho-
sen timestamp in the M buffer of each process in h and in the leaders of other
groups in dst. From Task 3, every follower in h will acknowledge this timestamp
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in the buffer of each process in the destination of m. From Task 4, when l has
a timestamp from g 6= h, l writes the timestamp in the buffer of its followers,
which concludes the claim. Therefore, eventually q has a timestamp for every
group in dst, can compute m’s final timestamp, and set m’s state as ORDERED.

Lemma 2 If a correct process p has an atomically multicast message m in its M
buffer in the ORDERED state, p eventually delivers m.

PROOF: Assume for a contradiction that q does not deliver m. Thus, there is some
message m′ in the buffer such that m 6= m′, m′’s timestamp is smaller than m’s
timestamp, and m′’s state is not DONE.

We first show that any message added in the buffer after m becomes ORDERED

has a timestamp bigger than m’s timestamp. Message m only becomes ordered
after it has timestamps from all groups in m’s destinations dst. When q reads
a timestamp x for m from some group in dst, q updates its clock such that it
contains the maximum between its current value and x . Since the next event
that q handles for a message m′′ will increment its clock, it follows that m′′ will
have a timestamp bigger than x .

We now show that every message that contains a timestamp smaller than m’s
final timestamp ts is eventually delivered and its state set to DONE. To see why,
let m′ be the message with the smallest timestamp in the buffer. Thus, such a
message is eventually delivered and its state set to ORDERED. Eventually, m will
be the message in the buffer with smallest timestamp and therefore delivered, a
contradiction. We conclude then that q eventually delivers m. �

Proposition 2 (Validity) If a correct client c multicasts a message m, then eventu-
ally every correct process p in m’s destination dst delivers m.

PROOF: Upon multicasting m, c relays m to groups in dst (see Task 1). The Relay
procedure then copies m to the M buffer of every correct process p in groups in
dst and sets its state to MCAST. From Lemma 1, it follows that every correct
process p set m’s state to ORDERED. From Lemma 2, p eventually delivers m. �

Proposition 3 (Uniform agreement) If a process p delivers a message m, then even-
tually all correct processes q in m’s destination dst deliver m.

PROOF: For process p to deliver m, from Task 6, p has a timestamp for every
group h in dst in the M buffer such that ts is the largest among these timestamps.
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Moreover, there is no message m′ in the buffer such that m 6= m′, ts < y , where
y is a timestamp assigned to m′, and m′ is not ordered.

We first show by contradiction that q eventually has m in its M buffer. Let c
be the client that multicasts m. If c is correct then, c writes m in q’s buffer, so
consider that c fails before it can write m in q’s buffer. Since p delivers m, it has a
quorum of acknowledges from each group in dst. Any quorum includes at least
one correct process, which from Task 10, eventually suspects c and relays m to
all processes in dst, including q, a contradiction.

It follows from Lemma 1 that q eventually sets the state of m to ORDERED in
its buffer, and from Lemma 2 that q eventually delivers m. �

Proposition 4 (Uniform prefix order) For any two messages m and m′ and any two
processes p and q such that {p, q} ⊆ dst ∩ dst′, where dst and dst ′ are the groups
addressed by m and m′, respectively, if p delivers m and q delivers m′, then either p
delivers m′ before m or q delivers m before m′.

PROOF: The proposition trivially holds if p and q are in the same group, so assume
p is in group g and q is in group h and suppose, by way of contradiction, that
p does not deliver m′ before m nor does q deliver m before m′. Without loss of
generality, suppose that m’s timestamp ts is smaller than m′’s timestamp ts′.

We claim that q inserts m into the M buffer before delivering m′. In order
for m (respectively, m′) to be delivered by p (resp., q), p’s (resp., q’s) M buffer
must contain a timestamp tsg from group g and tsh from group h (resp., ts′g from
group g and ts′h from group h).

From Task 2 (or Task 9 if some process has suspected the leader), the leader
l in group g must have included the timestamp tsg for message m and ts′g for
message m′ in p’s M buffer and both timestamps have been acknowledged by a
quorum of processes in group g. Assume that the leader l has written tsg before
ts′g to the M buffer of every follower in group g and the leader lh in group h.
From Task 2, we have tsg < ts′g . Therefore, from Task 4, lh will write to the M
buffer of every follower in group h, including q, both tsg for message m and ts′g
for message m′.

Consequently, from the claim, q delivers m before m′ since m.ts < m′.ts, a
contradiction that concludes the proof. �

Proposition 5 (Uniform acyclic order) Let relation < be defined such that m< m′

iff there exists a process that delivers m before m′. The relation < is acyclic.
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PROOF: Suppose, by way of contradiction, that there exist messages m1, ..., mk

such that m1 < m2 < ... < mk < m1. From Task 6, processes deliver messages
following the order of their final timestamps. Thus, there must be processes
p and q such that the final timestamps they assign to m1, tsp and tsq, satisfy
tsp < tsq, a contradiction since both p and q have the same timestamps for each
group in dst in Task 6. �

Theorem 1 RamCast implements atomic multicast.

PROOF: This follows directly from Propositions 1 through 5. �

4.2.6 Extensions

We now discuss how to speed up the execution of messages multicast to a single
group of processes and how to reuse entries in the client buffers (i.e., essentially,
how to turn the data structures into circular buffers).

Since only one process at a time can hold permission to write in the timestamp
buffer of processes, if a leader manages to write its proposed timestamp for a
multicast message (Task 2) in a quorum of processes, it knows that the timestamp
proposed has been accepted by the followers and can change the message’s state
to ORDERED. Thus, at the leader the message is ready to be delivered without
the acknowledgements from the followers. We use this optimization to speed up
the delivery of single-group messages at the leader.

A client can recycle a buffer slot when the slot will not be needed by any
processes. This is the case when all message destinations have delivered the
message (i.e., message state is DONE). Therefore, periodically, all message desti-
nations inform the client about the slot with their Last Delivered Message (LDM).
The client then computes the Last Stable Group Message (LSGM) as the lowest
LDM received in the group. The client can safely update the pointer to the tail of
its buffer to the LSGM. This procedure, although simple, requires feedback from
all processes in a group. To tolerate failures, processes must checkpoint their
state. When f + 1 processes in a group have checkpointed a state that includes
the i-th slot, then the group’s LSGM can be updated to i.
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4.3 Implementation

We implemented a prototype of RamCast in Java using jVerbs (DiSNI library)
version 2.1,1 an open-source user-level networking library developed by IBM that
supports RDMA communication [98]. jVerbs offers low latencies to applications
running inside a Java Virtual Machine by exposing RDMA network hardware
resources directly to the JVM. The source code of RamCast is publicly available.2

In RamCast, we applied a number of optimizations to further decrease la-
tency and improve performance. When establishing the connections between
hosts, we use two-sided operations (e.g., send and receive) to exchange memory
addresses, and use the one-sided writes for data transfer. As the two-sided opera-
tion is only used for control information at the start up and in the case of failures,
this procedure does not affect performance of normal execution. The one-sided
operation for the actual transfer makes the overall data transfer efficient. In
RDMA, writes and sends with payloads below a limit specified by devices may be
written to the work request (WR) as inlined data, thus the RNIC does not need
to fetch that payload via a DMA read. In RamCast, we inline all writes whose
payload is lower than the inline limit (i.e., 64 bytes) [82].

Normally, the RNICs actively poll a completion event (CE) from the CQ to
ensure a write resides in remote memory. Polling CE is time consuming as it in-
volves synchronization between the RNICs on both sides of a CQ [103]. Thus, for
multi-group messages, we employ selective signaling [58] to reduce this overhead
by only checking for a CE after pushing a number of writes. When using selec-
tively signaled writes with requests of size n, up to n− 1 consecutive operations
can be unsignaled, i.e., a CE will not be pushed for these operations. Note that if
an operation ended with an error (e.g., a leader’s write permission is revoked),
it will generate a CE even if it was supposed to use unsignaled completion.

In a shared memory context, when a process reads entries that are updated
by another process, it is important that the reader process does not read incom-
plete data that has not been fully updated by the writer process, (e.g., processes
in RamCast continually monitor their shared buffer for new messages and may
be reading an incomplete entry). We resolve this issue by adding an extra canary
value at the end of each entry, as used in previous works [1; 31; 53; 58; 103].
Before writing a message to a remote host, a process in RamCast adds the check-
sum of the entry to the end of the entry. A remote process always first checks the
checksum value and waits for the checksum to match the entry.

1https://github.com/zrlio/disni
2https://github.com/longle255/libRamcastV3

https://github.com/zrlio/disni
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4.4 Experimental evaluation

In this section, we discuss the evaluation rationale (§4.4.1), describe the exper-
imental environment (§4.4.2), and present the results of experiments we con-
ducted (§4.4.3–4.4.5).

4.4.1 Evaluation rationale

We conducted three sets of experiments. In the first set (§4.4.3), we seek to
understand the effects of message size on RamCast’s performance. In the sec-
ond set (§4.4.4), we compare RamCast’s performance to WBCast’s, an efficient
message-passing atomic multicast protocol. As we will see, RamCast largely out-
performs WBCast in both throughput and latency. Even though both protocols
are assessed in the same environment, RamCast’s advantage is a result of RDMA’s
efficient write operations (used by RamCast) when compared to message-passing
operations (used by WBCast). In the third set of experiments (§4.4.5), we com-
pare RamCast’s “inherent performance” (i.e., in the absence of contention and
queueing effects) to high-performance atomic broadcast protocols that rely on
RDMA technology (APUS and Mu) or bypass the network stack (Kernel Paxos).

In the following, we briefly comment on these protocols and their configura-
tion in the experimental study. We provide more details about each protocol in
Section 6.1.

White-Box Atomic Multicast (WBCast) [42] is a genuine atomic multicast
protocol that delivers exceptional performance, thanks to some algorithmic op-
timizations. WBCast provides a C-language implementation that uses libevent
for communication.3 We extended the code to include additional statistics infor-
mation. We include WBCast in our evaluation because it is currently the best-
performing message-passing atomic multicast protocol.

APUS is a general-purpose atomic broadcast protocol that implements Paxos.
As part of the execution, nodes store ordered messages on stable storage (e.g.,
SSD). In order to ensure a fair comparison among the various protocols, which
store messages in main memory only, we configured APUS with a RAM disk stor-
age instead.

Mu [2] implements Protected Memory Paxos. It was designed to replicate
micro services and optimizes atomic broadcast in one important aspect: by co-
locating clients and the Paxos’s leader on the same host. As a consequence, a
broadcast message can be ordered after one RDMA write delay (i.e., done by

3https://github.com/imdea-software/atomic-multicast

https://github.com/imdea-software/atomic-multicast
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the leader to place the message in the memory of the followers). As described
in Section 4.1.2, this is enough to ensure that the message is ordered. Unfortu-
nately, co-locating clients and leaders on the same host is not possible in atomic
multicast: the motivation and scalability of atomic multicast stem from the fact
that one can create multiple groups, each one operating independently. We con-
sider Mu in our evaluation since it is the best-performing RDMA-based atomic
broadcast protocol.

Kernel Paxos [37] is a Multi-Paxos implementation that improves the perfor-
mance of the original libpaxos library.4 The main idea is to reduce system calls
by running Paxos logic in the Linux kernel, bypassing the network stack, and
avoiding the TCP/IP stack. We used the original code5 and deployed a single
group with three replicas. We compare RamCast to Kernel Paxos because both
systems avoid the overhead of the communication stack.

4.4.2 Environment and configuration

We conducted all experiments in CloudLab [32]with two sets of nodes: (a) R320
nodes, equipped with one eight-core Xeon E5-2450 processor running at 2.1GHz,
16 GB of main memory, and a Mellanox FDR CX3 NIC; and (b) XL170 nodes,
equipped with one ten-core Intel E5-2640v4 processor running at 2.4GHz, 64
GB of main memory, and a Mellanox ConnectX-4 NIC. A 10 Gbps network link
with around 0.1ms round-trip time connects all nodes running Ubuntu Linux
18.04 with kernel 4.15 an Oracle Java SE Runtime Environment 11. In all exper-
iments, clients and servers are independent processes. Clients submit requests
in a closed-loop, that is, a client multicasts a message to servers and waits for
a response before multicasting the next message. In all RamCast experiments,
clients measure latency as the interval between the multicast of a message and
the response received from the first server in each group addressed by the mes-
sage. In all protocols, each group has 3 processes with in-memory storage.

4.4.3 The impact of message size

In this experiment, conducted on XL170 nodes, we measure RamCast throughput
and latency for different message sizes. For each message size, we increase the
number of clients until the system is saturated (i.e., throughput increases min-
imally with the number of clients). Figure 4.4 shows that up to 4KB messages,

4https://bitbucket.org/sciasciad/libpaxos
5https://github.com/esposem/Kernel_Paxos

https://bitbucket.org/sciasciad/libpaxos
https://github.com/esposem/Kernel_Paxos
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Figure 4.4. RamCast performance with different message sizes: 64B to 32 KB,
throughput versus latency.

the impact of message size on the system throughput is negligible, with nearly
250 thousand messages delivered per second. As the message size increases past
4KB, the maximum throughput decreases with 70 thousand messages per second
for 32KB messages. The latency cumulative distribution function (CDF) in Fig-
ure 4.5 exhibits minimum latency variation for messages with up to 2KB, around
8 microseconds at 95th percentile. At 4KB messages, the latency slightly goes up
to around 10 microseconds.

4.4.4 The performance of atomic multicast

The next set of experiments assess RamCast behavior in scenarios with up to
8 groups of 3 replicas each, deployed on XL170 nodes. The first experiment
comprises executions in which clients multicast single-group 64-byte messages
in setups with 1, 2, 4, and 8 groups.

Figure 4.6 (top) shows the aggregated throughput results when the system is
saturated. The results show that the throughput of both RamCast and WBCast
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Figure 4.5. RamCast performance with different message sizes: latency cumu-
lative distribution function for a single client.

grow linearly with the number of groups for single-group messages. RamCast
outperforms WBCast, however, by a factor of 3.6× in all configurations. Since
groups do not exchange any information when dealing with single-group mes-
sages, the latency CDF is similar for all configurations, no matter the number of
groups in the system, as depicted in Figure 4.6 (middle and bottom). RamCast’s
efficient single-group multicast (see §4.2.6) together with RDMA’s high perfor-
mance writes grant RamCast a 28× median latency advantage to WBCast (i.e.,
∼7 us against ∼200 us).

The next experiment evaluates the protocols with multi-group messages of
64 bytes addressed to all the groups. This is the most stressful case for a genuine
atomic multicast protocol, since to order a multicast message, all groups ad-
dressed by the message must interact. Therefore, the more groups addressed by
a message, the lower the expected performance. RamCast’s maximum through-
put is greater than WBCast’s in every configuration with 233, 145, 80, and 40
thousand messages per second for 1, 2, 4, and 8 destination groups against 63,
50, 35, and 27 thousand for WBCast, as shown in Figure 4.7 (top). The values
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Figure 4.6. Performance of atomic multicast when messages are multicast to a
single group. We show throughput (top) and latency cumulative distribution
function with one client for RamCast (middle) and WBCast (bottom).
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Figure 4.8. Latency cumulative distribution function for RamCast and atomic
broadcast protocols with a single client: 64-byte messages (top) and 1K-byte
messages (bottom).

correspond to improvements of 3.7×, 2.9×, 2.3× and 1.5×, respectively.
The difference is more expressive when we consider the latency for a single

client, i.e., when both protocols are contention-free. Figure 4.7 (middle) shows
that the latency CDF for RamCast with values of 8, 46, 78 and 150 microseconds
for 1, 2, 4, and 8 destination groups if we consider the 95th percentile. The
equivalent values for WBCast, as depicted in Figure 4.7 (bottom), are 214, 445,
673, and 1055 microseconds, representing 20× to 7× slower delivery times when
compared to RamCast’s.

4.4.5 RamCast’s inherent performance

We now compare RamCast to atomic broadcast protocols using a single group of
three replicas, and 64-byte and 1-kilobyte messages, on R320 nodes. Figure 4.8
shows a similar trend for both message sizes. Mu’s co-location of clients and
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leader on the same host (with the resulting single RDMA write delay) signifi-
cantly pays off: 4.8× and 3.1× reduction in the median latency with respect to
RamCast for 64-byte and 1-kilobyte messages, respectively. However, co-locating
the clients and the leaders on the same host hampers atomic multicast scalabil-
ity (see §4.4.1). When compared to APUS, RamCast reduces the median latency
by 4.7× and 5.6×, with messages with 64-byte and 1-kilobyte messages, respec-
tively. Compared to to Kernel Paxos, the improvements are in the range of 4.4×
and 4.7×.

4.5 Conclusion

Atomic multicast is a fundamental communication abstraction in the design of
scalable and highly available strongly consistent distributed systems. This chap-
ter presents RamCast, the first genuine atomic multicast protocol tailor-made for
the shared-memory model. In addition to introducing a novel algorithm that
leverages the permission mechanism of RDMA’s write operations to reduce the
number of communication steps, we also have implemented and evaluated the
protocol under a large range of parameters. The results show that RamCast out-
performs a state-of-the-art message-passing genuine atomic multicast protocol
and atomic broadcast protocols that optimize communication and rely on com-
parable assumptions.



Chapter 5

RDMA-based partitioned SMR

One of the main challenges that S-SMR systems face is executing multi-partition
requests, that is, requests that span more than one partition. Existing solutions
range from weakening the consistency of multi-partition requests (e.g., [21])
to fully implementing SMR’s strong consistency [8; 49]. In DynaStar [51], for
instance, a state-of-the-art S-SMR system, after ordering a request, replicas in the
partitions involved in the request migrate the data needed to execute the request
to the replicas of a single partition, so that these replicas can execute the request.
Unfortunately, this data exchange during request execution results in substantial
overhead.

This chapter presents Heron, the first scalable state machine replication sys-
tem on shared memory. Heron delivers scalable throughput through state parti-
tioning and microsecond latency by careful use of RDMA primitives. Heron re-
lies on an RDMA-based atomic multicast protocol to consistently order requests
within and across partitions, described in Chapter 4. It executes multi-partition
requests using a combination of different strategies. First, replicas coordinate
when executing requests to ensure linearizability and use a dual-versioning tech-
nique that keeps two versions of every object to account for concurrent access
to data. Coordination encompasses a majority of replicas in each partition in-
volved in a request. While coordinating with a majority of replicas (instead of
all) avoids blocking due replica failures, it creates the possibility of laggers, slow
replicas that do not keep up. Heron uses a simple heuristic, waiting for an addi-
tional small delay, to reduce the probability of laggers. Finally, laggers resort to
an efficient state synchronization protocol to update their state.

We extensively evaluate Heron by considering its inherent coordination la-
tency and performance in TPCC workloads. We found that Heron adds very low
latency of around 3 microseconds for coordinating executions in a workload in
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which requests involve 4 partitions. Heron is able to execute complex TPCC
single-partition requests in 19 microseconds and multi-partition requests in 35
microseconds. The performance evaluation shows more than an order of mag-
nitude performance improvement when compared to state-of-the-art message-
passing based S-SMR systems. We also study Heron’s state synchronization pro-
tocol and show that lagging replicas can be swiftly brought back to date. Heron
is able to recover a replica that has lost recent updates of several Kilobytes in less
than 30 microseconds.

The remainder of the chapter is structured as follows. Section 5.1 discusses
the challenges involved in Heron’s design, describes its algorithm in detail, and
argues about its correctness. Section 5.2 presents our prototype, and Section 5.3
evaluates its performance. Section 5.4 concludes the paper.

5.1 General idea

In this section, we discuss the challenges involved in Heron’s design (§5.1.1),
present Heron in detail (§5.1.2), and argue about its correctness (§5.1.3).

5.1.1 Main design and challenges

In Heron, application state is partitioned (or sharded), for performance, and
each partition is replicated, for high availability [13; 27; 41; 50; 78]. Clients use
atomic multicast to propagate requests to the partitions involved in the request.
A partition is involved in the request if the request reads or writes an object in
the partition. Replicas execute requests using local data (i.e., reading and writ-
ing objects stored at the replica) and remote data (i.e., reading objects stored
at replicas in other partitions by means of RDMA). This scheme introduces chal-
lenges in the execution of requests, in the coordination between replicas, and in
how replicas within a partition keep their state synchronized. In the following,
we comment on how Heron faces these challenges. Hereafter, we assume that
the execution of a request has a reading phase, during which a replica reads lo-
cal and remote objects without updating any objects, and a writing phase, during
which the replica updates local objects. Once the replica starts the writing phase,
it does not read any objects.
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Request execution

Single-partition requests are executed as in classic state machine replication:
replicas of a partition execute requests deterministically in the same order, us-
ing local data only. We now explain the rationale for using remote reads only in
Heron when executing multi-partition requests.

In general, there are two solutions to the problem of executing a multi-partition
request: (a) one partition, among the partitions involved in the request, executes
the request, and (b) all involved partitions execute the request. In the first so-
lution, to execute a request, the active partition reads local and remote objects,
and updates its local objects and the remote objects stored in the other parti-
tions involved in the request, the passive partitions. In the second solution, all
involved partitions execute the request, after reading local and remote objects,
and update only local objects (i.e., there is no remote write to update objects in
other partitions).

The first solution saves computing resources, as requests are executed by
the replicas of the active partition only. However, replicas in the active parti-
tion compete with each other to update remote objects in the passive partitions.
Therefore, one must handle read-write conflicts (i.e., remote reads versus remote
writes) and write-write conflicts (i.e., due to remote writes). In the second so-
lution, replicas in all involved partitions execute the request, but update local
objects only. Therefore, every replica in a partition involved in the request issues
local and remote reads, but only local writes. As a consequence, there are only
read-write conflicts.

Heron adopts the second solution to avoid write-write conflicts. Heron han-
dles read-write conflicts with a coordination mechanism that strives to keep repli-
cas synchronized, described next, and a dual-versioning technique that keeps two
versions of every object. When executing a request, replicas read the most recent
version of the object and update the older version. Each version is tagged with
the timestamp of the request that creates the version. To determine the most re-
cent version of an object, a replica compares timestamps and chooses the version
with the largest timestamp.

Replica coordination

Multi-partition requests require replicas of the partitions involved in the request
to coordinate. First, before a replica ri executes a request R, ri coordinates with
replicas in other partitions involved in R to ensure that remote reads issued by ri

to these replicas will be consistent, that is, they reflect all requests that precede
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R. Second, after ri has executed R, ri coordinates with replicas in other partitions
involved in R to ensure that remote reads issued by these replicas to ri will be
consistent, that is, they do not reflect requests that come after R.

Although the coordination used by Heron is analogous to barriers, instead of
waiting for every replica of each partition involved in a request, a replica waits
for a majority of replicas in each partition. This ensures that no replica remains
blocked in case of replica failures, as each partition has a majority of correct
servers. To ensure reading consistent values, replicas read remote values from
replicas that they have heard from in the coordination phase before execution.

Coordinating with a majority of replicas only, however, may leave a replica in
a partition behind a majority of replicas in its partition, a lagger. In this case, the
lagger may not be able to execute a multi-partition request because it may not
be able to consistently read the value of remote objects, because the replicas that
store the object have already moved to a later request. In Heron, a lagger needs
to transfer a consistent state from other replicas in its partition, as described in
the next section.

To reduce the probability that a replica ri lags behind, after coordinating
with a majority of replicas in another partition, replicas wait an additional small
delay to allow ri to catch up, should ri be slower than a majority of replicas in
its partition. We show experimentally that waiting for a small fraction of the
time needed to execute a multi-partition request is enough to practically avoid
laggers.

State synchronization

When a replica realizes that it lags behind other replicas in its partition, the
replica requests a state transfer to the other replicas in its partition. A replica
finds out that it is lagging behind when it reads remote objects with timestamps
higher than the timestamp of the request the replica is currently executing. As
explained in the previous section, a replica that lags behind other replicas needs
to update its state from the state of other replicas in its partition because the
replica cannot retrieve consistent object values.

To communicate state transfer requests, Heron replicas maintain the State
Transfer Memory. The State Transfer Memory is an array of RDMA-registered
buffers of size equal to the number of replicas in the partition. Each array entry
stores two values: req_tmp and status. req_tmp is the timestamp of the request
that the replica failed to execute. status is the stage of state transfer protocol:
0 when there is no state transfer in execution at the replica and 1 when the
replica has requested a state transfer. In addition, replicas maintain a log record
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Figure 5.1. The lifespan of multi-partition requests in Heron.

of updated values while executing requests in normal execution. This log is used
during state transfer to reduce the objects that must be synchronized.

5.1.2 Detailed algorithm

Processes in Heron use unique timestamps assigned by the atomic multicast
protocol to infer the order of delivered messages. Timestamps are stored in
m.tmp, to every delivered message m, such that for any two messages m and m′,
if m < m′ then m.tmp < m′.tmp. Algorithm 9 shows the coordination logic of
Heron (see also Figure 5.1). Clients submit a request by atomically multicasting
it to the destination partitions (line 3). Upon delivery of a request, a server pro-
cess p first checks if the request must be skipped, which is the case when a client
has received state updates through state transfer after a failure (lines 6–7). In
case the request is single partition, process p skips coordinations and executes the
request right away (lines 8–10). Otherwise, p executes the coordination phase by
writing coordination messages on processes involved in the request and waiting
for coordination messages from a majority of processes in each involved partition
(lines 11–14). Next, the request is executed (lines 15–16). This includes reading
states locally and remotely and writing new values locally using read_objects and
write_objects procedures. In phase 4, p goes through another round of coordi-
nation, similar to phase 2 (lines 17–20). Finally, p responds to the client (lines
21–22).

Algorithm 10 presents the procedures to perform object reads and writes.
The procedures are invoked in Algorithm 9 from the exec_callback method. The
read_objects procedure reads values for objects in read_set. For each object in
read_set, process p finds out the object’s partition by querying an application-
defined partitioning method (lines 2–3). Next, for remote objects that the parti-
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Algorithm 9 Coordination

1: Client to issue request r

2: /* phase 1: multicast */
3: mul ticast(r, r.dest)

4: Process p in group g to execute request r

5: upon delivery of request r do
6: if r.tmp ≤ last_req then return {skip execution}
7: else last_req ← r.tmp

8: if r.dest.size = 1 then {no coordination required}
9: response ← exec_cal l back(r)

10: return response to client

11: /* phase 2: coordination */
12: for all h ∈ r.dest, for each q ∈ h do
13: write_coord(q, p, 〈r.tmp, 1〉)
14: wait until ∀h ∈ r.dest,∃ majority of q ∈ h :

coord_mem[h][q].tmp = r.tmp

15: /* phase 3: execution */
16: response ← exec_cal l back(r)

17: /* phase 4: coordination */
18: for all h ∈ r.dest, for each q ∈ h do
19: write_coord(q, p, 〈r.tmp, 2〉)
20: wait until ∀h ∈ r.dest,∃ majority of q ∈ h :

(coord_mem[h][q].tmp = r.tmp and
coord_mem[h][q].state = 2) or
coord_mem[h][q].tmp > r.tmp

21: /* phase 5: response */
22: return response to client

Variables:
r.tmp: request timestamp

r.dest: destination partitions request r is addressed to

last_req: timestamp of the last executed request, initially 0

coord_mem[h][q]: coordination memory entry for process q in partition h; each entry con-
sists of a request timestamp and a state (1: delivered request, 2: finished execution), initially
〈0,0〉

Methods:
mul ticast(r, r.dest): atomically multicasts request r to r.dest

wri te_coord(q, p, v): remote write v to process p’s entry in the coord_mem of process q.

exec_cal l back(r): application’s execute callback method; it includes read_ob js and
write_ob js procedures to perform reads and writes
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Algorithm 10 Execution
1: Procedure read_objects(r, read_set):
2: for oid in read_set do
3: h← quer y_mapping(oid)

4: /* retrieve object address in remote processes */
5: if h 6= g and ∀q ∈ h, !ob j_map.contains(〈oid, q〉) then
6: for all q in h do
7: quer y_ob j_addr(q, oid)
8: while not heard from majority of processes in h do
9: q, addr ← wait()

10: ob j_map.put(〈oid, q〉, ob j_addr)

11: /* read values */
12: if h = g then {local values}
13: val ← ob j_l ist.get(oid)
14: r.set_value(oid, val)
15: else
16: while true do
17: q ← rand_proc(h, r)
18: addr ← ob j_map.get(〈oid, q〉)
19: if addr is null then
20: continue

21: resul t, val1, val2← remote_read(q, addr)
22: if resul t is RDMA_EXCEPTION then {failed process}
23: continue

24: val ← null
25: if val1.tmp < r.tmp and val1.tmp > val2.tmp then
26: val ← val1
27: else if val2.tmp < r.tmp then
28: val ← val2

29: if val is null then {state loss}
30: invoke state transfer protocol
31: return
32: else r.set_value(oid, val)

33: Procedure write_objects(write_set):
34: for 〈oid, val〉 in write_set do
35: ob j_l ist[oid]← val

Variables:
ob j_l ist: set of local objects

ob j_map: map of 〈oid, q〉 to the address of object oid in process q

Methods:
rand_proc(h, r): choose a random process from h that coordinated in phase 2 for request r

quer y_mapping(oid): query the partition that stores object oid

quer y_ob j_addr(q, oid): query address of oid in the memory of process q

remote_read(q, addr): remotely read object from address addr in memory of q
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tion does not know the memory address where the object is stored, p queries the
object location from processes in partition h and waits to hear from at least a ma-
jority of processes (lines 4–10). This ensures that process p knows the memory
location of the object in at least one correct process from the remote partition.

Having the memory address of objects, process p is able to read object values
for local objects (lines 11–14) and remote ones (lines 15–32). For remote reads,
p randomly chooses a remote process in partition h (line 17). To ensure reading
consistent values, the selected process must be among the ones that p has heard
from in phase 2. If the object location in the selected process is unknown, p
chooses another process (lines 18-20). Otherwise, p reads the object value. If
the remote process has failed, p will find out about the failure through RDMA
exceptions for the read operation and choose another process (lines 22–23).

To ensure linearizability, p must read valid object values only (lines 24–32). If
p is not a lagger, then it finds the object value by choosing the valid value among
the two available (duplicated) instances. The valid instance is one with smaller
timestamp than the current request’s timestamp and is the maximum among the
two. If such a value is not found (i.e., both values have timestamp equal or
bigger than request’s timestamp), it implies that p must initiate the state transfer
protocol. Otherwise, the value is valid and the request can be executed. After
executing a request, a new object version is created (lines 33–35).

Algorithm 11 presents Heron’s state transfer protocol. A replica initiates state
transfer by remotely writing in a pre-assigned entry in the memory of all replicas
in the partition (lines 2–4). Upon reading a state transfer request, a replica is
deterministically selected for performing state transfer (line 10). Then, the states
to be synchronized are specified (line 12) and the replica synchronizes the states
(lines 13–15). At the end of the synchronization, the replica informs the other
replicas in the partition about the completion of state transfer by updating the
request id and status values in their memory (lines 16–17). request id specifies the
last request that its state modifications are synchronized. Finally, p updates its
last_req field to prevent executing earlier requests (line 6). In case the selected
replica is suspected to have failed, another one is selected for state transfer (lines
18–19, line 9–10).

5.1.3 Correctness

In this section, we argue that Heron produces linearizable executions: For any
execution σ of Heron, there is a total order π on client requests that (i) respects
the semantics of the requests, as defined in their sequential specifications, and
(ii) respects the real-time precedence of requests [8; 49].
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Algorithm 11 State transfer

1: Process p in group g to initiate recovery

2: upon state transfer invocation on request r do
3: for all q in g do
4: write_state_t rans f er(q, 〈r, 1〉)
5: wait on state_s ync_mem[p].status to become 0
6: last_req ← state_s ync_mem[p].rid

7: Process p in group g to handle recovery

8: upon state transfer request from process q for request r do
9: while true do

10: proc ← deterministically choose a process
11: if proc = p then
12: ob jec ts ← log.get_ob jec ts(r.tmp, last_req)
13: for ob j in ob jec ts do
14: addr ← ob j_map.get(q, ob j.id)
15: remote_write(q, addr, ob j)
16: for all proc in g do
17: write_state_t rans f er(proc, 〈last_req, 0〉)
18: else
19: wait on state_s ync_mem[q].status to become 0 unless t imeout expires

Variables
state_s ync_mem[q]: state sync memory entry for process q; each entry consists of a request
id rid and status

log: log of objects written/updated while executing requests

Methods
write_state_t rans f er(q, 〈r, s〉): write state transfer request on process q for request r with
status s

get_ob jec ts(r1.tmp, r2.tmp): returns objects written/updated from request r1 to request
r2 (included)

remote_write(q, addr, v): remotely write value v to addr on the memory of process q
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Let π be a total order of requests in σ that respects ≺, the order atomic
multicast induces on requests. To argue thatπ respects the semantics of requests,
let Ci be the i-th request in π and p a process in partition x that executes Ci.
We claim that when p executes Ci, all read operations issued by p as part of Ci

result in values that reflect all requests that precede Ci and no value created by
a request that succeeds Ci. We prove the claim by induction on i. For the base
step, request C0, the claim trivially holds for local reads, as objects are initialized
correctly. Assume that p successfully reads an object from process q in partition
y . Since p only accepts the remote read if the timestamp of the value read is
smaller than the timestamp of C0, p knows that q has not executed any later
request that modifies the object read.

For the inductive step, assume the claim holds for C0, ..., Ci−1. If p reads a
local object, then the claim holds from the inductive hypothesis. Assume that
p reads a remote object from process q in partition y . There are two cases to
consider. When p reads the object, (a) q has already executed every request that
precedes Ci, and (b) q has not executed any requests that succeed Ci. For (a),
from the algorithm, p only issues a remote read operation for an object stored on
q if q coordinated with p in phase 2. For (b), as in the base step, p only accepts
the remote read if the timestamp of the value read is smaller than the timestamp
of Ci. Thus, q did not execute any later request that modifies the object read by
p when p reads the object from y .

We now argue that π respects the real-time precedence of requests in σ.
Assume that Ci ends at a client before C j starts at a client. We must show that
either Ci ≺ C j; or neither Ci ≺ C j nor C j ≺ Ci. For a contradiction, assume that
C j ≺ Ci. And let Ck and Cl be two consecutive requests in C j ≺ ... ≺ Ci, where
Ck ≺ Cl . Thus, there is some partition x involved in Ck and Cl such that servers
in x deliver first Ck and then Cl . Since servers execute one request at a time in
the order they are delivered, it follows that Ck is executed before Cl by servers
in x , and it cannot be that Cl ends before Ck starts. From a simple induction, it
cannot be that C j ≺ Ci, and so, either Ci ≺ C j; or neither Ci ≺ C j nor C j ≺ Ci.

5.2 Implementation

We implemented a prototype of Heron in Java. We use an open-source user-level
library developed by IBM for RDMA communication [98] called jVerbs (DiSNI
library v2.1).1 jVerbs offers low latency overhead to applications running Java

1https://github.com/zrlio/disni
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by exposing RDMA network hardware resources directly to the Java Virtual Ma-
chine. Heron relies on RamCast,2 our shared-memory atomic multicast primitive
for ordered delivery of requests introduced in Chapter 4. Heron’s source code is
publicly available.3

5.2.1 TPCC implementation

We implemented a Java version of TPCC that runs on top of Heron. TPCC is
an established standard for evaluating the performance of storage and database
systems. TPCC defines a transactional workload for a database system in a
wholesale supplier company. The company has a possibly variable number of
distributed warehouses (Warehouse table). Each warehouse has 10 districts (Dis-
trict table) and each district services 3,000 customers (Customer table). Ware-
houses maintain a stock of 100,000 items (Item and Stock tables). The customer
orders (Order and New-Order tables) are also stored per order item (Order-Line
table), and a history of customers orders are maintained (History table). There
are five transaction types that simulate a warehouse-centric order processing ap-
plication: New-Order (45% of transactions in the workload), Payment (43%),
Delivery (4%), Order-Status (4%) and Stock-Level (4%).

Each row in TPCC tables is an object in Heron. To allow processes to access
remote objects, these objects must be stored in memory regions that are regis-
tered by RDMA device. Currently, Java does not support Value Types [89]. This
prevents us from using Java List, for example, to store remotely accessible array
of objects. One workaround is to store the data in Java’s ByteBuffer. The seri-
alized data can then be stored in RDMA-registered memories for remote access.
Accessing serialized tables, locally or remotely, involves deserializing the data to
retrieve values and serializing again in the case of data modification. The data
in two tables, Stock and Customer, are stored serialized. These are tables that
are accessed by remote processes while executing TPCC requests. Other tables
are stored in memory using Java HashMap since they are not accessed remotely.

Each Heron partition stores one TPCC warehouse. The Warehouse and Item
tables are replicated in all partitions, since they are not updated in the bench-
mark. Other tables are warehouse-specific and replicated in one partition. As
shown in Figure 5.1, there is no remote writes while executing requests. This
allows our TPCC implementation to partially execute transactions in some parti-
tions. Partial execution refers to avoiding computations that results in modifica-

2https://github.com/longle255/libRamcastV3
3https://github.com/meslahik/heron
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tion of objects that are not stored locally in the partition.

5.3 Evaluation

In this section, we motivate our experimental study (§5.3.1), describe the exper-
iment’s environment (§5.3.2), and discuss the results of our evaluation (§5.3.3-
§5.3.5).

5.3.1 Roadmap

We seek to answer the following questions through three sets of experiments:

1. Performance (§5.3.3): What is the overall performance and scalability of
Heron while running complex transactions (i.e., TPCC)? How does Heron’s
shared memory model compare to message passing-based scalable SMR
systems?

2. Latency (§5.3.4): What is the latency of Heron’s coordination? What is the
latency of running TPCC transactions on Heron?

3. State transfer (§5.3.5): How long does it take for Heron to recover a left-
behind replica? How to determine the efficient cut-off time for coordina-
tion?

5.3.2 Environment and configuration

We conducted all experiments in CloudLab [33] in XL170 nodes. Each node is
equipped with one ten-core Intel E5-2640v4 processor running at 2.4GHz, 64
GB of main memory, and a Mellanox ConnectX-4 NIC. A 25-Gbps network link
with around 0.1ms round-trip time connects all nodes running Ubuntu Linux
18.04 with kernel 4.15 and Oracle Java SE Runtime Environment 11. In all ex-
periments, clients and servers are independent processes with in-memory stor-
age. Clients submit requests in a closed-loop, that is, a client submits a request
to servers and waits for a response before submitting the next request. Unless
stated otherwise, each partition has 3 replicas. In all Heron experiments, clients
measure latency as the interval between submitting a request and the response
received from one server in each partition addressed by the request.
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Figure 5.2. Performance of RamCast, Heron, TPCC, and TPCC local with
increasing number of partitions.

5.3.3 Performance

The performance of Heron

Figure 5.2 shows the maximum throughput of 4 sets of TPCC experiments as
we increase the number of warehouses from 1 to 16. In the first three sets,
the ratio of single- and multi-partition requests is given by TPCC. In the last set
of bars (Tpcc local), all requests are local. For 1WH experiments, Heron skips
coordination since there is only one partition in the system.

The first set of bars shows the performance of RamCast, without coordina-
tion and execution. RamCast sports a close-to-linear scalability as we increase
the number of warehouses. This is a promising result that sets the stage for fast
coordination and execution. The second set of bars represents the performance
of Heron with null requests. This helps understand the cost of coordination in
Heron, without the overhead of request execution. From 1WH to 2WH, perfor-
mance does not increase due to the overheard of coordination needed in 2WH.
Performance increases by factors of 1.49x, 1.88x, and 1.61x thereafter. The third
set of bars shows the performance of TPCC on Heron. As before, the performance
of TPCC is the same for 1WH and 2WH. Performance for 4WH, 8WH, and 16WH
increases by the factors of 1.54x, 1.74x, 1.50x, respectively.

In the above experiments, the performance improvement from 8 to 16 par-
titions is less pronounced than from 4 to 8 partitions. We attribute this to the
network infrastructure of our testbed. According to Cloudlab documentation
[24], XL170 nodes are connected via an experimental link to Mellanox switches
in groups of 40 servers. Each of the groups’ experimental switches are then con-
nected to another Mellanox switch at 5x100Gbps. This means that above 40
nodes, there are always requests that go beyond the Top-Of-Rack switch to reach
destination, with no bandwidth guarantees.

Finally, as a sanity check, we consider a workload with local-only TPCC trans-
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Table 5.1. Scalability factor of different configurations.

Experiment 1→ 2 2→ 4 4→ 8 8→ 16
RamCast 1.37 1.70 2.22 1.83
Heron 1.05 1.49 1.88 1.61
TPCC 0.98 1.54 1.74 1.50
Local TPCC 1.90 1.98 2.09 2.01

actions. We modify the TPCC client code so that requests do not access objects
in other partitions. In this case, we expect linear scalability since there in no
cross-partition requests. The forth set of bars confirms this expectation while
executing local TPCC workload.

Table 5.1 shows the scalability factor of different experiments. The scalability
factor measures the increase in throughput from one configuration to another.
Ideal scalability (scalability factor 2.0) is only possible in the absence of cross-
partition requests, as in TPCC local. Likewise, limited improvements, if any, can
be achieved from 1WH to 2WH setups. In all other cases, performance improves
by a factor of at least 1.49x.

Heron vs. DynaStar

We now compare Heron to DynaStar, a message-passing scalable state machine
replication system [51]. We choose DynaStar because it closely matches Heron
execution model, it supports both single- and multi-partition requests, it has been
shown to outperform other related systems, and it is available as opensource.
Figure 5.3 shows peak performance and latency of both systems when executing
TPCC as we increase the number of warehouses. In the 16WH configuration, we
ran out of machines for DynaStar to deploy enough clients to saturate the system,
which resulted in lower throughput and latency than expected. The performance
results show that Heron outperforms DynaStar by an order of magnitude in all
configurations considered. Heron improves performance by 17x in the 1WH ex-
periment, up to 27x in the 16WH experiment. The latency results show that
Heron has substantially lower latency than DynaStar which has 43.9x, 68.3x,
69.7x, and 72.0x higher latency than Heron for 1WH to 8WH, respectively.

There are three reasons for Heron’s impressive performance. First, Heron di-
rectly benefits from efficient RDMA verbs, avoiding expensive message-passing
primitives (i.e., no overhead with context switches and communication proto-
col stacks). This impacts both the coordination and the execution of applica-
tion requests. Second, in Heron, multi-partition requests read remote objects
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Figure 5.3. Performance and latency of Heron vs. DynaStar.

through RDMA verbs, while in DynaStar, the execution of a multi-partition re-
quest involves rounds of message exchanges to move objects from one partition
to another. Third, Heron benefits from a carefully designed execution path. Op-
timizations include a manually (de)serialization of objects rather than using a
serializer library, and storing strings as byte buffers as (de)serialization of Java
Strings is quite expensive.

5.3.4 Latency

Latency without contention

Figure 5.4 shows the breakdown of the average latency when one client submits
TPCC New Order requests in a closed loop. We consider a workload with a single
client to avoid queuing effects due to contention. The breakdown shows the la-
tency footprint of three stages of running a request on Heron. In this workload,
Heron’s coordination constitutes only about 2 microseconds of the whole latency
of 35.4 microseconds, while ordering and execution take 18 and 16 microsec-
onds, respectively.

We further study the latency of Heron for requests that target a fixed number
of partitions. For that, we modify TPCC NewOrder transactions so that they
access objects in the specified number of partitions. In the 1WH workload, there
is no cross-partition requests: all requests are local and there is no coordination.
In the 4WH workload, requests always target 4 partitions, accessing at least one
object in each of these partitions.

From 1WH to 4WH, all stages of running a request become more expensive.
For the ordering, the slight increase in latency is due to the higher number of
partitions in the destination of the request. For the execution, the additional
latency comes from the fact that more remote objects must be read per request.
Coordination latency never goes above 3 microseconds in all workloads.
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Figure 5.4. Heron’s latency for single- and multi-partition requests with 1
client: breakdown of average latency (left) and cumulative distribution function
(CDF) (right).

The CDF graph in Figure 5.4 reveals more insights about the latency of request
execution. For 1WH, all requests are local so latency experiences little variation,
with some outliers that constitute about 8% of the requests. In TPCC, about
10% of requests are multi-partition. This results in similar latencies as in 1WH
workload for about 82% of the requests. Then, the outliers of single-partition
requests show up until about 90% of latency values. Multi-partition requests
show even higher latencies. A similar interpretation applies to latencies for other
workloads.

The latency of TPCC transactions

Figure 5.5 shows the average latency of various TPCC transaction types. For each
transaction type, one client submits that transaction type in a closed loop. The
bars differentiate between latencies for single- and multi-partition transactions
that expand to multiple partitions (New Order and Payment transactions). The
blue bars show the average latency of single-partition transactions. The green
bars show the additional latency added by multi-partition requests.

New Order and Payment transactions are heavy transactions. OrderStatus
and Delivery transactions are local, light-weight transactions and their latencies
are as low as 16.5 and 17.6 microseconds, respectively. StockLevel is a heavy
local transaction that accesses items in the last 20 orders. StockLevel transactions
are expensive because they access many items in a serialized table (i.e., Stock
table), and the data must be deserialized, modified, and stored back serialized.



71 5.3 Evaluation

Figure 5.5. Latency of TPCC transactions: average latency of single- and
multi-partition transactions (left) and cumulative distribution function (CDF)
(right).

5.3.5 State transfer

The impact on latency of “waiting for all”

We first measure the impact of tentatively waiting for all replicas when coordi-
nating. Table 5.2 shows the percentage of delayed transactions and the aver-
age delay in microseconds in four different configurations: 2 and 4 partitions,
and 3 and 5 replicas per partition. A transaction is delayed at a replica if when
the replica checks for a majority of coordination messages in its data structures,
it does not already have messages from all replicas. The average delay is the
amount of time the replica needs to wait to have coordination messages from all
replicas, if the transaction is delayed. An important observation from the results
is that very few transactions need to be delayed, in the worst case 8%, and the
delay per transaction is a fraction of the average latency of a transaction. Since
clients wait for a reply from each partition involved in a request, the perceived
increase in latency by the client is given by the maximum delay among the par-
titions involved in the request. Moreover, only the second coordination phase
needs to use this additional delay in order to keep replicas in sync.

In all configurations, the percentage of delayed transactions increases with
the partition id, while the average delay decreases. This happens because each
replica updates the coordination data structure in other replicas involved in a
request in order from the smallest replica id to the largest replica id in the smallest
partition id, then proceeds to the next partition id and so on. As a result, a
replica in the first partition id (among those involved in the request) has higher
chances of finding all coordination messages when it checks its data structure
than replicas in partitions with higher id. However, the average delay decreases
in replicas with larger id because it takes longer for these replicas to have all
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Table 5.2. Delay of transactions due to waiting for all rather than a majority
of replicas during coordination.

2 Partitions
3 replicas per partition 5 replicas per partition

max throughput: 53,340 tps max throughput: 42,658 tps
average latency: 35.7 µs average latency: 45 µs

partition id delayed transactions avg delay delayed transactions avg delay
#1 1% 5.3 µs 2% 18.6 µs
#2 8% 4 µs 4% 9.3 µs

4 Partitions
3 replicas per partition 5 replicas per partition

max throughput: 92,808 tps max throughput: 73,724 tps
average latency: 41.3 µs average latency: 52.2 µs

partition id delayed transactions avg delay delayed transactions avg delay
#1 1% 29.6 µs 3% 16 µs
#2 3% 11.8 µs 3% 11.1 µs
#3 3% 6.9 µs 3% 5.4 µs
#4 4% 2.1 µs 4% 8.8 µs

coordination messages, and so, the increase in latency is not so substantial as in
replicas in partitions with smaller id.

State transfer latency

Figure 5.6 shows the latency of the state transfer for TPCC tables in logarithmic
scale. For each transfer size, we show average latency (bars) and the standard
deviation (whiskers). The standard deviation in all cases shows minimal devi-
ation from the average latency except for the “Protocol” experiment. For state
transfer, the data is transferred through RDMA writes with payloads of 32KBs
(which has better performance than smaller payload sizes for the same amount
of data [71]).

The “Protocol” bar shows the latency of state transfer for a null application,
when no data is transferred. This represents the overhead of Heron’s state trans-
fer protocol without data exchange, and it amounts to two RDMA writes (i.e., one
by the replica that requests the state transfer and the other by the replica that
responds to this request). The next bars show the state transfer with various data
sizes for two scenarios. The two scenarios differentiate between state transfer of
serialized and non-serialized data. We chose 64KB data size as a representative
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Figure 5.6. Latency of state transfer. Protocol shows latency of state transfer
protocol without transferring any data. Other bars show state transfer for
various data sizes.

of a small data size that must be transferred during the state sync, while 640KB
and 6.4MB stands for state sync when 1% and 10% of a default TPCC table (i.e.,
Stock table) is modified and needs to be synced.

In the first scenario, we assume that only serialized data (e.g., TPCC Stock
table) is transferred. In this case, state transfer includes writing the missing
data to recipient’s memory where the outdated data resides. The figure shows
that for 64KB of data, it takes 26 microseconds for Heron to perform the state
syncronization. The latency increases linearly with the data size for 640KB and
6.4MB of data, as expected.

In the second scenario, non-serialized data is transferred (e.g., TPCC Item
table). In this case, state transfer includes serializing the data and remotely
writing the data in a part of the receiver’s memory. The receiver then deserializes
the data and updates the application states accordingly. The results show that
(de)serialization has a considerable degrading effect on the latency.

The time needed by a replica to catch up depends on how much it lags behind.
If the replica misses a single request, then it will catch up in tens of microseconds,
depending on how much data was updated in the missed request. In the worst
case, upon recovering from a failure, a replica needs to transfer the complete
state from another replica. In our prototype, a warehouse stores 137.69 MB
worth of data, 105.3MB serialized and 32.39MB non-serialized.4 This amounts
to a transfer time of 109.4ms (36.9ms serialized, 72.5ms non-serialized).

4This represents some point during the execution, as some tables in TPCC increase constantly.
The changes in size are minimum though and do not impact the state sync time significantly.
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5.4 Conclusion

Microsecond latency applications are becoming the de facto standard for latency-
critical services. This chapter presents Heron, the first scalable state machine
replication system that targets microsecond latency applications. Heron’s contri-
butions include a novel shared-memory algorithm for coordinating linearizable
execution of requests and a state synchronization protocol that recovers lagging
replicas very quickly. We have implemented Heron and extensively evaluated
its performance. The results show that Heron provides microsecond latency for
coordinating strongly consistent executions and achieves more than tenfold im-
provement in the throughput of TPCC workloads in comparison to its competi-
tors.



Chapter 6

Related work

In this chapter, we review selected publications in the research areas considered
in this dissertation. The proposed systems build on prior works on atomic mul-
ticast protocols (§6.1), scalable state machine replication (§6.2), RDMA-based
systems (§6.3), and distributed B-Tree algorithms (§6.4).

6.1 Atomic multicast

Atomic multicast is a well-studied problem. Skeen’s algorithm (described in Sec-
tion 4.1.2) is possibly the first atomic multicast algorithm. Even though it is not
fault-tolerant, it is genuine: processes only communicate if they are in the des-
tinations of the messages. Later timestamp-based genuine atomic multicast al-
gorithms implemented fault-tolerant versions of Skeen’s protocol. FastCast [25]
speeds up the delivery of messages by overleaping some parts of the protocol
(i.e., the order proposed by the leader and the consensus needed to decide on
the proposed order). In good runs, FastCast delivers multi-group messages in
4 communication steps. White-Box Atomic Multicast [42] further improves la-
tency with a protocol that combines Paxos and a fault-tolerant version of Skeen’s
protocol. White-Box Atomic Multicast delivers multi-group messages in 3 com-
munication steps at the leaders of the involved groups and 4 communication
steps at the followers. RamCast [71] improves on White-Box Atomic Multicast
in that both leaders and followers can deliver a multi-group message in 3 com-
munication steps.

Ring-based protocols [14; 30; 80] proposed a different approach to high
throughput by propagating messages along a predefined ring overlay and en-
suring atomic multicast properties by relying on this topology. However, ring-
based algorithms are non-genuine: involved processes communicate with pro-
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cesses outside the destination groups to deliver messages. The time complexity
of these algorithms is proportional to the number of destination groups.

6.2 Scalable SMR

State machine replication (SMR) [62; 65; 66; 68; 91; 92] provides a general
method for implementing fault-tolerant and strongly consistent distributed sys-
tems. In its essence, a combination of total order and deterministic execution
of requests. Various attempts have been made to increase the performance of
state machine replication. Kapritsos and Junqueira [60] propose to divide the
ordering of requests between different clusters to optimize the ordering as it
is fundamental for SMR. S-Paxos [17] avoids overloading the leader process of
Paxos [69], which would otherwise turn it into a bottleneck.

Some works propose a multi-threaded, yet deterministic implementation of
SMR. In [91], the receipt and dispatching of requests are handled concurrently,
while requests are executed sequentially. In CBASE [65], deterministic execution
is guaranteed, although requests that are safe to execute concurrently (e.g., read-
only requests) are executed in parallel. In Eve [62], requests are tentatively
executed in parallel and then replicas verify whether they reached a consistent
state. In the case of disagreement, commands are rolled back and re-executed
sequentially.

Some database replication systems target high throughput by relaxing con-
sistency, that is, they do not ensure linearizability. In deferred-update replication
[23; 63; 94; 95], replicas immediately commit read-only transactions, which may
result in non-linearizable executions. Such systems ensure serializability [12] or
snapshot isolation [73], which do not take into account real-time order of vari-
ous requests among different clients. Services that require linearizability cannot
be implemented with such techniques.

State partitioning has been investigated to make linearizable systems scalable
[13; 27; 41; 50; 78]. In a partitioned state machine system, there are two gen-
eral solutions to handle multi-partition requests. The first solution is to weaken
the guarantees of requests that access multiple partitions. Facebook’s Tao [21]
is a distributed data store that explicitly favors efficiency and availability over
consistency. Scatter [41] is a scalable key-value store that is linearizable within
a given key but not linearizable for multi-key application transactions. Calvin
[101] is a transaction scheduling layer over non-transactional storage systems
that provides strong consistency and ACID transactions. Its deterministic locking
order allows high throughput for multi-partition requests.
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Another solution is to provide strong consistency guarantees at the cost of
a more complex execution path for requests that involve multiple partitions.
Marandi et al. [78] propose a variant of SMR in which data items are parti-
tioned but requests have to be totally ordered and with the limitation that a
partition cannot access objects in other partitions. S-SMR [13] maintains a stat-
ically partitioned state machine. Upon delivery of a multi-partition request, a
copy of accessed states are exchanged across partitions to execute the request.
Partitions coordinate their execution to prevent request interleaves that violate
strong consistency. DS-SMR [50] extends S-SMR by allowing state migration
across partitions in order to reduce multi-partition commands. Although DS-
SMR implements repartitioning, it does not perform well in scenarios where the
state cannot be perfectly partitioned. DynaStar [51] improves on DS-SMR by em-
ploying a graph partitioning technique to place states that are accessed together
frequently in one partition. In DynaStar, multi-partition requests are executed
by moving states to one partition, among those involved in the request, which
then executes the request. Heron [36] largely outperforms DynaStar and similar
message-passing systems through its shared-memory algorithm which reduces
the latency of coordinating linearizable executions to some microseconds.

6.3 RDMA systems

Remote Direct Memory Access (RDMA) allows servers to directly access the mem-
ory of a remote server. Over the years, RDMA has become an active area of re-
search for its high throughput, low latency, and low CPU overhead. RDMA is
supported through three architectures, Infiniband [86], RoCE [11], and iWRAP
[88], that share a common API. RDMA has previously been studied and deployed
in a range of distributed services such as RPCs [99], key/value stores [31; 58;
82; 104], databases [18; 52], and distributed file systems [53; 74; 100; 105].

DaRPC [99] is an RDMA-based RPC framework that aims at saturating the
network and the CPUs within a multi-core system. Pilaf [82] is a distributed
in-memory key-value store that restricts the use of RDMA to read-only requests
and handles all other requests through messaging. FaRM [31] proposes a dis-
tributed computing platform that exposes memory of a cluster of machines as
a shared address space and provides the transactional interface for applications
to access the shared memory. It implements a key-value store on top and uses
RDMA reads for GETs and RDMA writes for PUTs. HERD [58] focuses its de-
sign on reducing network round trips through using RDMA writes and involving
server CPUs for executing the requests. Clients use one-sided RDMA writes to
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relay requests, including GETs, to servers which poll per-client buffers to pro-
cess requests. NVFS [53] leverages byte-addressable NVM and RDMA network
to provide a novel design of Hadoop distributed file system. Octopus [74] is a
distributed, shared persistent memory file system that redesigns the file system
internal mechanisms by a combination of NVM and RDMA features and avoiding
the isolation of file system and network layers. Kalia et al. [59] claim that low-
level details are significantly important for RDMA system design and propose
optimization guidelines to enhance the performance of RDMA system. We have
applied many of the mentioned best practices in the implementation of RamCast
and Heron.

RDMA’s shared memory model is fundamentally different from TCP’s mes-
sage passing model. This requires revising the design and implementation of
distributed building blocks such as consensus and group communication. DARE
[87] is a crash-tolerant replication protocol that proposes a novel algorithm based
on RDMA for replicating states. The consensus leader responds to read requests
and replicates requests to its follower with RDMA one-sided write operations.
DARE makes use of RDMA permission semantics when changing leaders. APUS
[102] is another leader-based consensus protocol based on RDMA networks. It
intercepts inbound socket calls on the leader host and denotes these calls as a
consensus request, so it does not require modifying applications for integration.
A leader process executes the request and replicates the log entry on followers
using RDMA writes. Derecho [54] is a library that allows structuring applica-
tions into shards and replicating them. Updates occur with a variation of Paxos,
while queries exploit a new form of snapshot isolation. The dynamic member-
ship tracking uses virtual synchrony. Even though Derecho organizes processes
into subgroups and shards, it does not offer any abstraction that provides total
order for operations involving multiple shards. Mu [1] implements Protected
Memory Paxos [2], a consensus algorithm that, in normal execution, uses one
RDMA write to replicate a consensus request. Mu colocates the client and the
leader roles of Paxos for optimizing latency and makes use of memory protection
semantics of RDMA for leader change. Velos [43] extends Mu and proposes a
leader-based consensus algorithm that relies solely on one-sided RDMA verbs.

6.4 B-Trees

The organization and maintenance of large ordered indexes based on B-tree date
back to the 70s [10]. This was later followed by efforts to introduce concurrency
in the execution of B-tree operations. Investigation into the performance of con-
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current tree algorithms [56; 97] showed that B-link trees [72] provide the best
performance for most operations. A distributed dictionary based on a distributed
B-link tree was introduced later [55]. An extension of B+Tree in P2P approaches
for multi-dimensional information proposed in [16].

There are several studies investigating distributed B-trees. Boxwood [75]
studies the possibility of having a high-level scalable data structure as the fun-
damental storage infrastructure. It is shown that there is no universal abstrac-
tion that fits all needs. Mitchel et al. [83] introduced a cell distributed B-tree
store. Their model explores the possibility of using the potential network capa-
bilities when the processor becomes the bottleneck. HyperDex [35] is another
distributed data store that provides a new search primitive for retrieving objects
by secondary attributes. It statically maps objects to servers according to object
values. Objects are duplicated to increase the performance of queries for an in-
dex with the cost of slower update operations. Aguilera et al. [4] implemented a
distributed B-tree using Sinfonia [6], a distributed data sharing service. They use
distributed transactions to make changes to B-tree nodes. The overall through-
put of the proposed system is limited due to a large number of aborts in their
model. Sowell et al. [96] extended the previous work to unify online and an-
alytics systems. Their model is a multi-version tree with snapshots to increase
the performance at the cost of weaker consistency guarantees. None of these im-
plementations are open source, which prevented us from comparing them with
DynaTree presented in Chapter 3. Aguilera et al. [5] introduced a distributed bal-
anced tree in the core of their storage engine for Yesquel. A balanced tree differs
from a B-tree to some extent, for example, by providing load balance rather than
size balance. Yesquel does not scale for insert operations. Even though Yesquel’s
design supports replication and it is open source, the available implementation
does not include replication, which prevented comparison to DynaTree.
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Chapter 7

Conclusion

Many modern online applications require performance scalability and high avail-
ability while operating at low latency. Designing systems that combine scalability
and fault tolerance where service latency is within a few microseconds, however,
is challenging. For that, we targeted scaling state machine replication, a popular
approach to high availability. State-machine replication provides configurable
fault tolerance and strong consistency among independent replicas, so that users
of a replicated service are unaware that multiple copies exist. However, since all
replicated nodes must execute the same sequence of commands, performance
scalability is limited. With this in mind, we studied scalable state machine repli-
cation systems by developing a practical complex application on top of such a
system. Next, we designed, implemented, and extensively evaluated solutions,
over the shared memory system model, to reduce the latency of such systems
and improve their performance. Our solutions delivered promising performance
improvements over message-passing solutions.

Two main objectives shaped the flow of our research: Our first goal was to
study the implications of developing distributed applications over S-SMR sys-
tems. To this end we studied the challenges involved in developing a complex
data structure like B+Tree and devised solutions to overcome them. Our find-
ings and observations are mostly general, and they can be applied to other data
structures and applications that seek high performance.

As our second goal, we strove for improving the performance of S-SMR sys-
tems and reducing their latency in order to serve latency-critical applications.
We first looked into reducing the latency of atomic multicast primitive. Consid-
ering the high potential of RDMA technology for low latency communication,
we developed a novel shared-memory atomic multicast algorithm that reduces
the number of communication delays to 3 communications. Next, we revised
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S-SMR system design to operate on the shared-memory model to coordinate and
execute distributed operations using one-sided RDMA primitives to prevent ob-
ject migration. In the next section, we briefly overview our findings and lessons
learnt throughout this study.

7.1 Research assessment

This dissertation presents three contributions: (i) a distributed B+Tree algorithm
that is modeled over scalable state machine replication, (ii) a novel atomic mul-
ticast algorithm that operates and communicates using shared memory model,
and (iii) a new scalable state machine replication system that uses shared mem-
ory model to improve the performance of S-SMR systems. In the following, we
review and discuss the most important aspects of these contributions.

DynaTree. Most scalable and fault-tolerant distributed systems use shard-
ing and replication as their primary mechanisms. Recent studies on scalable
state machine replication systems have shown promising results for executing
distributed requests while maintaining expected consistency of SMR systems. We
look into the difficulties of developing complex applications for S-SMR systems
while developing DynaTree, a distributed B+tree that is developed using state-
of-the-art S-SMR systems. It is demonstrated that constructing a complex data
structure like B+tree in partitioned SMR entails a number of difficulties. Be-
fore a request is executed, clients must identify the data and partitions accessed.
This is required to ensure that only the necessary partitions are involved in the
execution of a request. To meet this requirement, DynaTree clients cache the
tree’s inner nodes in a lazy manner. Partitions verify the validity of the cached
information before executing a request. The key contribution of DynaTree is to
present a practical development of a distributed application over S-SMR systems.
DynaTree satisfies the requirement of identifying objects accessed during execu-
tion of a request. We describe the design and implementation of DynaTree, and
present a detailed performance evaluation of the tree operations using various
workloads.

RamCast. Atomic multicast is a fundamental communication abstraction in
the design of scalable and highly available strongly consistent distributed sys-
tems. In order to decrease the performance of atomic multicast, we use RDMA
technology, which provides low-latency communication through its shared mem-
ory primitives. Skeen’s original atomic multicast algorithm [19] is revised and
extended to support the shared memory model and sustain server crashes. The
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result is RamCast, the first genuine atomic multicast protocol customized for the
shared-memory model. RamCast leverages the permission mechanism of RDMA’s
write operation to reduce the number of communication steps. RamCast deliv-
ers single-destination requests after 2 RDMA write delays, at the leader process,
and multi-destination requests after 3 RDMA write delays, at both the leader and
followers. The algorithm has been proved correct, implemented, and extensively
evaluated under a large range of parameters.

Heron. For latency-critical services, microsecond latency is becoming the
standard. Recent proposals that have extended state machine replication with
sharding, to overcome its limited performance scalability, do not perform well
due to the data migration needed to execute multi-partition requests. This data
exchange during request execution results in substantial overhead. To reduce
the latency of executing multi-partition requests in such systems, we introduce
Heron, the first scalable state machine replication system that targets microsec-
ond latency applications. Heron uses RDMA read primitive to obtain the value
of remote objects instead of migrating them between partitions. Heron also pro-
vides a state synchronization protocol that recovers replicas that are lagging be-
hind and therefore have lost the values of remote objects. Heron has been im-
plemented and its performance has been thoroughly evaluated.

7.2 Future directions

The main objective of this thesis is to investigate strongly consistent replicated
systems that provide scalable performance. We discuss some of the possible fu-
ture research directions.

Dynamic partitioning for scalable state machine replication. Recent re-
search on S-SMR systems based on message passing [50; 51] have shown that
a dynamic partitioning scheme helps to improve the performance of S-SMR sys-
tems. The performance results reveal that the performance of a partitioned sys-
tem heavily depends on the partitioning of the data. In order to scale, most re-
quests must involve a single shard, and the load must be balanced across shards.
A dynamic partitioning scheme puts states commonly accessed together in the
same partition, which significantly improves scalability. One solution is to build
a workload graph on-the-fly and use an optimized partitioning of the workload
graph to decide how to move state variables efficiently. The importance of lo-
cality is also present in RDMA-based communications, in which accessing local
memory is 23× faster than remote memory [31]. It is worth studying efficient
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techniques for dynamic partitioning data in shared-memory S-SMR systems.

RDMA-based distributed key-value stores. Over the past few years, several
studies have targeted the development of efficient key-value stores using RDMA.
These systems use RDMA primitives very different from each other to perform
put and get operations. The lack of powerful RDMA operations, as mentioned in
[58], is the main challenge for all these systems. An RDMA operation can only
read or write a remote memory location. More complex operations are not possi-
ble, such as dereferencing and following a pointer in remote memory. Pilaf [82]
restricts the use of RDMA to read-only requests and handles all other requests
through messaging. FaRM [31] implements a key-value store on top of its dis-
tributed computing platform, which performs (several) RDMA reads to retrieve
remote values. In contrast, HERD [58] found that the delay of RDMA writing is
lower than that of reading. It focuses its design on reducing network round trips
through RDMA writes and involving server CPUs for retrieving values written re-
motely on the local memory. As one of the directions for expanding this research
path, one can study the proposed systems and compare their performance for
various workloads and scenarios.

RDMA-based Byzantine Consensus In the context of Byzantine consensus
protocols, RDMA has received little attention. Several replication protocols based
on RDMA have been proposed, but none tolerate Byzantine failures. One can
build up a consensus protocol on the existing BFT abstractions to tolerate mali-
cious behavior.
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