
FlexCast: genuine overlay-based atomic multicast

Eliã Batista1,4, Paulo Coelho2, Eduardo Alchieri3, Fernando Dotti4, and Fernando Pedone1

1Università della Svizzera italiana, Lugano, Switzerland
2Universidade Federal de Uberlândia, Uberlândia, Brazil

3Universidade de Braśılia, Braśılia, Brazil
4Pontif́ıcia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil

Abstract

Atomic multicast is a communication abstraction
where messages are propagated to groups of processes
with reliability and order guarantees. Atomic multicast
is at the core of strongly consistent storage and trans-
actional systems. This paper presents FlexCast, the
first genuine overlay-based atomic multicast protocol.
Genuineness captures the essence of atomic multicast
in that only the sender of a message and the message’s
destinations coordinate to order the message, leading
to efficient protocols. Overlay-based protocols restrict
how process groups can communicate. Limiting com-
munication leads to simpler protocols and reduces the
amount of information each process must keep about
the rest of the system. FlexCast implements genuine
atomic multicast using a complete DAG overlay. We
experimentally evaluate FlexCast in a geographically
distributed environment using gTPC-C, a variation of
the TPC-C benchmark that takes into account geo-
graphical distribution and locality. We show that, by
exploiting genuineness and workload locality, FlexCast
outperforms well-established atomic multicast proto-
cols without the inherent communication overhead of
state-of-the-art non-genuine multicast protocols.

1 Introduction

Atomic multicast is a communication abstraction that
propagates messages to groups of processes with reli-
ability and order guarantees. Agreeing on the order
of messages in the presence of failures is a notoriously
difficult problem [13]. Yet, message ordering is at the
core of strongly consistent storage and transactional
systems (e.g., [6, 26, 27]). Some systems implement
strong consistency using an ad-hoc ordering protocol
(e.g., [8, 6]). Atomic multicast encapsulates the logic
for ordering messages and thereby reduces the com-
plexity of designing fault-tolerant strongly consistent
distributed systems.

In light of their important role, it is not surprising
that many atomic multicast protocols have been pro-
posed in the literature (e.g., [9, 10, 22, 14, 23]). These
protocols can be classified according to two criteria: (a)
genuineness (or lack of) and (b) process connectivity.

Genuineness In a genuine atomic multicast proto-
col, only the message sender and destinations com-
municate to order a multicast message [17]. Some
non-genuine atomic multicast protocols order mes-
sages using a fixed group of processes or involving
all groups, regardless of the destination of the mes-
sages. In geographically distributed settings, a genuine
atomic multicast protocol can better exploit locality
than a non-genuine protocol since messages addressed
to nearby groups do not introduce communication with
remote groups. Moreover, because a group only re-
ceives messages that are addressed to the group, in a
genuine atomic multicast protocol groups do not in-
cur communication overhead from relaying messages
to the destinations. This is important in geographi-
cally distributed environments where communication
across wide-area links represents an important cost
(e.g., Amazon Web Services).

Connectivity Most atomic multicast protocols as-
sume that processes can communicate directly with one
another. Alternatively, processes communicate follow-
ing an overlay, which determines which processes can
exchange messages with which other processes. Im-
posing limits on communication has advantages. For
example, overlays can represent the structure of admin-
istrative domains, simplify the design of protocols, and
reduce the amount of information each process must
keep about the rest of the system (e.g., key manage-
ment in Byzantine fault tolerant protocols [4]).

Combining genuineness and overlays is challenging.
Existing atomic multicast protocols focus on one as-
pect or the other but not both. For example, all exist-
ing genuine atomic multicast protocols assume a fully
connected overlay. Hierarchical protocols, which struc-
ture communication between groups as a tree, are not
genuine. For example, in ByzCast [4], a multicast mes-
sage is first sent to the lowest common ancestor of the
message destinations, and then proceeds down the tree
until it reaches all destinations. ByzCast’s logic is sim-
ple and processes in a group only need to keep infor-
mation about their parent and children. However, it is
not genuine since a message addressed to the children
of group g, but not to g, are first sent to g and then
propagated to g’s children, violating genuineness.

Figure 1 quantifies ByzCast’s communication over-
head, computed as one minus the ratio between the

1

ar
X

iv
:2

30
9.

14
07

4v
3

 [
cs

.D
C

]
 2

8
Se

p
20

23

number of messages that a group delivers (i.e., mes-
sages addressed to the group) and the number of mes-
sages the group receives as part of communication im-
posed by the tree overlay, and expressed as a percent-
age. On average, groups incur on almost 10% of com-
munication overhead. Some groups, however, are more
penalized than others, depending on their position in
the tree. In particular, about 23% and 36% of the
communication of groups 5 and 9, respectively, is over-
head. This is in contrast to genuine atomic multicast
protocols, which have no communication overhead.

 0

 20

 40

 60

 80

 100

1 2 3 4 5 6 7 8 9 10 11 12

O
v
e
rh
e
a
d

 (
%
)

Group

Overhead per group
Average

Figure 1: Communication overhead in a hierarchical pro-
tocol when executing the gTPC-C benchmark with tree T1

and 90% of locality (more details in Section 5); overhead,
expressed as a percentage, is computed for each group as 1
minus the ratio between number of messages delivered and
number of messages received by the group.

Our contribution This paper proposes FlexCast,
the first genuine overlay-based atomic multicast pro-
tocol. FlexCast assumes a complete directed acyclic
graph (C-DAG) overlay. Multicast messages are sent
to the lowest common ancestor (lca) of the message
destinations. The lca then propagates the message to
all other destinations in one communication step, with-
out involving any groups that are not a message’s des-
tination. FlexCast uses a sophisticated history-based
protocol to order messages. First, each process builds
a history with all messages the process has delivered.
This history is propagated to other processes in the C-
DAG, so that processes can ensure consistency (e.g.,
no two processes order two messages differently). Sim-
ply following other processes’ histories is not enough
to ensure consistent order due to indirect dependen-
cies. Indirect dependencies happen for a few reasons.
For example, if process x orders message m1 before
message m2 and process y orders m2 before message
m3, then process z must order m1 before m3 as a con-
sequence of dependencies created by processes x and
y involving m2, a message not addressed to z. Flex-
Cast is well-suited to equip geographically replicated
systems as it exploits locality.
We have implemented FlexCast and evaluated it in

an emulated wide-area network that mimics Amazon’s
EC2. To experimentally evaluate FlexCast, we propose
gTPC-C, a variation of the well-known TPC-C bench-
mark that integrates geographical distribution. In the
original TPC-C benchmark, a transaction operates on
items in a main warehouse and with a certain prob-

ability on items from additional warehouses as well.
gTPC-C models real-world wholesale supply systems
in which transactions are directed to the customers’
nearest warehouse and items not present in this ware-
house are requested from the next closest warehouse
and so on. In gTPC-C, customers and warehouses are
geographically distributed. To account for locality, a
customer’s main warehouse is the closest one to the
customer’s location and multi-warehouse transactions
have higher probability to involve warehouses located
near the main warehouse. Our results show that, by ex-
ploiting locality, FlexCast can reduce latency by up to
42% to 46% when compared to state-of-the-art atomic
multicast protocols in a geographically distributed en-
vironment. Moreover, as a genuine atomic multicast
protocol, FlexCast has no communication overhead.

The rest of the paper is structured as follows. Sec-
tion 2 presents the system model and definitions used
in the paper. Section 3 reports on related works. Sec-
tion 4 presents a detailed description of FlexCast, start-
ing with a high level description of the protocol, then
detailing the algorithms, and addressing practical con-
cerns and fault tolerance. Section 5 provides an experi-
mental evaluation of FlexCast. Section 6 concludes the
paper.

2 System model and definitions

This section presents our system model and recalls the
definition of atomic multicast.

2.1 System model

We consider a message-passing distributed system con-
sisting of an unbounded set of client processes C =
{c1, c2, ...} and a bounded set of server processes S =
{p1, p2, ..., pn}. We define the set of server groups
as Γ = {GA, GB , ..., GN}, where for every g ∈ Γ,
g ⊆ S. Moreover, groups are non-empty and dis-
joint [17, 16, 24, 4]. Processes are correct if they
never fail or faulty otherwise. In either case, processes
do not experience arbitrary (i.e., Byzantine) behav-
ior. We assume the system is partially synchronous
[12]: it is initially asynchronous and eventually be-
comes synchronous. The time when the system be-
comes synchronous is called the Global Stabilization
Time (GST), and it is unknown to the processes. Be-
fore GST, there are no bounds on communication and
processing delays; after GST, such bounds exist but
are unknown.

2.2 Atomic multicast

Atomic multicast is a fundamental communication ab-
straction in reliable distributed systems. It encapsu-
lates the complexity of reliably propagating and order-
ing messages. With atomic multicast, a client can mul-
ticast messages to different groups with the guarantee
that the destinations will deliver messages consistently.

2

In the following, we precisely capture these reliability
and ordering guarantees.

A client atomically multicasts an application mes-
sage m to a set of groups by calling primitive
multicast(m), where m.sender denotes the process
that calls multicast(m), m.id is the message’s unique
identifier, and m.dst is the groups m is multicast
to. A server delivers message m calling the primitive
deliver(m). If |m.dst| = 1 we say that m is a local
message; if |m.dst| > 1 we say that m is a global mes-
sage.

We define the relation≺ on the set of messages server
processes deliver as follows: m ≺ m′ iff there exists
a process that delivers m before m′. If m ≺ m′ or
m′ ≺ m, we say that there is a dependency between m
and m′.

Atomic multicast satisfies the following proper-
ties [18]:

• Validity : If a correct process p multicasts a mes-
sagem, then eventually all correct server processes
q ∈ g, where g ∈ m.dst , deliver m.

• Agreement : If a process p delivers a message m,
then eventually all correct server processes q ∈ g,
where g ∈ m.dst , deliver m.

• Integrity : For any process p and any message m,
p delivers m at most once, and only if p ∈ g, g ∈
m.dst , and m was previously multicast.

• Prefix order : For any two messages m and m′ and
any two server processes p and q such that p ∈ g,
q ∈ h and {g, h} ⊆ m.dst ∩m′.dst , if p delivers m
and q delivers m′, then either p delivers m′ before
m or q delivers m before m′.

• Acyclic order : The relation ≺ is acyclic.

In a genuine atomic multicast protocol, only the
sender and the destinations of a message coordinate
to order the message. A genuine atomic multicast pro-
tocol does not depend on a fixed group of processes
and does not involve processes unnecessarily. More
precisely, a genuine atomic multicast algorithm should
guarantee the following property [17].

• Minimality : If a process p sends or receives a mes-
sage in run R, then some message m is multicast
in R, and p is sender(m) or in a group in m.dst.

3 Related work

An early atomic multicast protocol is attributed to D.
Skeen [2]. In this protocol, a multicast message m is
first propagated to m’s destinations. Upon receiving
the message, a destination assigns the message a local
timestamp and sends the local timestamp to the other
message destinations. When a destination has received
timestamp from all message destinations, it computes
the message’s final timestamp as the maximum among

all of the message’s local timestamps. Destinations de-
liver messages in order of their final timestamp. This
protocol is genuine but does not tolerate failures.

Several atomic multicast protocols extend Skeen’s
ordering technique to tolerate failures [5], [14], [16],
[21], [22]. In all these protocols, the idea is to imple-
ment destinations as groups of processes. Thus, mes-
sages are addressed to one or more process groups, in-
stead of a set of processes, as in the original proto-
col. Although some processes in a group may fail, each
group acts as a reliable entity, whose logic is replicated
within the group using state machine replication [25].
Recent protocols aim at reducing the cost of replication
within groups while keeping Skeen’s original idea of
assigning timestamps to messages and delivering mes-
sages in timestamp order. FastCast [5] improves per-
formance by optimistically executing parts of the repli-
cation logic within a group in parallel. WhiteBox[16]
atomic multicast uses the leader-follower approach to
replicate processes within groups. RamCast [21] re-
lies on distributed shared memory (RDMA) to reduce
latency. Since in all these protocols processes commu-
nicate directly with one another, we refer to them as
distributed atomic multicast protocols (see Table 1).

Class Type Examples
Distributed genuine [2, 5, 14, 10, 16, 21, 22]
Hierarchical non-genuine [4, 15, 19]
C-DAG overlay genuine FlexCast (this paper)

Table 1: Different classes of atomic multicast protocols.

In [10], a genuine distributed atomic multicast pro-
tocol that does not rely on exchanging of timestamps
to order messages is proposed. The protocol assigns a
total order to groups and relays messages sequentially
through their destination groups following this order.
A multicast message m is initially sent to the lowest
group in m.dst according to the total order. When the
group receives m, it uses consensus to order and de-
liver m inside the group, then m is forwarded to the
next group in m.dst, according to the total order of
groups. A group that delivers m can only order the
next message once it knows m is ordered in all groups
inm.dst, which is after it receives an endmessage from
the last group in m.dst. Although the dissemination of
the message follows an order, the end message returns
to each group involved and therefore the protocol is a
distributed atomic multicast protocol. Besides needing
n + 1 steps to deliver a message, where n is the num-
ber of destinations of the message, since groups remain
locked until the end message arrives, this protocol is
affected by the convoy effect [1].

Some protocols restrict process communication by
means of a tree overlay that determines how groups
can communicate (e.g., [4, 15]). To order a message
m using a tree, m is first sent to the lowest common
ancestor group among those in m.dst, in the worst case
the root of the overlay tree. Then, m is successively
ordered by the lower groups in the tree until it reaches
all groups in m.dst. An important invariant is that
lower groups in the tree preserve the order induced by

3

higher groups. Although simple, this protocol is not
genuine since a message may need to be ordered by a
group that is not in the destination set of the message.
While the tree-based protocol proposed in [15] does not
tolerate failures, ByzCast [4] can withstand Byzantine
failures.

The Arrow [19] protocol is a non-fault tolerant tree-
based protocol that targets open groups. It emerges
from the combination of a reliable multicast protocol
with a distributed swap protocol. Arrow assumes a
graph G and a spanning tree T on G. Initially, each
node v in T has link(v) that is its neighbour in T or
itself if v is a sink (initially only the root of T). To
multicast m a node v sends a message through link(v),
which is forwarded to the root of the tree. By defini-
tion, the root has sent the last message before m. As
the message is forwarded, edges change direction and v
becomes the new root (that has sent the last message,
which now is m). Although genuine, this procedure
may result in swap messages traversing the diameter
of T and only then a multicast, using an underlying
reliable multicast, is issued.

Restricting communication as in a tree may lead to
simpler atomic multicast algorithms. Moreover, if com-
munication needs to be authenticated, as in Byzantine
fault-tolerant protocols, a tree overlay requires fewer
keys to be maintained and exchanged between pro-
cesses than a distributed fully connected protocol. Fi-
nally, a fully connected protocol is a reasonable as-
sumption in systems that run within the same ad-
ministrative domain (e.g., Google’s Spanner [14]). In
other contexts (e.g., decentralized systems), however,
multiple entities from different administrative domains
collaborate but do not wish to establish connections
with all other domains. Hereafter, we refer to proto-
cols based on a tree as hierarchical atomic multicast
protocols.

Figure 2 shows three cases of interest. All genuine
atomic multicast algorithms we are aware of are dis-
tributed (Figure 2 (a)). A tree (Figure 2 (b)) is the
minimum connectivity needed by any atomic multi-
cast protocol to support an arbitrary workload (i.e.,
messages can be multicast to any set of groups), as re-
moving one edge from the tree results in a partitioned
graph. Hierarchical protocols, however, are not gen-
uine. For example, in Figure 2 (b), a message multicast
to groups B and C will first be ordered at A, and then
propagated and ordered by B and C. This paper pro-
poses the first overlay-based genuine atomic multicast
protocol.

4 Genuine overlay-based atomic
multicast

In this section, we present FlexCast’s basic idea and
detailed algorithm, and conclude with practical consid-
erations and a discussion on fault tolerance. FlexCast’s
correctness is presented in the appendix of this paper.

4.1 General idea

Groups in FlexCast are structured as a complete di-
rected acyclic graph (C-DAG), as the example in Fig-
ure 2 (c). We assume there is a total order among
groups. Each group is assigned a unique rank in
0..(n − 1), where n is the number of groups. The C-
DAG topology is such that there is a directed edge
from each group with rank i to each group with rank
j if i < j. In this graph, i’s ancestors have lower rank
than i and i’s descendants have higher rank than i.1

Figure 2 (c) shows a C-DAG with nodes ordered from
lowest to highest as: A, B, D, E, C.

A client atomically multicasts a message m by send-
ing m to m’s lowest common ancestor (lca). The lca of
a multicast message is the group with the lowest rank
among the destinations of the message. At its lca, m
is directly delivered and propagated to m’s other des-
tination groups (by definition the lca has direct edges
with each other destination group in m.dst). Similarly
to a tree-base atomic multicast, in a C-DAG, a group
must respect the dependencies created by its ancestors
and propagate dependencies to its descendants. In a
C-DAG, however, a group may have multiple ancestors
and dependencies can be created by any of them. An
important challenge is to ensure that dependencies are
properly communicated down the C-DAG without vio-
lating the minimality property of genuine atomic mul-
ticast. FlexCast uses three strategies to accomplish
this, as explained next.

Strategy (a): First, every group keeps track of a
history, a graph where messages are vertexes and their
relative order are edges. A vertex contains a message’s
id and destinations. Messages delivered at a group are
recorded in its history and build a total order within
the graph. When a group propagates a message to
another one, its history is included. The destination
group extends its history with the histories that it re-
ceives from other groups and messages it delivers. The
history then becomes a graph. More specifically, since
ordering is respected (discussed next), the history is a
DAG. Destination groups use the history to ensure that
messages are delivered consistently across the system.

To understand the need for exchanging histories,
consider the scenario depicted in Figure 3 (a), where
group A is the lca of messages m1 (multicast to A and
C) and m2 (multicast to A and B), and group B is the
lca of m3 (multicast to B and C). Since A delivers m1

before m2 (i.e., m1 ≺ m2) and B delivers m2 before m3

(i.e., m2 ≺ m3), C must deliver m1 before m3 to avoid
a cycle among delivered messages. But C receives m3

from B before it receives m1 from A. By receiving B’s
history, C knows that it should deliver m1 and then
m3 to avoid cycles.

Unfortunately, including histories in forwarded mes-
sages is not enough to avoid cycles. Intuitively, this

1We use the terms “lower” and “higher” groups to denote rel-
ative positions of groups in this rank, and “lowest” and “highest”
group of a subset of groups, also referring to this rank. “Ances-
tors” of a group g denote the set of groups lower than g, while
“descendants” respectively higher.

4

(b) Hierarchical

g1
A

B C

D E

g1
A

B C

D E

(c) FlexCast(a) Distributed

g1
A

B C

D E

Figure 2: Three communication patterns used in atomic multicast protocols involving groups A,B, ..., E: (a) distributed,
(b) hierarchical, and (c) FlexCast, the approach presented in this paper. In the graphs, directed edge g → h means that
group g can send messages to group h, and h can receive messages from g but not send messages to g.

happens because not all dependencies are captured in
the communication of application messages between
groups. There are two cases to consider, depending
on whether the group that creates the dependency is
aware that it must propagate the dependency to its
descendants or not.

Strategy (b): To motivate the case where a group is
aware that it should send dependencies to its descen-
dants, consider the execution in Figure 3 (b). In this
case, B delivers m1 before m2, and C receives m2 from
A (with an empty history) and then m1 from B (with
an empty history since B did not know about m2 when
it sent m1 to C). Yet, C must deliver m1 before m2.
FlexCast ensures proper order in such cases as follows.
If group g and its descendant h are in the destination
of a message m and g is not m’s lca, then g sends an
ack message to h with g’s history. Conversely, if h
receives a message m and h has an ancestor that is in
m’s destination, but is not m’s lca, h waits for g’s ack
message.

Strategy (c): To motivate the case where a group is
not aware that it should send dependencies to its de-
scendants, consider the execution in Figure 3 (c). In
this case, group A sends m3 and its history (i.e., m2

precedes m3) to C, and B sends m1 and an empty his-
tory to C (i.e., because the dependency between m1

and m2 happens in B after B communicates with C).
B does not send C the information that m1 precedes
m2 since m2 is not addressed to C. Yet, C must de-
liver m1 before m3. To handle this case, when a group
determines that a descendant d must forward its his-
tory down the C-DAG, it sends a notif message to d
so that d can communicate its dependencies to other
groups.

More precisely, when a group g, the lca of a message
(or another destination in m.dst) is about to forward
message m (respectively, an ack message regarding m)
and there is a group h such that: (i) h is not in m.dst;
(ii) h is a descendant of g and an ancestor of group
r in m.dst; and (iii) there is a message in g’s history
addressed to h, then g sends a notifmessage regarding
m to h. If group h receives a notif message regarding
m, it sends ack messages to all its descendants k ∈
m.dst. Moreover, inductively, if there is a message h′ in
h’s history with the same restrictions above, h notifies
h′. This induction naturally finishes since there is a
total order on groups.

4.1.1 Why it is genuine

To argue that FlexCast is genuine, first notice the fol-
lowing aspects discussed about Strategies (a) and (b):

• when m is multicast, it enters the overlay at
m.lca() (see Algorithm 1), which is by definition
a destination of m;

• m.lca() propagates m to its further destinations
in m.dst; and

• each destination d (other than m.lca()) sends ack
messages to groups in m.dst higher than d.

From the above, it follows that the communication de-
scribed involves exclusively groups in m.dst.
Now, consider the Strategy (c) and notice that:

• a group g ∈ m.dst can send a notif message to a
group h /∈ m.dst provided that g previously sent a
message to h, i.e. some message was multicast to
h in run R; and

• inductively, h notifies h′ only if some message was
multicast from h to h′ in run R.

From the above, it follows that groups not in m.dst
exchange messages only if they communicated in run
R, keeping minimality (see definition in Section 2.2).

4.2 Detailed protocol

Algorithm 1 presents the basic data structures used
in FlexCast. Each group knows the C-DAG topology
and has a communication channel to each descendant
group (i.e., a FIFO reliable point-to-point link). As a
consequence, each process has an input queue for each
input channel from ancestor groups (line 14). Each
queue contains not-yet-delivered messages sent by the
respective ancestors.

A message has a unique id (line 2), a set of desti-
nation groups (line 3), and an arbitrary payload (line
4), provided by the application. The protocol stores
pending messages along with a set of respective ack
messages (line 5) and a set of notified groups (line 6),
both detailed later. Function m.lca() (line 7) returns
the lowest group in m.dst.
A group g has the history it learns from each of its

ancestors and the messages it delivers (line 15). The
set of messages delivered in g is a subset of messages
in the history (line 16). The history builds a DAG

5

B

C

A
m2,{m1→m2}

m2m1

m1,{ }

m3,{m1→m2→m3}

m2 m3

m1 m3

(a)

m1.dst={A,C} m2.dst={A,B} m3.dst={B,C}

B

C

A

m1

m2

m2

m1

(b)

m1.dst={B,C} m2.dst={A,B,C}

m2,{ }

m2

m1,{ } ACK,{m1→m2}

B

C

A

m1

m2

m1

m1.dst={B,C} m2.dst={A,B}

m3
m1,{ }

ACK,{m1→m2→m3}

m3.dst={A,C}

m3

NOTIF,{m2→m3}m2,{ }

m3,{m2→m3}

(c)

m2

Figure 3: Executions of FlexCast illustrating the use of (a) histories, (b) ack messages, and (c) notif messages in an
overlay where A → B,A → C and B → C. (Legend: a full arrow is the propagation of an application message, a circle
is the delivery of a message, a dotted arrow is an ack message, and a dashed arrow is a notif message).

with dependencies in hst.D. As notification messages
may not be immediately delivered according to criteria
to be detailed later, a group also has a set of pending
notification messages (line 17).
When group g communicates with a descendent

group h, g informs only the difference in g’s history
with respect to the last message g sent to h. There-
fore, for each descendent h, g keeps track of what part
of its history it has already sent to h (line 18).

Algorithm 1 Types and data structures, for each
group g

1: Type Message: every message m has:
2: m.id {m’s global unique id}
3: m.dst {m’s destinations, a subset of groups}
4: m.payload {provided by the application}
5: m.acks← ∅ {a set of received acks}
6: m.notifList← ∅ {a set of notified groups}
7: m.lca() : func {returns the lca in m.dst}
8: Type (history) H: {a history is }
9: H = (M,D, lastDlvd) {messages, dependencies, last

one}
10: M : set of Message {a pair (m1,m2) ∈ D means ...}
11: D : M ×M {m1 ordered before m2: m2 depends of m1}
12: lastDlvd : M ∪ {⊥} {the last message delivered}
13: Group g variables:
14: queues← [∅, ...,∅] {an empty queue per ancestor}
15: hst← H(∅,∅,⊥) {the initial history of group g}
16: deliveredInG ⊆ hst.M {the messages in hst delivered in

g}
17: pendNotif ← ∅ {a set of pending notifications}
18: ∀ h higher than g, hst(h)← H(∅,∅,⊥) {the history of g

informed to each h so far}

To atomic multicast message m, a client sends m to
m.lca(). Algorithm 2 presents the events triggered at
a group when receiving each one of the three types of
messages in our protocol: (i) msg is a client message;
(ii) ack is an acknowledge message; and (iii) notif is
a notification message. Algorithm 3 presents the core
functions used in Algorithm 2.
In FlexCast, the lca delivers a multicast message as

soon as it receives the message. In doing so, the lca
imposes its delivery order on all its descendant groups
through information disseminated in histories and aux-
iliary messages. Upon receiving a multicast messagem,
if g is the lca (line 1), g can deliver m immediately (line
2).
When non lca groups receive a msg (line 3) first they

update their local history with the history received to-

Algorithm 2 Events, for each group g

1: upon receiving [msg,m, history] ∧ g = m.lca()
2: a-deliver(m)

3: upon receiving [msg,m, history] ∧ g ̸= m.lca()
4: update-hst(history)
5: queues[m.lca()].enqueue(m)
6: reprocess-queues()

7: upon receiving [ack,m, history] from ancestor a
8: update-hst(history)
9: queues[m.lca()].get(m.id).acks.add([ack from a])

10: queues[m.lca()].get(m.id).notifList.merge(m.notifList)
11: reprocess-queues()

12: upon receiving [notif,m, history]
13: update-hst(history)
14: deps← open-dependencies()
15: if deps ̸= ∅ then
16: pendNotif.add([notif,m, deps])
17: else
18: send-descendants(m,ack)

gether with m (line 4), enqueue m in the corresponding
ancestor’s queue (line 5), and reprocess all ancestors’
queues (line 6), since this message may carry the infor-
mation needed to deliver other messages.

When receiving an ack message (line 7), g updates
its local history (line 8), and associates the ack to
the multicast message m in the lca’s queue that orig-
inated the ack (line 9). Since an ack may identify
further groups to be notified, the message’s list of no-
tified groups is updated accordingly (line 10). Group
g then reprocesses all queues (line 11).

When receiving a notif message (line 12), g up-
dates its local history (line 13), sends the necessary
ack messages (line 18), and possibly sends notification
messages to its descendants as well, as detailed later.
However, if the local history contains a message m′ ad-
dressed to g that was not delivered yet, then g waits
until it delivers m′ before sending the ack messages,
and appends the notif in the pending notifications set
(line 16), avoiding propagating incomplete dependen-
cies.

In Algorithm 3, when g delivers a message, it adds
the message to its history (line 4). The total order
of delivered messages is built having the new message
depend on the last message delivered (lines 6 and 7).

6

Algorithm 3 Main logic, for each group g

1: update-hst (ah : H) {ancestor’s history ah}
2: hst.M ← hst.M ∪ ah.M {messages and dependencies

are}
3: hst.D ← hst.M ∪ ah.D {intergated to the group’s hst}
4: hst-add (m : Message)
5: hst.M ← hst.M ∪ {m} {add m, if not yet in hst}
6: hst.D ← hst.D ∪ {(hst.lastDlvd,m)} {build total order

in}
7: hst.lastDlvd← m {msgs delivered at this group}
8: deliverdInG← deliverdInG ∪ {m}
9: open-dependencies (): set of Messages

10: return {∀ m ∈ hst.M | g ∈ m.dst∧m /∈ deliveredInG }
11: diff-hst(h : a higher group) : H {g’s history not informed

to h so far}
12: let hstTmp.M ← hst.M \ hst(h).M
13: let hstTmp.D ← hst.D \ hst(h).D
14: let hstTmp.lastDlvd← hst.lastDlvd
15: hst(h)← hst {history sent to h is updated to current

history of g}
16: return hstTmp

17: depend (m,m′ : Message): boolean
18: return (m′,m) ∈ hst.D ∨
19: ∃m′′ | (m′,m′′) ∈ hst.D ∧ depend(m,m′′)

20: a-deliver (m : Message)
21: hst-add(m)
22: if g = m.lca() then
23: send-descendants(m,msg)
24: else
25: queues[m.lca()].dequeue()
26: send-descendants(m,ack)
27: if ∃[notif, n, deps] ∈ pendNotif | m ∈ deps then
28: deps← deps \m
29: if deps = ∅ then
30: pendNotif ← pendNotif \[notif, n, deps]
31: send-descendants(n,ack)

32: send-descendants (m : Message,mType ∈ {msg,ack})
33: send-notifs(m)
34: for all descendant d ∈ m.dst do
35: send [mType, m, diff-hst(d)] to d

36: send-notifs (m : Message) {send notif to groups}
37: for all descendant d | d /∈ m.dst do
38: if ∃d′ ∈ m.dst | d is ancestor of d′

and hst.containsMsgTo(d) then
39: send [notif, m, diff-hst(d)] to d
40: m.notifList.append(d) {m carries the notified

groups}
41: reprocess-queues ()
42: do:
43: delivered← false
44: for all q ∈ queues do
45: if can-deliver(q.head()) then
46: a-deliver(q.head())
47: delivered← true
48: while delivered

49: can-deliver (m : Message)
50: if ancestors-to-ack(m) ⊈ ancestors-that-acked(m)

then
51: return false
52: if ∃ m′ ∈ hst.M | g ∈ m′.dst ∧ m′ /∈ deliveredInG ∧

depend(m,m′) then
53: return false
54: return true

55: ancestors-to-ack (m : Message): set of Groups
56: return (ancestors of g in m.dst \m.lca()) ∪

queues[m.lca()].get(m.id).notifList

57: ancestors-that-acked (m : Message): set of Groups
58: return queues[m.lca()].get(m.id).acks

We use set deliveredInG to identify messages deliv-
ered in g (line 8). deliveredInG is a subset of hst.M and

is used to identify possible open dependencies in the
history (line 9). An open dependency happens when a
message addressed to g is included in g’s history but
not yet delivered. Operation diff-hst (line 11) is an op-
timization: only the new parts of a history are sent to
each descendent. Operation depend (line 17) computes
m’s possible transitive dependency on m′ in hst.
When a message can be delivered (line 20), the group

adds the message to its local history (line 21). An
lca group sends the message to its descendants (line
23), while non-lca groups remove the message from the
ancestor’s queue (line 25) and send the correspond-
ing ack messages to their descendants (line 26). All
groups verify whether delivering this message may un-
block pending notifications (line 27).

Function send-descendants (line 32) is part of Strate-
gies (a) and (b) discussed in Section 4.1. To send msg
m (or ack m), the lca (or a descendant), first sends
possible notification messages to its descendants that
are not in m.dst. Function send-notifs() implements
Strategy (c): it searches past messages and evaluates if
notifications are needed, including the notified groups
in m’s notification list (lines 33 and 36-39). Then, m
is sent to all other destinations in m.dst (line 35), car-
rying the list of notified groups along with the history
with information needed by each destination (diff-hst).
Function reprocess-queues() (lines 41-48) is called

upon receiving msg and ack messages (see Algorithm
2, lines 6 and 11).

In both cases, it iterates through ancestor’s queues
and tries to deliver messages. It keeps iterating while
messages can be delivered due to updated dependency
information. The delivery of messages in non-lca
groups is defined in function can-deliver(m) (line 49).
The first condition (line 50) checks whether g received
ack from all needed ancestors: (i) all ancestors (ex-
cept the lca) in m.dst; (ii) all ancestors (not in m.dst)
notif-ied about message m, which were informed to
g either through msg or ack. Recall that a notified
group, besides sending ack can further notify other
groups. In Algorithm 2, line 10, notifList accumulates
all notified ancestors that have to ack m. The list
of ancestors that have acked is kept in ancestors-that-
acked (line 57). Having the complete information on
m, the second condition (line 52) ensures that any mes-
sage m′ that precedes m and is addressed to g has al-
ready been delivered before m’s delivery.

4.3 Practical considerations

The protocol as described so far does not include
garbage collection. In our FlexCast prototype, how-
ever, we prune local histories associated with each an-
cestor group. A distinguish process periodically mul-
ticast a flush message to all groups. Once a group
delivers this message, it knows that all messages that
precede flush can be garbage collected. The intuition
behind this mechanism is that to deliver a message
m from a specific ancestor, all dependencies before m
must be resolved and do not need to be re-evaluated in
the future. To further reduce communication, histories

7

sent with messages do not enclose the ever-growing sys-
tem history. FlexCast sends only a diff of the history
for each descendant group. The idea is implemented by
keeping track of the last message of the local history
sent to each descendant d and, in subsequent messages
to d, sending a history that contains only the newest
messages added since the last communication to d.

4.4 Tolerating failures

FlexCast uses the same approach used in other atomic
multicast protocols to tolerate failures (e.g., [5], [14],
[16], [21], [22], [4]), that is, processes within a group are
kept consistent using state machine replication. This
means that processes in a group can fail as long as
enough processes remain operational within the group.
Consequently, groups do not fail as a whole and must
remain connected (i.e., no network partition). Toler-
ating the failure of a group requires additional system
assumptions [24].
The implications of this approach on the number of

correct processes per group and process communication
depend of the particular consensus protocol used to
implement state machine replication within a group.
For example, Paxos [20] requires a majority of correct
processes within each group and can tolerate message
losses.

5 Evaluation

In this section, we explain the evaluation rationale,
describe the environment and the benchmarks used,
present the results, and summarize the main lessons
learned.

5.1 Evaluation rationale

We compare FlexCast to a distributed atomic multi-
cast protocol and a hierarchical atomic multicast pro-
tocol using single-process groups (i.e., no failures are
tolerated) in all three protocols. In doing so, our eval-
uation focuses on the inherent costs of three classes
of atomic multicast protocols (see Table 1) and avoids
overhead introduced by replication. We use Skeen’s
protocol as distributed atomic multicast because its
ordering mechanism is used by several other protocols
(e.g., [5], [14], [16], [21], [22]). Moreover, when groups
contain a single process, FastCast [5] and Whitebox
[16] atomic multicast protocols behave as in Skeen’s
protocol. Skeen’s protocol is genuine, can order mes-
sages in two communication steps, which has been
shown to be optimum [23], and assumes that any two
groups can communicate. We choose ByzCast as hi-
erarchical atomic multicast protocol. ByzCast is non-
genuine and imposes a tree overlay on communication,
the minimum overlay that ensures a connected system.
In single-process groups, ByzCast does not introduce
any overhead particular to tolerating malicious behav-
ior. We implemented prototypes of all protocols in
Java.

Our experimental evaluation aims to understand
the behavior of the considered protocols in geographi-
cally distributed deployments subject to realistic work-
loads. Our workload extends the well-established TPC-
C benchmark to accommodate locality, a common
property in geo-distributed systems. In these settings,
we seek to answer the following questions: (i) What is
the impact of different overlays on FlexCast and hierar-
chical protocols? (ii) How quickly can a protocol order
messages addressed to two or more groups? (iii) What
is the communication overhead of hierarchical proto-
cols? (iv) What is the communication cost of atomic
multicast protocols?

5.2 Environment and deployment

The experimental setup was configured with 12 server
machines and 24 client machines, connected via a 1-
Gbps switched network, in CloudLab [11]. The ma-
chines are equipped with eight 64-bit ARMv8 cores at
2.4 GHz, and 64GB of RAM. The software installed
on the machines was Linux Ubuntu 20.04 (64 bits) and
64-bit Java virtual machine version 11.0.3. Machines
communicate via TCP.

We consider an emulated wide-area network that
models Amazon Web Services (AWS): Each group rep-
resents an AWS region and we experimented with a
deployment of 12 AWS regions, as depicted in Fig-
ure 4 (a). The emulated latencies among regions are
based on real measurements in AWS [3]. Enough client
processes (to saturate our FlexCast implementation)
are uniformly distributed along the 24 client machines
that represent each region/group, and they send re-
quests to the nearest group. Upon delivering a mes-
sage, each message destination replies to the message’s
sender (client).

5.3 gTPC-C Benchmark

We developed gTPC-C, a geographically distributed
benchmark inspired by the well-established TPC-C
benchmark [7]). We translate TPC-C warehouses into
groups, deployed in one or more AWS regions, and
TPC-C transactions into messages multicast to their
corresponding warehouses.

According to the TPC-C benchmark, clients can gen-
erate the following transactions (with a certain proba-
bility): new order (45%), payment (43%), order status
(4%), delivery (4%), or stock level (4%). The last three
transactions are single-warehouse (local), resulting in
a message multicast to the client’s home warehouse.
Since all multicast protocols perform the same when
ordering a message multicast to a single group, in our
latency measurements we only consider global transac-
tions, which result in messages addressed to multiple
warehouses. Consequently, this workload only contains
new order and payment transactions, always involving
two or more warehouses. New order transactions can
have from 5 to 15 items, where each item has a 2%
probability of being issued to a warehouse that is not
the client’s home warehouse, as defined by TPC-C.

8

…

4

3

2

1
9

10

12

11

5
8

76

4

1

9
10

12

11

5

8

7

6

…

…
3

2

.

.

.

…

5

8

10

12

11

2

4

3

1

…

…
6

7

…

.

.

.

75

2

1 4

3

11

9

10

12

6

8

75

21 3 4 9 10 1211

6

8

8521 3 4 9 10 1211

6

7

(a) AWS Regions (b) FlexCast O1 (c) FlexCast O2

(d) Hierarchical T1

(e) Hierarchical T2

(f) Hierarchical T3
9

…

…

.

.

.

.

.

.

…

…

…

Figure 4: AWS regions and different overlays used in our experimental evaluation.

To capture locality, when choosing an additional
warehouse to the client’s home warehouse, the client
picks the nearest warehouse to its home warehouse
with a configurable high probability, the locality rate;
otherwise, the client chooses the next nearest ware-
house, and so on, up to the farthest warehouse to the
client’s home warehouse. Our criteria to define locality
is inspired by a common wholesale supplier policy that
when an item is not available in the nearest warehouse
to a client (i.e., the home warehouse), it is shipped from
the closest warehouse that has the item. This locality
specification implies that most messages are addressed
to only two warehouses (same as in standard TPC-C),
and some to three. Very few are addressed to more
than three groups, therefore we do not consider these
messages in our experiments.
Clients operate in a closed loop issuing one trans-

action at a time and are deployed in the same region
as their home warehouse. Each experiment lasts for a
period of approximately one minute, in which clients
collect and store latency data. We discard the first and
last 10% of the data collected during the experiment
to avoid possibly noisy data during warm up and end
of execution.

5.4 The effect of overlays

In the first set of experiments, we investigate the role
of overlays on FlexCast and hierarchical protocols. We
compare the latency experienced by clients of two Flex-
Cast overlays, and three hierarchical overlays (trees),
as depicted in Figure 4.

Trees T1, T2 and T3 contain different numbers of
inner nodes. In principle, a larger number of inner
nodes provides better distribution of communication
overhead among these nodes. Trees with many inner
nodes, however, may lead to additional communication
steps when ordering messages. For overlays O1 and O2,
we initially selected a starting node (i.e., central node
8 in O1 and left-most node 1 in O2). Then, the closest
node to the initial one, the closest node to the second
chosen node, and so on. Since O1 and O2 are complete
DAGs, a node is connected to all nodes that succeed it
(e.g., the first node is connected to all nodes).
Figure 5 and Table 2 present the results. We re-

port the latency per group addressed by the message.

The latency of the first (respectively, second and third)
destination corresponds to the first (respectively, sec-
ond and third) response the client receives from the
groups addressed by the message. O1 shows better
performance than O2 for all destinations. This hap-
pens because O1 better exploits locality: higher nodes
in the DAG have the lowest latencies in the geographi-
cal distribution. Hereafter, we evaluate FlexCast using
overlay O1.

Differently than FlexCast, whose performance is
largely dependent on the overlay, a hierarchical pro-
tocol is not so sensitive to the chosen tree (but see also
the discussion in Section 5.6), although the trees do
have an impact on the performance. T1 shows slightly
better performance in all destinations than T2 and T3.
This is due to the communication overhead (further
discussed in Section 5.8) of involving non-destination
groups, and also the bottleneck effect of involving the
tree root on T3 for all messages in the system. From
these results, we select T1 to represent a hierarchical
protocol in the rest of our evaluation.

5.5 Throughput

In the second set of experiments, we assess the overall
performance of our standard gTPC-C, including local
and global messages, when deployed in a configuration
with 99% locality rate. We conduct multiple experi-
ments while gradually increasing the number of clients
and measure the total number of transactions ordered
by each protocol. Figure 6 presents the results. Al-
though FlexCast was designed to optimize latency, it
can maintain the same throughput as the other proto-
cols up to its saturation point. This effect can be seen
by the slight bend of the throughput curve of FlexCast
starting with 960 clients. In the experiments presented
next, we consider configurations with 240 clients. This
is justified by the fact that none of the algorithms is
subject to queuing effects, which would interfere with
their inherent latency.

5.6 Latency

In the third set of experiments, we increase the local-
ity rate and measure the latency experienced by the
clients when receiving a response from each of the des-

9

 0

 0.2

 0.4

 0.6

 0.8

 1

 5
0

 1
00

 1
50

 2
00

 2
50

 3
00

 3
50

 4
00

C
D
F

Latency (ms)

FlexCast O1
FlexCast O2

(a) 1st destination

 0

 0.2

 0.4

 0.6

 0.8

 1

 5
0

 1
00

 1
50

 2
00

 2
50

 3
00

 3
50

 4
00

C
D
F

Latency (ms)

FlexCast O1
FlexCast O2

(b) 2nd destination

 0

 0.2

 0.4

 0.6

 0.8

 1

 5
0

 1
00

 1
50

 2
00

 2
50

 3
00

 3
50

 4
00

C
D
F

Latency (ms)

FlexCast O1
FlexCast O2

(c) 3rd destination

 0

 0.2

 0.4

 0.6

 0.8

 1

 5
0

 1
00

 1
50

 2
00

 2
50

 3
00

 3
50

 4
00

C
D
F

Latency (ms)

Hierarchical T1
Hierarchical T2
Hierarchical T3

(d) 1st destination

 0

 0.2

 0.4

 0.6

 0.8

 1

 5
0

 1
00

 1
50

 2
00

 2
50

 3
00

 3
50

 4
00

C
D
F

Latency (ms)

Hierarchical T1
Hierarchical T2
Hierarchical T3

(e) 2nd destination

 0

 0.2

 0.4

 0.6

 0.8

 1

 5
0

 1
00

 1
50

 2
00

 2
50

 3
00

 3
50

 4
00

C
D
F

Latency (ms)

Hierarchical T1
Hierarchical T2
Hierarchical T3

(f) 3rd destination

Figure 5: Latency per destination group when varying overlays in FlexCast and a hierarchical protocol, gTPC-C
with 90% locality.

Destination

1st 2nd 3rd

Overlay 90p 95p 99p 90p 95p 99p 90p 95p 99p

FlexCast
O1 144.0 279.0 1403.1 398.0 829.0 2243.42 1406.0 2195.0 4542.5
O2 156.0 350.0 790.22 416.0 652.0 2006.83 1028.0 1681.5 3112.9

Hierarchical
T1 229.0 267.0 311.0 261.0 288.0 403.0 307.0 386.0 408.0
T2 233.0 269.0 311.0 215.0 249.1 351.0 261.0 338.0 375.28
T3 311.0 398.0 544.0 381.0 480.0 622.0 397.0 531.6 621.0

Table 2: Latency percentiles in milliseconds for each destination group when varying the overlay in FlexCast
and the tree in the hierarchical protocol, gTPC-C with 90% locality.

tinations of a global multicast message. Figure 7 and
Table 3 present the results. FlexCast outperforms both
a distributed and hierarchical protocols in the latency
of the first destination group for all three experimented
locality rates. We attribute this behavior to the fact
that FlexCast benefits from two aspects that reduce
the cost of ordering messages in the first destination in
a distributed scenario: (i) Communication steps: while
in a distributed protocol groups addressed by a mes-
sage need to exchange timestamps before a destination
group can deliver a message, in FlexCast the first des-
tination group in the DAG (i.e., the lca of the mes-

 0

 2

 4

 6

 8

 10

 12

24 24
0

48
0

72
0

96
0

12
00

14
40

T
h
ro
u
g
h
p
u
t
(k
o
p
s
/s
e
c
)

Clients

Distributed
Hierarchical

FlexCast

Figure 6: Throughput vs. number of clients with 99%
locality.

sage) can deliver the message as soon as it receives the
message from a client; the hierarchical protocol also
benefits from this aspect, however, in ByzCast, the lca
of a message may not be a message destination since
it is not a genuine protocol. (ii) Locality rate: hav-
ing a workload with a high locality rate increases the
number of messages that FlexCast can deliver using
fewer communication steps than both other protocols.
This gives FlexCast an advantage since the cost for a
communication step may take tens of milliseconds in
geographical settings.

In the second destination, FlexCast performs worse
than the hierarchical protocol and outperforms the dis-
tributed protocol. As in the discussed above, hierarchi-
cal protocols need only one extra communication step
to order a message at the second destination, while
the distributed protocol, in addition to require desti-
nation groups to communicate, is also exposed to the
convoy effect, which further slows down the delivery
of messages [16]. In the third destination, FlexCast la-
tency increases and the simplicity of a hierarchical pro-
tocol algorithm pays off. In both the second and third
destinations, FlexCast may need extra communication
steps to receive the necessary ackmessages to deliver a
multicast message m, evaluate possible dependencies,

10

 0.2

 0.4

 0.6

 0.8

 1

 0

 1
00

 2
00

 3
00

 4
00

 5
00

C
D
F

Latency (ms)

FlexCast
Hierarchical
Distributed

(a) 1st destination, 90% Locality

 0.2

 0.4

 0.6

 0.8

 1

 0

 1
00

 2
00

 3
00

 4
00

 5
00

C
D
F

Latency (ms)

FlexCast
Hierarchical
Distributed

(b) 2nd destination, 90% Locality

 0.2

 0.4

 0.6

 0.8

 1

 0

 1
00

 2
00

 3
00

 4
00

 5
00

C
D
F

Latency (ms)

FlexCast
Hierarchical
Distributed

(c) 3rd destination, 90% Locality

 0.2

 0.4

 0.6

 0.8

 1

 0

 1
00

 2
00

 3
00

 4
00

 5
00

C
D
F

Latency (ms)

FlexCast
Hierarchical
Distributed

(d) 1st destination, 95% Locality

 0.2

 0.4

 0.6

 0.8

 1

 0

 1
00

 2
00

 3
00

 4
00

 5
00

C
D
F

Latency (ms)

FlexCast
Hierarchical
Distributed

(e) 2nd destination, 95% Locality

 0.2

 0.4

 0.6

 0.8

 1

 0

 1
00

 2
00

 3
00

 4
00

 5
00

C
D
F

Latency (ms)

FlexCast
Hierarchical
Distributed

(f) 3rd destination, 95% Locality

 0.2

 0.4

 0.6

 0.8

 1

 0

 1
00

 2
00

 3
00

 4
00

 5
00

C
D
F

Latency (ms)

FlexCast
Hierarchical
Distributed

(g) 1st destination, 99% Locality

 0.2

 0.4

 0.6

 0.8

 1

 0

 1
00

 2
00

 3
00

 4
00

 5
00

C
D
F

Latency (ms)

FlexCast
Hierarchical
Distributed

(h) 2nd destination, 99% Locality

 0.2

 0.4

 0.6

 0.8

 1

 0

 1
00

 2
00

 3
00

 4
00

 5
00

C
D
F

Latency (ms)

FlexCast
Hierarchical
Distributed

(i) 3rd destination, 99% Locality

Figure 7: Latency per destination group when varying locality rate.

and wait for dependencies to be solved (i.e., waiting
for the delivery of previous messages ordered before
m in ancestor groups). Although FlexCast performs
worse than both hierarchical and distributed protocols
in the third destination, messages addressed to three
(or more) groups are rare in gTPC-C, a characteristic
inherited from TPC-C.

As a consequence of FlexCast’s C-DAG overlay and
the fact that each client in the gTPC-C benchmark
is associated with the nearest warehouse, clients send
most of their messages to their home warehouse and
to the next nearest warehouse. The rate at which this
phenomenon happens is regulated by the configured lo-
cality. Therefore most messages in the workload have
a disjoint destination set. This increases FlexCast’s
advantage over a distributed protocol when messages
are addressed to two groups if the groups are placed
consecutively in the C-DAG. The hierarchical protocol
also benefits from locality, although as a non-genuine
protocol, it introduces communication overhead, quan-
tified in Section 5.8. The locality rate also helps to
decrease the number of auxiliary messages (i.e., ack
and notif) needed by FlexCast to ensure consistency
in the global total order, since interdependencies will
be relatively fewer in such a scenario. Table 3 shows
the latency percentiles (90, 95 and 99) of all destina-
tions when varying the locality rate for all techniques.
Although the hierarchical protocol shows on average

a better performance when aggregating the latencies
of all destinations, FlexCast is more sensitive to local-
ity. In the first destination, FlexCast’s reduces 90p
latency by 9% when increasing locality from 90% to
99%, while the hierarchical protocol reduces by 3%.
Despite its higher latency, the distributed protocol re-
duces latency by up to 29% when increasing locality
from 90% to 99%.

5.7 The cost of exchanging histories

In this section, we evaluate the amount of information
required by each protocol to implement atomic mul-
ticast. All protocols propagate the message payload,
as defined by gTPC-C, and protocol-specific informa-
tion, which in the case of FlexCast includes histories.
Figure 8 displays our findings. In each chart, the first
graph (top) represents the number of messages received
by each node per second. The second graph (mid-
dle) shows the average message size per node. Unlike
the other protocols with fixed average sizes, FlexCast
shows an increase in average message size as nodes as-
cend the C-DAG topology (see Figure 4). This is due
to higher nodes requiring more history data from their
ancestors. The third graph (bottom) shows the overall
information exchanged by nodes per second.

In summary, our experiments indicate that Flex-
Cast exhibits distinctive behavior, with higher nodes
in FlexCast’s C-DAG exchanging a higher amount of

11

Destination
1st 2nd 3rd

Locality 90p 95p 99p 90p 95p 99p 90p 95p 99p

FlexCast
90% 144.0 279.0 1403.1 398.0 829.0 2243.42 1406.0 2195.0 4542.5
95% 131.0 217.0 1146.0 288.0 671.4 2192.64 1307.2 2231.65 4211.55
99% 132.0 218.0 764.0 227.0 458.0 1562.09 1404.9 1975.7 3583.92

Hierarchical
90% 229.0 267.0 311.0 261.0 288.0 403.0 307.0 386.0 408.0
95% 226.0 265.0 307.0 255.0 286.0 403.0 306.0 381.0 405.0
99% 224.0 264.0 303.0 243.0 284.0 402.0 303.0 376.2 406.84

Distributed
90% 335.0 377.0 452.0 299.0 367.0 444.0 373.0 423.0 527.7
95% 284.0 349.0 417.0 275.0 339.0 406.98 365.0 407.0 528.0
99% 241.0 279.0 370.0 238.0 263.0 355.0 309.5 367.0 415.3

Table 3: Latency percentiles in milliseconds for each destination when varying the locality rate for all protocols.

data than lower nodes. This results in larger messages
compared to the other protocols. On average, a node
exchanges 68.5 Kbytes per second in the distributed
protocol, 66 Kbytes per second in the hierarchical pro-
tocol, and 79 Kbytes per second in FlexCast.

5.8 The overhead of non-genuineness

In this section, we investigate the communication
overhead of non-genuine hierarchical protocols. Fig-
ures 1 and 9 present the overhead experienced per
group. Intuitively, communication overhead captures
the amount of communication involving a group due
to multicast messages not addressed to the group. We
express communication overhead as a percentage and
define it as 1 minus the ratio between the number of
payload messages delivered by a group and the num-
ber of payload messages received by the group during
an execution of the protocol. We focus on payload
messages as these are typically larger than auxiliary
messages used in a protocol.

The overhead across groups depends on the tree over-
lay and the workload. But while all inner groups in
a tree are potentially subject to communication over-
head, leaf groups have no overhead since they are al-
ways in the destinations of messages they receive. Lo-
cality also plays a role in communication overhead. A
tree can benefit from locality by directly connecting
groups that are near each other. This is the motiva-
tion behind tree T1: as locality increases, T1’s overhead
decreases, since communication will more likely involve
directly connected groups (see Table 4).

Tree T3 has lower communication overhead than T1,
but this comes at the cost of penalizing group 6 (i.e.,
T3’s root), which has to endure 56% of overhead. In T1,
groups 5 and 9 present high overhead as they are roots
(lowest common ancestors) of different subtrees that
represent separate geographical regions (America and
Asia). The tree root does not have much overhead since
locality is high in groups within the Europe region. The
same is observed in T2, where groups 5 and 7 of disjoint
subtrees present the highest overheads.

Tables 2 and 4 suggest a tradeoff: trees with the
lowest latencies are subject to higher overhead on av-
erage, while trees with worse performance have lower

Overlay Locality Mean overhead Max

T1

90% 9.16% (11.18) 36%
95% 7.33% (11.12) 36%
99% 5.41% (11.06) 34%

T2

90% 5.75% (11.31) 30%
95% 5.08% (10.50) 30%
99% 4.33% (9.90) 30%

T3

90% 4.66% (16.16) 56%
95% 4.66% (16.16) 56%
99% 4.66% (16.16) 56%

Table 4: Mean overhead, standard deviation, and max-
imum overhead in hierarchical trees when varying the
locality rate.

communication overhead on average.

5.9 Summary

We draw the following main conclusions from our ex-
perimental evaluation.

• FlexCast is more sensitive to the chosen overlay
than the hierarchical protocol when it comes to
latency. The chosen tree, however, has an impact
on the hierarchical protocol’s communication over-
head.

• FlexCast consistently outperforms the distributed
protocol (a genuine algorithm) in all configura-
tions experimented. FlexCast performs better
than the hierarchical protocol in the first desti-
nation group and worse in the latency of the sec-
ond and third destinations. However, messages
addressed to three (or more) groups are rare in
TPC-C and gTPC-C. As a genuine protocol, Flex-
Cast has no communication overhead (as defined
in Section 5.8), in contrast to a non-genuine hier-
archical protocol.

• The hierarchical protocol has a tradeoff be-
tween latency and communication overhead. Al-
though communication overhead is inherent to
non-genuine atomic multicast protocols, in the
hierarchical protocol, trees with the best perfor-
mance have the highest overhead and vice-versa.

12

 0
 200
 400
 600
 800

Received messages per second

 0

 100

 200

Average message size (bytes)

 0
 50

 100

8 7 6 5 2 1 3 4 9 10 11 12

Node id (see Figure 4)

Kbytes per second

(a) FlexCast

 0
 200
 400
 600
 800

Received messages per second

 0

 100

 200

Average message size (bytes)

 0
 50

 100

6 5 7 2 3 8 9 1 4 11 10 12

Node id (see Figure 4)

Kbytes per second

(b) Hierarchical

 0
 200
 400
 600
 800

Received messages per second

 0

 100

 200

Average message size (bytes)

 0
 50

 100

8 7 6 5 2 1 3 4 9 10 11 12

Node id (see Figure 4)

Kbytes per second

(c) Distributed

Figure 8: The amount of information exchanged by each protocol (99% locality, 720 clients).

 0

 20

 40

 60

 80

 100

1 2 3 4 5 6 7 8 9 10 11 12

O
v
e
rh
e
a
d

 (
%
)

Group

Hierarchical T1
Hierarchical T2
Hierarchical T3

(a) 95% Locality

 0

 20

 40

 60

 80

 100

1 2 3 4 5 6 7 8 9 10 11 12

O
v
e
rh
e
a
d

 (
%
)

Group

Hierarchical T1
Hierarchical T2
Hierarchical T3

(b) 99% Locality

Figure 9: Communication overhead of each group in
hierarchical protocols with 95% and 99% of locality.

6 Conclusion

We propose FlexCast, the first genuine overlay-based
atomic multicast protocol. As overlay-based, it ac-
counts for reduced connectivity in different deployment
scenarios. As genuine, it favors geographical local-
ity and avoids communication overhead. To combine
both aspects, FlexCast assumes a complete DAG over-
lay. Since messages may enter the overlay at different
groups (nodes) of the DAG, each group takes local or-
dering decisions.
One interesting challenge solved by FlexCast and not

yet addressed by other atomic multicast protocols is
how to ensure global acyclic order out of local ordering
information from different groups. This is achieved us-
ing a sophisticated history-based protocol. We present
FlexCast’s design, its implementation, and propose a
new benchmark to evaluate it: gTPC-C integrates ge-
ographical distribution and locality to the well-known
TPC-C benchmark. FlexCast shows important latency
reduction in geographically distributed settings when
compared to a latency-optimum genuine atomic multi-
cast algorithm and a hierarchical protocol.

Acknowledgments

This work was partially supported by the Swiss Na-
tional Science Foundation (# 175717), Fundação de
Amparo à Pesquisa do Estado Do Rio Grande do
Sul—FAPERGS PqG 07/21, Conselho Nacional de De-
senvolvimento Cient́ıfico e Tecnológico—CNPq Uni-
versal 18/21, PUCRS-PrInt, Coordenação de Aper-
feiçoamento de Pessoal de Nı́vel Superior (CAPES),
Brazil, Finance Code 001, and FAPDF through EDI-
TAL 08/2023—FAP Participa.

References

[1] Ahmed-Nacer, T., Sutra, P., and Conan,
D. The convoy effect in atomic multicast. In 2016
IEEE 35th Symposium on Reliable Distributed
Systems Workshops (SRDSW) (Los Alamitos,
CA, USA, sep 2016), IEEE Computer Society,
pp. 67–72.

[2] Birman, K. P., and Joseph, T. A. Reliable
communication in the presence of failures. ACM
Trans. Comput. Syst. 5, 1 (jan 1987), 47–76.

[3] Cloudping. AWS Latency Monitoring Website,
2022.

[4] Coelho, P., Junior, T. C., Bessani, A.,
Dotti, F., and Pedone, F. Byzantine fault-
tolerant atomic multicast. In 2018 48th Annual
IEEE/IFIP International Conference on Depend-
able Systems and Networks (DSN) (2018), pp. 39–
50.

[5] Coelho, P., Schiper, N., and Pedone, F.
Fast atomic multicast. In DSN (2017).

[6] Corbett, J. C., Dean, J., Epstein, M.,
Fikes, A., Frost, C., Furman, J., Ghe-
mawat, S., Gubarev, A., Heiser, C.,
Hochschild, P., et al. Spanner: Google’s
globally-distributed database. In OSDI (2012).

[7] Council, T. P. P. Tpc benchmark c
standard specification. http://www. tpc.
org/tpcc/spec/tpcc current. pdf (1996).

13

[8] Cowling, J., and Liskov, B. Granola: Low-
overhead distributed transaction coordination. In
Proceedings of the 2012 USENIX Annual Techni-
cal Conference (Boston, MA, USA, June 2012),
USENIX.

[9] Défago, X., Schiper, A., and Urbán, P.
Total order broadcast and multicast algorithms:
Taxonomy and survey. ACM Comput. Surv. 36, 4
(2004).

[10] Delporte-Gallet, C., and Fauconnier, H.
Fault-tolerant genuine atomic multicast to mul-
tiple groups. In Proceedings of the 12th Inter-
national Conference on Principles of Distributed
Systems (OPODIS) (2000), pp. 107–122.

[11] Duplyakin, D., Ricci, R., Maricq, A.,
Wong, G., Duerig, J., Eide, E., Stoller, L.,
Hibler, M., Johnson, D., Webb, K., Akella,
A., Wang, K., Ricart, G., Landweber, L.,
Elliott, C., Zink, M., Cecchet, E., Kar,
S., and Mishra, P. The design and operation of
CloudLab. In Proceedings of the USENIX Annual
Technical Conference (ATC) (July 2019), pp. 1–
14.

[12] Dwork, C., Lynch, N., and Stockmeyer, L.
Consensus in the presence of partial synchrony.
Journal of the ACM 35, 2 (1988), 288–323.

[13] Fischer, M. J., Lynch, N. A., and Paterson,
M. S. Impossibility of distributed consensus with
one faulty processor. Journal of the ACM 32, 2
(1985), 374–382.

[14] Fritzke, U., J., Ingels, P., Mostefaoui, A.,
and Raynal, M. Fault-tolerant total order mul-
ticast to asynchronous groups. In Proceedings of
the The 17th IEEE Symposium on Reliable Dis-
tributed Systems (1998), pp. 228–234.

[15] Garcia-Molina, H., and Spauster, A. Mes-
sage ordering in a multicast environment. In
[1989] Proceedings. The 9th International Confer-
ence on Distributed Computing Systems (1989),
pp. 354–361.

[16] Gotsman, A., Lefort, A., and Chockler, G.
White-box atomic multicast. In 2019 49th Annual
IEEE/IFIP International Conference on Depend-
able Systems and Networks (DSN) (2019), IEEE,
pp. 176–187.

[17] Guerraoui, R., and Schiper, A. Genuine
atomic multicast in asynchronous distributed sys-
tems. Theor. Comput. Sci. 254, 1-2 (2001), 297–
316.

[18] Hadzilacos, V., and Toueg, S. A modular
approach to fault-tolerant broadcasts and related
problems. Tech. rep., USA, 1994.

[19] Kuhn, F., and Wattenhofer, R. Dynamic
analysis of the arrow distributed protocol. In Pro-
ceedings of the Sixteenth Annual ACM Symposium
on Parallelism in Algorithms and Architectures
(New York, NY, USA, 2004), SPAA ’04, Associa-
tion for Computing Machinery, p. 294–301.

[20] Lamport, L. The part-time parliament. ACM
Transactions on Computer Systems 16, 2 (May
1998), 133–169.

[21] Le, L. H., Eslahi-Kelorazi, M., Coelho,
P. R., and Pedone, F. Ramcast: Rdma-based
atomic multicast. Proceedings of the 22nd Inter-
national Middleware Conference (2021).

[22] Rodrigues, L., Guerraoui, R., and Schiper,
A. Scalable atomic multicast. In International
Conference on Computer Communications and
Networks (1998), pp. 840–847.

[23] Schiper, N., and Pedone, F. On the inherent
cost of atomic broadcast and multicast in wide
area networks. In International conference on
Distributed computing and networking (ICDCN)
(2008), pp. 147–157.

[24] Schiper, N., and Pedone, F. Solving atomic
multicast when groups crash. In International
Conference On Principles Of Distributed Systems
(OPODIS) (2008), Springer, pp. 481–495.

[25] Schneider, F. B. Implementing fault-tolerant
services using the state machine approach: A tu-
torial. ACM Computing Surveys 22, 4 (1990), 299–
319.

[26] Sciascia, D., Pedone, F., and Junqueira,
F. Scalable deferred update replication. In De-
pendable Systems and Networks (DSN), 2012 42nd
Annual IEEE/IFIP International Conference on
(2012), IEEE, pp. 1–12.

[27] Thomson, A., Diamond, T., Weng, S.-
C., Ren, K., Shao, P., and Abadi, D. J.
Calvin: fast distributed transactions for parti-
tioned database systems. In Proceedings of the
2012 ACM SIGMOD International Conference on
Management of Data (2012), pp. 1–12.

Appendix: Proof of correctness

FlexCast assumes:

1. that processes are organized in disjoint groups,
each group being fault-tolerant;

2. that groups have a total order and the commu-
nication topology has directed fifo channels from
each group to all higher groups.

3. that when clients send a multicast message m to
destination groups inm.dst,m is sent to the lowest
group inm.dst, called the lowest common ancestor

14

((lca) group. We use lca(m) to denote the lowest
group in m.dst.

Here we concentrate the discussion on the communica-
tion among groups. Thus, saiyng that a group receives,
or delivers, or sends messages means that a majority of
processes in that group performs the respective action.

Definition 1 Message Order: for any pair of mes-
sages m ̸= m′, we say that m < m′ iff:

• both m and m′ are delivered at least by one same
group, and m is delivered before m′;

• or by transitivity: m < m′′ ∧m′′ < m′ =⇒ m <
m′.

Lemma 1 For any message m atomically multicast to
multiple groups, m is received at all and only destina-
tion groups d ∈ m.dst.

Proof: By assumption 3, the client sendsm to lca(m).
By assumption 2, any subset m.dst of destinations is
directly reached by lca(m). According to the algo-
rithm, when lca(m) receivesm, it inconditionally send-
descendants(m) to all other destinations in m.dst and
only those. As fault-tolerant groups and channels are
supposed, eventually every destination group receives
m - and no other group receives it. □

Lemma 2 Let m and m′ be messages such that
m.dst ∩ m′.dst ̸= ∅. There is a unique group that as-
signs a relative order to m and m′, to be followed by
all higher groups.

Proof: By assumption 3 m and m′ ingress the overlay
through their respective lcas and by lemma 1 both are
received at their respective destinations. Since groups
have a total order (assumption 2) and m.dst∩m′.dst ̸=
∅, in the intersection there is a unique lowest group that
handles both m and m′. We call this group the low-
est common destination of these messages, lcd(m,m′).
Since message channels are directed towards higher
groups only, the relative order of m and m′ has to be
assigned at lcd(m,m′) and followed at higher groups,
otherwise ordering could be violated. □

Lemma 3 For any atomically multicast message m,
the complete dependency information to deliver m is
eventually received at each group in m.dst. The com-
plete dependency information to deliver m at a group
g is the information about any message m′ delivered
before m, i.e. m′ < m at each group lower than g.

Proof: By the algorithm:

1. each group g keeps a history recording the order
of messages it delivered and, for each message m
delivered, the previous messages m′ delivered at
groups lower than g, such that m′ < m;

2. every message carries the history of the sending
group, which enriches the history of each receiving
group upon reception;

3. each group g in m.dst \ lca(m) sends ACKs to
higher groups in m.dst;

4. whenever any group g in m.dst has previously sent
messages to a group h lower than others in m.dst,
g sends NOTIFY to h. Each notified group h
reacts sending ACKs to higher groups in m.dst
and inductively behaves as g to NOTIFY further
groups. Since groups have a total order, this in-
duction finishes.

From Lemma 1 and facts above, it follows that each
group in m.dst is provided with the history of each
lower group that may be involved in messages ordered
before m. □

Lemma 4 For any atomically multicast message m,
any destination group in m.dst knows when the com-
plete dependency information has been received.

Proof: By Lemma 1 each group in m.dst receievs m,
by the algorithm it knows which are the lower groups in
m.dst and awaits for their respective ACKs. Each ACK
informs also if the sending group has notified other
groups, from which by the algorithm further ACKs are
awaited (see Lemma 3, facts 3 and 4). Thus, from
the messages received, any destination of m is able to
detect if it has received ACKs from all groups with
messages ordered before m. □

Proposition 1 (FlexCast is Genuine) A multicast
protocol is said genuine if, in a run R, only the mes-
sage sender and destinations should communicate to
propagate and order a multicast message.

Proof: From the algorithm, when m is multicast,
there are three kinds of messages possible in the over-
lay: msg, ack and notif. msg and ack messages are
exchanged exclusively among groups in m.dst, i.e. it’s
destinations. A notif message can only be sent from
a group g ∈ m.dst to h if there exists a previous mes-
sage m′ in run R and {g, h} ∈ m′.dst. It follows thus
that only destinations of messages in R communicate
propagate and order their messages. □

Proposition 2 (Validity and Agreement)

Proof: Due to assumption 1, Lemmas 1, 3 and 4,
and by the algorithm, we have that all groups in m.dst
eventually have m and are able to pass the evaluation
of the first condition of can-deliver(m). It remains
to check if there is any message m′ that should be de-
liverd before m. If no m′ exists, then the group can
deliver m. If there exists such m′ it has to be first
delivered. Assuming acyclic order, which is further
discussed, the arguments above and by induction on
message dependecies, there will allways be a message

15

with no pending dependencies to deliver that will then
enable further ones to be delivered, such that m can
be delivered. Therefore, validity holds. By the same
arguments, agreement holds. □

Proposition 3 (Integrity)

Proof: By Lemma 1 a multicast message m reaches
all and only its destination groups. Any other possible
message (Acknowledgements or Notifications) do not
convey messages to be delivered. So, a group g delivers
m only if g ∈ m.dst and m has been multicast first. □

Proposition 4 (Prefix Order)

Proof: From Lemma 2 there is a unique group,
lcd(m,m′), that assigns the relative order among m
and m′. From Lemmas 3 and 4 any further group in
h ∈ m.dst ∩m′.dst receives and preserves the order as-
signed by lcd(m,m′). Thus prefix order holds. □

Proposition 5 (Acyclic Order)

To argue that FlexCast ensures acyclic order we use
a contradiction. Assume cycle C exists: m1 < m2 <
... < mk < m1. Let C be such that mk < m1 happens
at group h (i.e., h delivers mk and then m1), where
h is the highest group in the overlay. This is possible
because the overlay induces a total order on groups.
Let q be the lcd group that delivers messages m1 and

m2. We consider all lca combinatios for m1 and m2 (in
Figure 10, cases a, b, c and d). We claim that there
is a causal path P from the delivery of m2 at q to the
reception of message mk at process p.
Since processes deliver messages following their

causal dependencies, showing that causal path P ex-
ists means that before p delivers mk, it knows that m1

precedes mk, which leads to a contradiction since p will
not deliver mk before delivering m1.

The proof of the claim is by induction on the size of
cycle C.

Base step (k = 2): This case corresponds to the
four patterns involving messages m1 and m2 (see Fig-
ure 10), having r = p. For patterns (a) and (b), the
claim follows directly. For patterns (c) and (d): Since
m2 is addressed to q and p, and p is below q in the over-
lay, upon delivering m2, accoording to the algorithm, q
sends an ACK message to p (with all q’s dependencies)
and thus there is a causal path.

Inductive step: Assume there is a causal path be-
tween m2 < m3 < ... < mk. We show that there is a
causal message path from m1 to mk, where q delivers
messages m1 and m2, and r is one of the destinations
of m2 (together with q and possibly other processes).

There are five possibilities for how q creates a depen-
dency between m1 and m2, and where r is placed with
respect to q in the communication overlay (see Figure
10).

• Cases (a) and (b). In these cases, r is necessarily
below q in the overlay, since q multicasts m2 and
otherwise r would not be a destination of m2. In
these cases, m2 multicast by q to r creates a causal
path from m1 to m2 at r. From the induction
hypothesis, this leads to a causal path until mk.

• Cases (c) and (d). In these cases, we consider that
r is below q in the overlay. Since both q and r
are destinations of m2 and r is below q, from the
algorithm, q sends an ACK message to r and r
waits for the ACK message before delivering m2.
This creates a causal path between the delivery of
m1 and m2 at q and the delivery of m2 at r. From
the induction hypothesis, it follows that there is a
causal path all the way to the delivery of mk at p.

• Case (e). r is positioned above q in the commu-
nication overlay. Since there is a causal path P
between the delivery of m2 at r and the receive of
mk at p, it is the case that r sent a message in P ,
say m3. Regarding the generation of m3, it could
also be that r = t. Regarding the generation of
m1, it could be that s = q.

Since r knows that it was involved in m2 with q,
below r in the overlay, r sends a NOTIFY message
to q, and as a response, q sends an ACK message
in path P to groups in m3.dst below q (complet-
ing the information that m1 is in the past of m3).
Since groups can only deliver m3 once these ACKs
arrived, further messages after m3 build a path P
to mk in p starting from m2 in r. From the in-
duction hypothesis that there is a path from m1

to mk.

q

p

m1 m2

r

m1 mk

q

p

m1
m2

r

mk

r

p

m1

m2

q
p

m1

m2

q

mk

r

mk

q

p

m1

m2

r
p

m1

m2

r
q

mk mk

Case (a) Case (b)

Case (c.1) Case (d.1)

Case (c.2) Case (d.2)

Case (c) Case (d)

Case (e)

m3

q

p
mk

m1

m2

r
s
t

Figure 10: Causal paths

16

	Introduction
	System model and definitions
	System model
	Atomic multicast

	Related work
	Genuine overlay-based atomic multicast
	General idea
	Why it is genuine

	Detailed protocol
	Practical considerations
	Tolerating failures

	Evaluation
	Evaluation rationale
	Environment and deployment
	gTPC-C Benchmark
	The effect of overlays
	Throughput
	Latency
	The cost of exchanging histories
	The overhead of non-genuineness
	Summary

	Conclusion

