
PrimCast: A Latency-Efficient Atomic Multicast
Leandro Pacheco

Università della Svizzera italiana

Lugano, Switzerland

le.pacheco@gmail.com

Paulo Coelho

Federal University of Uberlândia

Uberlândia, Brazil

paulocoelho@ufu.br

Fernando Pedone

Università della Svizzera italiana

Lugano, Switzerland

fernando.pedone@usi.ch

ABSTRACT
Atomic multicast is a communication abstraction that allows for

messages to be addressed to and reliably delivered by multiple pro-

cess groups, while ensuring a partial order on delivered messages.

Strong ordering guarantees can greatly simplify the design and

implementation of distributed applications. One critical property

for the performance and scalability of an atomic multicast protocol

is that of genuineness: a protocol is said to be genuine if only the

sender and destinations of a message are involved in ordering the

message. This paper presents PrimCast, the first genuine atomic

multicast protocol able to deliver messages at every destination in

three communication steps. PrimCast uses a primary-based con-

sensus protocol for deciding on message timestamps at each group.

Differently from previous work, it does not rely on consensus for

advancing and maintaining logical clocks. PrimCast introduces

a novel approach, relying on simple quorum intersection, to de-

cide when a multicast message can be delivered. We also show how

loosely synchronized clocks can be used to reduce the convoy effect

that delays messages under high system load. We present the com-

plete algorithm for PrimCast and evaluate its performance under

various scenarios. Our results show that PrimCast achieves lower

latency than state-of-the-art approaches while providing higher or

comparable throughput.

CCS CONCEPTS
• Software and its engineering→ Consistency; Software fault
tolerance; • Computing methodologies→ Distributed algo-
rithms.

KEYWORDS
atomic multicast, distributed agreement, fault-tolerant distributed

systems

ACM Reference Format:
Leandro Pacheco, Paulo Coelho, and Fernando Pedone. 2023. PrimCast:

A Latency-Efficient Atomic Multicast. In 24th International Middleware
Conference (Middleware ’23), December 11–15, 2023, Bologna, Italy. ACM,

New York, NY, USA, 13 pages. https://doi.org/10.1145/3590140.3629110

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

Middleware ’23, December 11–15, 2023, Bologna, Italy
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0177-1/23/12. . . $15.00

https://doi.org/10.1145/3590140.3629110

1 INTRODUCTION
Distributed systems use replication to tolerate the failure of system

components. In order to scale performance, replicated systems

typically rely on data partitioning, also known as sharding [12].

Commonly, in partitioned systems, replicas are divided into groups

with each group responsible for storing a subset of the application

data. Given a workload where commands are evenly distributed

across partitions and most commands access one or a few partitions,

system throughput should scale with the number of partitions.

Building distributed applications is a complex endeavor, and data

partitioning introduces additional complexity from coordinating

operations across replica groups. Atomic multicast is a commu-

nication abstraction that simplifies reasoning about and building

partitioned systems. It allows for messages to be reliably delivered

to a subset of the system groups while ensuring a partial order

on delivered messages. Partial ordering is at the core of strongly

consistent partitioned systems. While solutions such as [12, 13]

rely on ad-hoc timestamping schemes to ensure a valid partial or-

dering of operations, atomic multicast can be used as a building

block for implementing consistent cross-partition operations in

distributed databases [18, 39] and replicated applications in gen-

eral [4, 7, 27, 33]. To be effective, however, an atomic multicast

protocol must scale with the number of groups and introduce min-

imum overhead. One critical property for the scalability of such

algorithms is that of genuineness [23], where only the sender and

destinations of a message need to coordinate to order the message.

Even though non-genuine ordering protocols such as [3, 28] can

provide high message throughput, they do not allow for locality

of ordering. Local messages, destined to a single group, may have

to be delayed by a round-trip to a sequencer. This is particularly

relevant in deployments with geographically disperse groups [33].

Most proposals for genuine atomic multicast rely on a timestamp-

ing scheme first proposed in Skeen’s protocol [8]. Under high load,

timestamp-based atomic multicast protocols may exhibit a convoy
effect [2], where a message’s delivery is delayed due to not-yet-

delivered messages with a smaller final timestamp.

In this paper, we present PrimCast, the first genuine atomic

multicast protocol able to deliver messages to every destination in

three communication steps. Like previous approaches to atomic

multicast [11, 19, 20, 23, 37], PrimCast relies on a timestamping

scheme first proposed in Skeen’s protocol [8]: Each process group

maintains a logical clock and uses it to assign a local timestamp to

each message destined to it. A message’s final timestamp is com-

puted as the maximum of all its local timestamps. Processes deliver

messages in final timestamp order to ensure a partial ordering of

deliveries across the whole system. PrimCast uses a primary-based

consensus protocol for deciding on local timestamps at each group.

Each destination process individually tracks quorums for each mes-

sage, allowing local timestamps to be known at every destination in

https://doi.org/10.1145/3590140.3629110
https://doi.org/10.1145/3590140.3629110

Middleware ’23, December 11–15, 2023, Bologna, Italy Leandro Pacheco, Paulo Coelho, and Fernando Pedone

three message delays. Differently from previous work [11, 20, 21],

PrimCast does not rely on consensus for advancing andmaintaining

logical clocks. Processes inside each group exchange clock values

and rely on simple quorum intersection to decide when a message

can be safely delivered, that is, when no future message may be

assigned a smaller final timestamp.

While application semantics can be used to reorder the delivery

of messages that do not conflict [34], we propose a new technique

to reduce the effects of convoy that does not depend on message

contents. In an approach similar to hybrid logical clocks [26], we

make use of loosely synchronized clocks when proposing message

timestamps to significantly reduce the latency introduced by the

convoy effect. Clock synchronization, however, is not required for

the correctness of the protocol.

Besides presenting the complete algorithm for PrimCast, we

have built a prototype and compared its performance against state-

of-the-art protocols (i.e., [11, 20]). Our results show that PrimCast

consistently delivers lower latency than state-of-the-art protocols

while providing higher (up to 4x as high in some cases) maximum

throughput than the alternatives. The results also demonstrate how

our proposed solution of using loosely synchronized clocks can in

some situations almost eliminate the convoy effect in PrimCast.

The rest of the paper is organized as follows. Sections 2 and 3

introduce the system model and definitions. Section 4 surveys re-

lated work. Sections 5 and 6 present PrimCast and the loosely

synchronized clocks approach, respectively. Section 7 describes our

experimental evaluation. Section 8 concludes the paper.

2 MODEL AND DEFINITIONS
In this section, we detail our systemmodel and recall the definitions

of reliable and atomic multicast.

2.1 System model
We assume a distributed system composed of a finite set of inter-

connected processes. There is an unbounded set of client processes
and a bounded set of server processes Π. Processes may fail by crash-

ing, but do not experience arbitrary or malicious behavior (i.e.,

no Byzantine failures). A process that crashes is said to be faulty,
otherwise it is correct. Processes communicate by message passing

through pairwise communication channels. Channels do not create,

corrupt or duplicate messages, and given two correct processes 𝑝

and 𝑞, if 𝑝 sends𝑚 to 𝑞, 𝑞 eventually receives𝑚.

We define Γ = {𝑔1, 𝑔2, ..., 𝑔𝑚} as the set of process groups in the

system. Process groups are disjoint [23], and

⋃
Γ = Π. Associated

with each group 𝑔, there is a set of quorums 𝑄𝑔 . Each quorum 𝑞 in

𝑄𝑔 is a set of processes, such that 𝑞 ⊂ 𝑔. The intersection between

any two quorums in 𝑄𝑔 cannot be empty, and at least one of the

quorums in 𝑄𝑔 must contain no faulty processes.

We consider a system that is partially synchronous [15]: it is
initially asynchronous and eventually becomes synchronous. The

time when the system becomes synchronous is called the global
stabilization time (GST) and is unknown to the processes. Before

the GST, there are no bounds on the time it takes for messages to be

transmitted and actions to be executed. After the GST, such bounds

exist but are unknown, and remain in effect forever. In practice,

“forever” means long enough for atomic multicast to make progress,

that is, deliver messages.

For simplicity, we consider that processes in group 𝑔 have access

to a weak leader election oracle, Ω𝑔 , which can be implemented in

a partially synchronous system [1]. At each process in the group,

Ω𝑔 outputs a single process contained in 𝑔 and has the following

property: there is a time after which, at every correct 𝑝𝑖 ∈ 𝑔, Ω𝑔

outputs the same correct process 𝑝𝑙 ∈ 𝑔.

2.2 Reliable and Atomic Multicast
For everymessage𝑚,𝑚.𝑑𝑒𝑠𝑡 denotes the groups to which𝑚 is multi-

cast. If |𝑚.𝑑𝑒𝑠𝑡 | = 1 we say that𝑚 is a local message; if |𝑚.𝑑𝑒𝑠𝑡 | > 1

we say that𝑚 is global. A process reliably multicasts a message𝑚 by

invoking primitive r-multicast(𝑚) and delivers𝑚 with primitive

r-deliver(𝑚).
In this paper, we consider non-uniform FIFO reliable multicast,

which ensures the following properties:

• Validity: If a correct process executes r-multicast(𝑚) then,
eventually, all correct processes in

⋃
𝑚.𝑑𝑒𝑠𝑡 execute

r-deliver(𝑚).
• Integrity: For any message 𝑚 and process 𝑝 , 𝑝 may only

do r-deliver(𝑚) once, and only if r-multicast(𝑚) was
previously issued by some process.

• Non-uniform agreement: If a correct process executes

r-deliver(𝑚) then, eventually, every correct process in⋃
𝑚.𝑑𝑒𝑠𝑡 executes r-deliver(𝑚).

• FIFO order: If a process executes r-multicast(𝑚) before ex-
ecuting r-multicast(𝑚′) then, every process that executes

r-deliver(𝑚′) must first execute r-deliver(𝑚).
In FIFO non-uniform reliable multicast, messages multicast and

delivered by faulty processes may be lost (i.e., may never be de-

livered by correct processes), which allows for implementations

that deliver messages in one communication step, from origin to

destinations [24].

Atomic multicast provides two primitives to processes in the

system: a-multicast(𝑚) to send messages and a-deliver(𝑚) to
signal deliveries. Atomic multicast satisfies the uniform integrity

and validity properties of reliable multicast as well as the following

properties:

• Uniform agreement: If any process executes a-deliver(𝑚)
then, eventually, every correct process in

⋃
𝑚.𝑑𝑒𝑠𝑡 executes

a-deliver(𝑚).
• Global total order: Let ≺ be a relation on the set of messages

that processes a-deliver, such that𝑚 ≺𝑚′ iff some process

executes a-deliver(𝑚) before it executes a-deliver(𝑚′).
The ≺ relation is acyclic.

• Uniform prefix order: Let𝑚 and𝑚′ be messages and 𝑝 and

𝑞 processes such that {𝑝, 𝑞} ⊆ ⋃(𝑚.𝑑𝑒𝑠𝑡 ∩ 𝑚′.𝑑𝑒𝑠𝑡). If 𝑝
executes a-deliver(𝑚) and 𝑞 executes a-deliver(𝑚′) then
either 𝑝 executes a-deliver(𝑚′) before a-deliver(𝑚) or 𝑞
executes a-deliver(𝑚) before a-deliver(𝑚′).

Atomic broadcast is a special case of atomic multicast in which

every message is addressed to all groups.

A multicast protocol is genuine [23] when only the sender and

destinations of a message𝑚 need to take steps for𝑚 to be delivered.

Intuitively, a genuine protocol scales with the number of groups in

PrimCast: A Latency-Efficient Atomic Multicast Middleware ’23, December 11–15, 2023, Bologna, Italy

the system, as long as most messages are local or destined to only

a subset of the groups. We formally define genuineness as follows:

• Genuineness: for any admissible run R of the algorithm and

for any process 𝑝 , if 𝑝 sends or receives a message in R then

𝑚 is a-multicast in R and either 𝑝 ∈ ⋃𝑚.𝑑𝑒𝑠𝑡 or 𝑝 does the

a-multicast of𝑚.

In [23], the authors show the impossibility of solving genuine

atomic multicast with weak synchronous assumptions when groups

intersect. Hence, we assume that groups are disjoint. We note that

this limitation is not a big issue in practice, as processes from

different groups can be collocated on the same physical machine.

3 BACKGROUND
In this section, we provide an overview of Skeen’s protocol, upon

which PrimCast and other timestamp-based atomic multicast solu-

tions are based (§3.1). We also describe the notions of collision-free

and failure-free latencies, which we use to characterize the delivery

latency of PrimCast (§3.2).

3.1 Timestamp-based message ordering
Most atomic multicast protocols achieve a partial ordering of mes-

sages through a timestamping scheme first proposed in what is

known as Skeen’s protocol [8]. Skeen’s protocol works as follows:

(1) Each process in the system has its own logical clock.

(2) A message𝑚, destined to processes in𝑚.𝑑𝑒𝑠𝑡 , is sent to each

one of these processes.

(3) A process that receives𝑚 increments its logical clock and

uses the clock to assign𝑚 a local timestamp. The local times-

tamp is sent to other processes in𝑚.𝑑𝑒𝑠𝑡 and𝑚 becomes a

pending message at 𝑝 .

(4) Once a process receives a local timestamp from each process

in𝑚.𝑑𝑒𝑠𝑡 , the maximum of the local timestamps is chosen

as𝑚’s final timestamp. The process then updates its clock to

𝑚’s final timestamp, if not already past it.

(5) Process 𝑝 delivers message𝑚 once no pending messages at

𝑝 have a possibly smaller final timestamp than𝑚’s.

Skeen’s protocol is genuine, as only the sender and processes in

𝑚.𝑑𝑒𝑠𝑡 take steps to deliver𝑚. In [19], Fritzke et al. propose a so-

lution for fault-tolerant atomic multicast. This solution is further

refined in [37]. The core idea is to replace individual processes as

destinations with fault-tolerant process groups. Inside each group,

atomic broadcast (i.e., consensus) is used to both maintain the

group’s logical clock and to timestamp messages. We refer to proto-

cols that rely on assigning message timestamps as timestamp-based.

3.2 Collision-free and failure-free latency
In [20], Gotsman et al. propose two metrics for describing the

delivery latency of atomic multicast protocols: failure-free and

collision-free latency. We consider the delivery latency of a message

as the time between its a-multicast and its last a-delivery, that is, the

time for the message to be a-delivered at every correct destination.
1

Both collision-free and failure-free latencies set bounds on the

delivery latency of messages in periods of system stability. More

1
This differs from the definition in [20], which considers the first a-delivery of a

message.

precisely, we consider the system stable after some unknown time 𝑡 ,

occurring past GST (§2.1), when message delay is bounded, leaders

at each group are stable (i.e., the output of Ω won’t change) and

there is no ongoing or future reconfiguration due to previous leader

changes. For simplicity, we assume that local computation takes no

time and message delay between any two processes is fixed after 𝑡

(a communication step).

Collision-free latency is the maximum delivery latency for a mes-

sage when there are no conflicting concurrent messages. A mes-

sage𝑚 is concurrent with another message𝑚′ if𝑚 is a-multicast

before𝑚′ is first a-delivered, and𝑚′ is a-multicast before𝑚 is first

a-delivered. Two messages 𝑚 and 𝑚′ are conflicting iff 𝑚.𝑑𝑒𝑠𝑡 ∩
𝑚′.𝑑𝑒𝑠𝑡 ≠ ∅. In the presence of concurrent messages, message de-

livery may be subject to a convoy effect [2, 9]. In timestamping

protocols, messages need to be delivered in final timestamp order.

Thus, a given message𝑚 can only be delivered when there is no

other message, yet to be delivered, with a possibly smaller final

timestamp than𝑚’s. Effectively,𝑚 can potentially have its deliv-

ery delayed by any message that is multicast at a time before𝑚 is

assigned a local timestamp in each of the groups in𝑚.𝑑𝑒𝑠𝑡 . This

effect is more relevant in a wide-area deployment, with high latency

between groups. In such a scenario, the time it takes for messages

to get their local and final timestamps can vary considerably, de-

pending on the location of the sender and the destinations of the

message. Under high load, there is a high probability that messages

are assigned local timestamps in such a way that a message that

could otherwise be delivered, has to wait for a newer message to

get its final timestamp. Failure-free latency is the maximum delivery

latency for a message in the presence of concurrent messages, that

is, when considering the worst case convoy effect. In practice, in

periods of system stability, the failure-free and collision-free laten-

cies can be seen as the worst and best case delivery latencies of an

atomic multicast protocol, respectively. For a detailed analysis of

the convoy effect in atomic multicast we refer to [2].

A method is proposed in [20] to calculate the collision-free and

failure-free latency values in timestamp-based atomic multicast

protocols. First, two valuesmust be obtained from the algorithm: the

clock update latency𝐶 and the commit latency 𝐷 . Let𝑚 be a message

multicast at time 𝑡 , as defined above. The clock update latency 𝐶

is the maximum delay after which no group in𝑚.𝑑𝑒𝑠𝑡 will assign

another message a local timestamp smaller than𝑚’s final timestamp.

Essentially, the clock update latency limits the interval in which

conflicting concurrent messages can be a-multicast. The commit

latency 𝐷 of 𝑚 is the maximum delay after which a destination

knows the final timestamp of𝑚 and has its group’s logical clock

value equal to or higher than𝑚’s final timestamp. In the absence

of conflicting concurrent messages,𝑚 can be delivered after 𝑡 + 𝐷 ,
and the collision-free latency is thus equal to 𝐷 . The earliest a

concurrent message can be multicast before𝑚 is 𝑡 +𝐶 . Thus, after
𝑡+𝐶+𝐷 , every final timestamp smaller than𝑚’s must be known, and

the respective messages can be delivered together with𝑚. Hence,

the failure-free latency is equal to 𝐶 + 𝐷 .

4 RELATEDWORK
Most proposals for genuine atomic multicast are derived from the

timestamping scheme of Skeen’s protocol [8]. In this section, we

Middleware ’23, December 11–15, 2023, Bologna, Italy Leandro Pacheco, Paulo Coelho, and Fernando Pedone

give a detailed account of the FastCast (§4.1) and White-Box (§4.2)

atomic multicast protocols and provide an overview of other related

protocols (§4.3).

4.1 FastCast
In [11], Coelho et al. propose FastCast, a genuine atomic multicast

protocol with collision-free and failure-free latency values of 4

and 8 communication steps, respectively. FastCast achieves faster

delivery times than the classic protocols through an optimistic

execution path that works as follows:

(1) Each group has an elected leader, responsible for proposing

local timestamps at its group.

(2) When timestamping 𝑚, a leader sends its proposal to the

leaders of every other group in𝑚.𝑑𝑒𝑠𝑡 , before proposing the

timestamp through consensus in its group.

(3) Once a leader gets proposals from all leaders in𝑚.𝑑𝑒𝑠𝑡 , it

sends the maximum of all proposals as an optimistic final

timestamp through its group’s consensus.

If the final timestamp matches the optimistic timestamp, the mes-

sage can be delivered before the second sequential round of consen-

sus (which is still executed if necessary). The optimistic path can

be understood as a mechanism for updating a group’s logical clock

before the final timestamp is decided. In FastCast, both the commit

latency and the clock update latency are equal to 4 communication

steps. Hence, collision-free and failure-free latency values are 4 and

8 communication steps respectively.

4.2 White-Box multicast
In [20], Gotsman et al. propose White-Box, an atomic multicast

protocol that improves the collision-free and failure-free latency

values to 4 and 6 communication steps, respectively. Furthermore,

at group leaders, delivery happens one step earlier, in 3 and 5

communication steps. Differently from previous approaches, White-

Box does not use a consensus protocol as a black-box, opting instead

for an integrated protocol at group and global level. Another insight

fromWhite-Box is the use of a primary-based approach (i.e., passive

replication) [25, 30]. The primaries at each group decide on the order

of messages and then ensure the other replicas follow that same

order.

The White-Box protocol works roughly as follows:

(1) A process a-multicasts𝑚 by sending a message to the pri-

maries of each group in𝑚.𝑑𝑒𝑠𝑡 .

(2) Each primary then picks a local timestamp for𝑚 for its group,

based on its own clock value. It then sends that proposal

to every process in every group in 𝑚.𝑑𝑒𝑠𝑡 , as an accept

message.

(3) Once a process receives the accept from every primary in

𝑚.𝑑𝑒𝑠𝑡 , it will store the proposal for its group and update its

clock to the highest local timestamp received, if needed. It

then sends back an ack to each of the primaries in𝑚.𝑑𝑒𝑠𝑡 .

(4) After receiving all the accepts and a quorum of acks from

each group in𝑚.𝑑𝑒𝑠𝑡 , a primary picks the largest local times-

tamp of𝑚 as𝑚’s final timestamp. Primaries carefully track

pending messages to a-deliver messages in final timestamp

order. At a primary,𝑚 can be a-delivered in as early as 3 com-

munication steps from being a-multicast. Then, a deliver

message is sent to other processes in the group.

(5) Followers a-deliver messages in the order of the deliver

messages sent by the primary, in as early as 4 communication

steps from the respective a-multicast.

From the above, we get to the collision-free latency of 4 commu-

nication steps, or 3 communication steps, when only considering

delivery at the primaries. Once a message𝑚 is a-multicast, after 2

communication steps (enough for primaries in𝑚.𝑑𝑒𝑠𝑡 to exchange

local timestamp proposals and update their clocks), no new con-

flicting message can be assigned a local timestamp smaller than the

final timestamp of𝑚, as long as primaries remain stable. Hence,

the failure-free latency of White-Box is 6 communication steps, or

5 when considering delivery at primaries only.

4.3 Other protocols
[23] and [19] propose the use of multiple instances of consensus,

one per group, to solve atomic multicast when processes may fail.

These protocols can deliver a message in 6 communication steps

in the collision-free case, that is, when there are no concurrent

messages. These two protocols have a failure-free delivery latency

of 12 communication steps.

In [37], Schiper et al. propose improvements to [19] that reduce

the collision-free latency at some of the destination groups, those

that assign a local timestamp equal to the final timestamp of the

message, to 3 communication delays.

In MTO [22] and Scalatom [36], instead of running multiple

consensus instances per message (on per group), a single instance

of consensus is run among all destination groups. These protocols

achieve a collision-free and failure-free latency values of 5 and 9,

respectively.

Tempo [16] is a partitioned state-machine replication protocol

that is built over a protocol that is essentially a genuine atomic

multicast implementation. Instead of relying on a primary at each

destination group, each message has a designated leader in each

group (the closest replica) that communicates with other processes

in the group to assign the message a local timestamp. To decide

when messages are safe for execution, Tempo uses a notion of

timestamp stability that works in parallel with the timestamping

of messages, similar to how PrimCast exchanges bump messages

to update quorum-clock() values. Even though the two approaches

have similarities, PrimCast and Tempo have been developed in

parallel.

Many non-genuine solutions to atomic multicast have also been

proposed in the literature. In [38], Schiper et al. propose a round

based protocol which can deliver messages in 4 communication

steps. An unbounded sequence of rounds is executed, and each

group chooses a set of messages to be delivered at each round. Pro-

posals in the each round are exchanged and then deterministically

ordered and delivered by the destinations. ByzCast [10] is a byzan-

tine fault-tolerant atomic multicast that organizes process groups in

a tree. Each message is first ordered by the lowest common ancestor

of its destinations, and then proceeds down the tree being ordered

by each group until it is ordered at each destination. Partial order is

ensured by having each group respect the ordering of its ancestors.

PrimCast: A Latency-Efficient Atomic Multicast Middleware ’23, December 11–15, 2023, Bologna, Italy

In Multi-Ring Paxos [31], Ridge [6] and Elastic Paxos [5], processes

subscribe to the groups they are interested in receiving messages

from, and then a deterministic merge procedure is used ensure a

partial ordering of messages. These protocols have a slightly differ-

ent interface: a message can only destined to a single group, but

groups don’t have to be disjoint: sending a message to multiple

groups requires a group that is a superset of those destinations. For

an overview of total and partial order communication abstractions

we refer to [14].

PrimCast relies on a primary-based approach (i.e., passive repli-

cation) for deciding on timestamps inside each group [25, 30]. Since

the primary orders all operations in a group, it can optimistically

update its state before having the rest of the group agree on it. This

property can be exploited for faster logical clock updates inside

groups. We refer to [42] for a discussion of the differences between

state-machine replication and primary-based replication.

5 PRIMCAST
In this section, we discuss PrimCast’s basic ideas and then present

the algorithm in detail. Due to lack of space, proof of correctness

for the properties of the protocol can be found in [32].

5.1 Basic ideas
PrimCast is a genuine atomic multicast protocol that achieves

collision-free and failure-free latency of three and five communica-

tion steps, respectively, at every destination. This is a reduction of

one communication step from the state-of-the-art, which achieved

these latency values only at group leaders [20].

PrimCast is based on the following ideas:

• Primary-based consensus at each group: Each group in PrimCast

employs a primary-based consensus procotol. Similarly to

other primary-based protocols [25, 30], PrimCast is epoch

based. Each epoch is owned by a single process in the group.

Inside a group, each process tracks its current epoch, only

accepting proposals from the primary of that epoch. In the

absence of failures, when processes in a group follow the

same epoch, advancing the logical clock of the primary to a

given value is enough to ensure newmessages are assigned a

larger local timestamp. Hence, for any message𝑚, after two

communication steps (i.e., the time for group primaries to ex-

change their timestamp proposals), no other message can be

assigned a local timestamp smaller than the final timestamp

of𝑚. The clock update latency𝐶 is thus two communication

steps.

• Quorum-based logical clocks: One of the requirements for a

message𝑚 to be safely delivered at a given destination is

that no new messages targeting the same destination should

be assigned a smaller final timestamp than𝑚’s. Updating the

logical clock of primaries is enough to prevent this situation

in the failure-free case, but when the primary changes, this

is not enough, as we now explain. To ensure safety in the

presence of failures, previous approaches rely on consensus

to agree on the group’s logical clock, and delivery of a mes-

sage𝑚 can only happen at a given process after its group’s

logical clock is larger than or equal to𝑚’s final timestamp. In

PrimCast, instead of relying on consensus for logical clock

agreement, a quorum-based approach is used. Inside each

group, processes track each other’s clock values. On an epoch

change, the new primary must pick a clock value larger than

all values seen in a quorum of clocks from previous epochs.

When a message 𝑚 is multicast, by carefully exchanging

and tracking clock values, every destination can have its

group’s logical clock advanced past𝑚’s final timestamp in

three communication steps.

• Cross-group quorum tracking: Instead of exchanging local

timestamps after consensus is reached inside each group,

PrimCast replicas directly send acknowledgment messages

to other destination groups. Each destination process indi-

vidually tracks when the quorum for a local timestamp from

another group is reached. Every local timestamp for a given

message is thus learned in three communication steps at

every destination. This, together with quorum-based logical

clocks, ensures the commit latency𝐷 is three communication

steps at every destination.

5.2 Algorithm
PrimCast is presented in Algorithm 1 (initialization and predicates),

Algorithm 2 (main logic), and Algorithm 3 (primary change logic).

Processes communicate through the r-multicast and r-deliver prim-

itives of FIFO non-uniform reliable broadcast (§2.2), which can

deliver messages in one communication step [24].

In the following, we give an overview of the algorithm and

provide some insights into how it achieves safety.

5.2.1 A note on epochs. PrimCast employs a primary-based proto-

col inside each group to assign local timestamps to messages. The

protocol proceeds in epochs, a given epoch E being owned by a

single process 𝑝 , the epoch leader. If a quorum of processes accept

E as their current epoch (E𝑐𝑢𝑟 = E), 𝑝 may become the effective

primary. Epochs from different groups are not related: each group

has its own set of epochs, and advances epochs independently of

other groups.

5.2.2 Assigning timestamps. To a-multicast amessage𝑚, the sender

r-multicasts ⟨start,𝑚⟩ to each destination in

⋃
𝑚.𝑑𝑒𝑠𝑡 (line 31).

When r-delivered, the tuple is added to theM set. The primary

for each group in 𝑚.𝑑𝑒𝑠𝑡 will eventually update its 𝑐𝑙𝑜𝑐𝑘 , pick a

timestamp for𝑚, append the proposal to T and send the respective

ack to every destination in𝑚.𝑑𝑒𝑠𝑡 (line 35).

When a process 𝑝 ∈ 𝑔 r-delivers an ack for 𝑚 coming from

a process in its own group 𝑔 (line 40), 𝑝 first stores the tuple in

M. Then, if the ack is coming from the primary of its current

epoch, 𝑝 accepts the timestamp proposal by appending it to T ,
updates its clock if needed, and then also r-multicasts its own ack

to every destination in𝑚.𝑑𝑒𝑠𝑡 . When 𝑝 instead r-delivers an ack

for𝑚 coming from a process in a remote group ℎ (i.e., 𝑝 ∉ ℎ), 𝑝

simply stores the tuple inM (line 46).

The local timestamp of𝑚 forℎ is tracked by local-ts(𝑚,ℎ) (line 9).
The value is decided when, in M, there are acks for 𝑚 from a

quorum of processes inℎ, all coming from the same epoch. The final-

ts(𝑚) is decided once local-ts(𝑚,𝑔) is decided for every 𝑔 ∈𝑚.𝑑𝑒𝑠𝑡 .

When primaries are stable, after three communication steps every

Middleware ’23, December 11–15, 2023, Bologna, Italy Leandro Pacheco, Paulo Coelho, and Fernando Pedone

Algorithm 1 PrimCast initialization and definitions at process 𝑝 ∈ 𝑔.
1: initialization:
2: M ← ∅ ⊲ set of r-delivered start, ack and bump tuples

3: D ← ∅ ⊲ set of a-delivered messages

4: T ← ∅ ⊲ sequence of tuples for timestamps proposed in 𝑔 (in the format ⟨E,𝑚, 𝑡𝑠⟩)
5: 𝑐𝑙𝑜𝑐𝑘 ← 0 ⊲ 𝑝’s clock value

6: E𝑐𝑢𝑟 ← initial epoch ⊲ current epoch

7: E𝑝𝑟𝑜𝑚 ← initial epoch ⊲ promised epoch (always ≥ E𝑐𝑢𝑟)
8: 𝑠𝑡𝑎𝑡𝑒 ← primary if leader(E𝑐𝑢𝑟) = 𝑝 else follower

9: local-ts(𝑚,ℎ) ≡ ⊲ local timestamp for𝑚 in ℎ if known, otherwise ⊥
10: if ∃𝑡𝑠, E ′, 𝑞𝑢𝑜𝑟𝑢𝑚 ∈ 𝑄ℎ : ∀𝑞 ∈ 𝑞𝑢𝑜𝑟𝑢𝑚 : ⟨ack,𝑚,ℎ, E ′, 𝑡𝑠, 𝑞⟩ ∈ M then 𝑡𝑠

11: else ⊥
12: final-ts(𝑚) ≡ ⊲ max of all local-ts in𝑚.𝑑𝑒𝑠𝑡 if all are decided, otherwise ⊥
13: if ∀ℎ ∈𝑚.𝑑𝑒𝑠𝑡 : local-ts(𝑚,ℎ) ≠ ⊥ then maxℎ∈𝑚.𝑑𝑒𝑠𝑡 (local-ts(𝑚,ℎ))
14: else ⊥
15: min-clock(𝑞) ≡ ⊲ highest 𝑡𝑠 seen in messages from 𝑞 in epoch E𝑐𝑢𝑟 or earlier
16: max({0} ∪ {𝑡𝑠 | ∃E ′ ≤ E𝑐𝑢𝑟 : ⟨ack, _, 𝑔, E ′, 𝑡𝑠, 𝑞⟩ ∈ M or ⟨bump, E ′, 𝑡𝑠, 𝑞⟩ ∈ M})

17: quorum-clock() ≡ ⊲ lower bound for clock of the primary of epochs higher than E𝑐𝑢𝑟
18: max({𝑡𝑠 | ∃𝑞𝑢𝑜𝑟𝑢𝑚 ∈ 𝑄𝑔 : ∀𝑞 ∈ 𝑞𝑢𝑜𝑟𝑢𝑚 : min-clock(𝑞) ≥ 𝑡𝑠})

19: min-ts(𝑚) ≡ ⊲ minimum possible value for final-ts(𝑚)
20: max(if ∃ℎ : local-ts(𝑚,ℎ) ≠ ⊥ then maxℎ∈𝑚.𝑑𝑒𝑠𝑡 (local-ts(𝑚,ℎ)) else 0,
21: min(if ∃E, 𝑡𝑠 : ⟨E,𝑚, 𝑡𝑠⟩ ∈ T then 𝑡𝑠 else∞, ⊲ any local-ts is a lower bound, so

22: 1 + min-clock(leader(E𝑐𝑢𝑟)), ⊲ is the minimum possible proposal for𝑚 in 𝑔

23: 1 + quorum-clock()))

24: proposable(𝑚) ≡ ⊲𝑚 is not decided or proposed in 𝑔

25: ⟨start,𝑚⟩ ∈ M and local-ts(𝑚,𝑔) = ⊥ and ⟨_,𝑚, _⟩ ∉ T

26: deliverable(𝑚) ≡
27: 𝑚 ∉ D and final-ts(𝑚) ≠ ⊥ and ⊲𝑚 has not been delivered and has a final timestamp

28: final-ts(𝑚) ≤ min-clock(𝑙𝑒𝑎𝑑𝑒𝑟 (E𝑐𝑢𝑟)) and ⊲ smaller than new proposals in E𝑐𝑢𝑟
29: final-ts(𝑚) ≤ quorum-clock() and ⊲ and smaller than proposals in newer epochs

30: ∀𝑚′ : ⟨_,𝑚′, _⟩ ∈ T ,𝑚′ ∉ D,𝑚′ ≠𝑚 : ⟨final-ts(𝑚),𝑚.𝑖𝑑⟩ < ⟨min-ts(𝑚′),𝑚′.𝑖𝑑⟩
⊲ and smaller than the possible timestamp of any other pending𝑚′

correct destination in

⋃
𝑚.𝑑𝑒𝑠𝑡 will have received an ack for𝑚 from

every other correct destination, ensuring final-ts(𝑚) is decided.

5.2.3 Delivering a message. A process can only safely deliver a

message𝑚 when (1) the process knows final-ts(𝑚), (2) every mes-

sage with a smaller final timestamp has been delivered, and (3) no

message may yet be assigned a smaller final timestamp. At a given

process 𝑝 ∈ 𝑔, these conditions are tracked by the deliverable(𝑚)
predicate (line 26), with message ids used to break ties. This predi-

cate depends on the following definitions:

• final-ts(𝑚) (line 12): the final timestamp of𝑚 is known once

the local-ts(𝑚,ℎ) (i.e., the local timestamp) for all ℎ ∈𝑚.𝑑𝑒𝑠𝑡

are known.

• min-clock(𝑞) (line 15): the maximum clock value seen in

messages from process 𝑞, from epochs smaller or equal to

E𝑐𝑢𝑟 .
• quorum-clock() (line 17): lower bound for the starting clock

of primaries for epochs higher than E𝑐𝑢𝑟 in the process’s

group. For a process 𝑝 to become the primary in its group 𝑔,

𝑝 must first obtain a quorum of promises for the new epoch

from processes in 𝑔 (line 65). The largest clock value seen in

the set of received promises is chosen as the starting clock

value of the new epoch (line 68). As an example, consider a

group 𝑔 of 5 processes with simple majority quorums (i.e.,

any 3 processes is a quorum). Suppose a new leader 𝑝 starts

an epoch E, gets a promise from each process in 𝑔 (including

itself), and the set of clock values gathered from the promises

is {1, 2, 3, 4, 5}. The minimum clock value that can be picked

by 𝑝 for the new epoch is 3, which comes from the quorum

of promises with values {1, 2, 3}. From quorum intersection,

there is a quorum of promises for which all clock values

({3, 4, 5}) are higher than or equal to 3. Thus, processes rely

on quorum-clock() to know when a given timestamp is safe

for delivery in epochs higher than E𝑐𝑢𝑟 . For this reason, min-

clock(𝑞) ignores tuples coming from epochs higher than

E𝑐𝑢𝑟 .
• min-ts(𝑚) (line 19): lower bound for the final timestamp of

message 𝑚. Any known local timestamp for 𝑚 is a lower

bound. At process 𝑝 ∈ 𝑔, when local-ts(𝑚,𝑔) is not yet

known, a lower bound can be inferred for its future value.

PrimCast: A Latency-Efficient Atomic Multicast Middleware ’23, December 11–15, 2023, Bologna, Italy

Algorithm 2 PrimCast algorithm at process 𝑝 ∈ 𝑔.
31: a-multicast(𝑚): ⊲ process 𝑝 wants to atomically multicast𝑚 to𝑚.𝑑𝑒𝑠𝑡

32: r-multicast(⟨start,𝑚⟩) to𝑚.𝑑𝑒𝑠𝑡

33: when r-deliver(⟨start,𝑚⟩):
34: M ←M ∪ {⟨start,𝑚⟩}
35: when ∃𝑚 : proposable(𝑚) and 𝑠𝑡𝑎𝑡𝑒 = primary: ⊲ primary proposes local timestamp in 𝑔

36: for each𝑚 : proposable(𝑚)
37: 𝑐𝑙𝑜𝑐𝑘 ← 𝑐𝑙𝑜𝑐𝑘 + 1
38: T ← T • ⟨E𝑐𝑢𝑟 ,𝑚, 𝑐𝑙𝑜𝑐𝑘⟩
39: r-multicast(⟨ack,𝑚,𝑔, E𝑐𝑢𝑟 , 𝑐𝑙𝑜𝑐𝑘, 𝑝⟩) to𝑚.𝑑𝑒𝑠𝑡

40: when r-deliver(⟨ack,𝑚,ℎ, E, 𝑡𝑠, 𝑞⟩) and 𝑔 = ℎ: ⊲ on ack from our group

41: M ←M ∪ {⟨ack,𝑚,ℎ, E, 𝑡𝑠, 𝑞⟩}
42: if 𝑞 = leader(E) and E = E𝑐𝑢𝑟 and 𝑠𝑡𝑎𝑡𝑒 = follower then ⊲ if ack from primary

43: T ← T • ⟨E𝑐𝑢𝑟 ,𝑚, 𝑡𝑠⟩ ⊲ send our own ack

44: 𝑐𝑙𝑜𝑐𝑘 ← max(𝑐𝑙𝑜𝑐𝑘, 𝑡𝑠)
45: r-multicast(⟨ack,𝑚,𝑔, E𝑐𝑢𝑟 , 𝑡𝑠, 𝑝⟩) to𝑚.𝑑𝑒𝑠𝑡

46: when r-deliver(⟨ack,𝑚,ℎ, E, 𝑡𝑠, 𝑞⟩) and 𝑔 ≠ ℎ: ⊲ on ack from remote group

47: M ←M ∪ {⟨ack,𝑚,ℎ, E, 𝑡𝑠, 𝑞⟩, ⟨start,𝑚⟩}
48: if 𝑡𝑠 > 𝑐𝑙𝑜𝑐𝑘 then ⊲ on a remote ack with 𝑡𝑠 higher than our 𝑐𝑙𝑜𝑐𝑘

49: 𝑐𝑙𝑜𝑐𝑘 ← 𝑡𝑠 ⊲ update 𝑐𝑙𝑜𝑐𝑘 and inform our group

50: r-multicast(⟨bump, E𝑝𝑟𝑜𝑚, 𝑐𝑙𝑜𝑐𝑘, 𝑝⟩) to 𝑔

51: when r-deliver(⟨bump, E, 𝑡𝑠, 𝑞⟩):
52: M ←M ∪ {⟨bump, E, 𝑡𝑠, 𝑞⟩}

53: when ∃𝑚 : deliverable(𝑚) and 𝑠𝑡𝑎𝑡𝑒 ∈ {primary, follower}:
54: for each𝑚 : deliverable(𝑚)
55: D ← D ∪ {𝑚}
56: a-deliver(𝑚) ⊲ deliver𝑚 to the application

The value of local-ts(𝑚,𝑔) will come either from the current

primary (equal to the proposal in T or higher than 1+min-

clock(leader(E𝑐𝑢𝑟))) or from the primary of some future

epoch (higher than quorum-clock()).

5.2.4 Propagating clock values inside a group. Instead of relying

on consensus to maintain a group’s logical clock, PrimCast care-

fully tracks the clock values from processes in the group, and uses

quorum intersection to ensure safety during epoch changes (see

the explanation for quorum-clock() in the previous section). Clock

values are propagated in two ways: (1) implicitly through ack mes-

sages or (2) through bump messages. Whenever 𝑝 receives an ack

from 𝑞, it will update its own clock if needed. The ack also updates

what 𝑝 knows about 𝑞’s clock value. Processes in 𝑔 will exchange

acks for the local timestamp of 𝑚 in 𝑔 among themselves. This

exchange is enough to both (1) move the clocks of processes in 𝑔

past the local timestamp for𝑚 in 𝑔 and (2) inform processes about

the updated clock values. For a message𝑚 to be delivered, a pro-

cess must know that a quorum of clocks in its group is past the

final timestamp of𝑚. When the local timestamp for some remote

group is the largest for𝑚, the acks alone are not enough to ensure

delivery. Thus, when an ack from a remote group is received, a

process updates its clock if needed and sends a bump message to

its group (line 50). Note that bump messages carry the sender’s

promised epoch, E𝑝𝑟𝑜𝑚 : once a process is promised to epoch E it

cannot influence the quorum-clock() calculation for epochs lower

than E.

5.2.5 Example execution. Figure 1 shows some of the messages

sent during an example execution of the protocol. In the example

we have two groups, 𝑔 = {𝑝1, 𝑝2, 𝑝3} and ℎ = {𝑝4, 𝑝5, 𝑝6}, and we

consider simple majority quorums for each. Processes 𝑝1 and 𝑝4
are the primaries of E𝑔 and Eℎ respectively. Process 𝑝5 does a-

multicast(𝑚), where𝑚.𝑑𝑒𝑠𝑡 = {𝑔, ℎ}. The diagram only shows the

messages needed for process 𝑝2 to a-deliver𝑚. As it can be seen,

in the absence of concurrent messages, 𝑚 can be a-delivered by

𝑝2 in 3 communication steps. The example also shows why bump

messages are needed. Without the bump messages inM, the value

of quorum-clock() at 𝑝2 would be equal to 1, preventing𝑚 from

being delivered since final-ts(𝑚) = 2.

5.2.6 Changing a group’s primary. When a process 𝑝 ∈ 𝑔 has

Ω𝑔 = 𝑝 , if 𝑝 is not already the leader (line 57), 𝑝 starts an epoch

change. The new leader 𝑝 starts by picking an epoch E higher than

the one it is promised to (E𝑝𝑟𝑜𝑚). It then becomes a candidate,

sending a new-epoch message to processes in 𝑔. Any process that

receives the new-epoch, if E is larger than its promised epoch,

becomes promised to E (line 61) and then sends its current state

(E𝑐𝑢𝑟 , T and 𝑐𝑙𝑜𝑐𝑘) to 𝑝 . Once 𝑝 gets a quorum of promises for E
(line 65), it must pick the most up-to-date state from the promises

Middleware ’23, December 11–15, 2023, Bologna, Italy Leandro Pacheco, Paulo Coelho, and Fernando Pedone

Algorithm 3 PrimCast primary change algorithm at process 𝑝 ∈ 𝑔.
57: when Ω𝑔 = 𝑝 and 𝑠𝑡𝑎𝑡𝑒 ∉ {primary, candidate}:
58: 𝑠𝑡𝑎𝑡𝑒 ← candidate

59: E𝑝𝑟𝑜𝑚 ← next epoch higher than E𝑝𝑟𝑜𝑚 for which 𝑝 is the leader

60: r-multicast(⟨new-epoch, E𝑝𝑟𝑜𝑚⟩) to 𝑔

61: when r-deliver(⟨new-epoch, E⟩) and E ≥ E𝑝𝑟𝑜𝑚 :

62: if 𝑝 ≠ leader(E) then 𝑠𝑡𝑎𝑡𝑒 ← promised

63: E𝑝𝑟𝑜𝑚 ← E
64: r-multicast(⟨promise, E, 𝑝, 𝑐𝑙𝑜𝑐𝑘, E𝑐𝑢𝑟 ,T⟩) to 𝑝

65: when 𝑠𝑡𝑎𝑡𝑒 = candidate and promises for E𝑝𝑟𝑜𝑚 from a 𝑞𝑢𝑜𝑟𝑢𝑚 ∈ 𝑄𝑔 were r-delivered:

66: E𝑚𝑎𝑥 ← highest epoch in promises

67: T𝑚𝑎𝑥 ← longest state from promises with E𝑚𝑎𝑥 ⊲ get T from most up-to-date replica

68: 𝑡𝑠 ← maximum clock from promises ⊲ see predicate quorum-clock

69: r-multicast(⟨new-state, E𝑝𝑟𝑜𝑚,T𝑚𝑎𝑥 , 𝑡𝑠⟩)

70: when r-deliver(⟨new-state, E,T ′, 𝑡𝑠⟩) and E = E𝑝𝑟𝑜𝑚 :

71: T ← T ′
72: E𝑐𝑢𝑟 ← E ⊲ move 𝑝 to E𝑐𝑢𝑟
73: 𝑐𝑙𝑜𝑐𝑘 ← max(𝑐𝑙𝑜𝑐𝑘, 𝑡𝑠)
74: r-multicast(⟨accept, E𝑐𝑢𝑟 , 𝑝⟩) to 𝑔 ⊲ inform other replicas we’re at E𝑐𝑢𝑟
75: when 𝑠𝑡𝑎𝑡𝑒 ∈ {promised, candidate} and E𝑐𝑢𝑟 = E𝑝𝑟𝑜𝑚 and ⊲ when 𝑝 is at E𝑐𝑢𝑟 and
76: accepts for E𝑐𝑢𝑟 from some 𝑞𝑢𝑜𝑟𝑢𝑚 ∈ 𝑄𝑔 were r-delivered: ⊲ so is a 𝑞𝑢𝑜𝑟𝑢𝑚 ∈ 𝑄𝑔

77: if 𝑠𝑡𝑎𝑡𝑒 = promised then 𝑠𝑡𝑎𝑡𝑒 ← follower

78: if 𝑠𝑡𝑎𝑡𝑒 = candidate then 𝑠𝑡𝑎𝑡𝑒 ← primary

79: for each ⟨E,𝑚, 𝑡𝑠⟩ in T
80: if ⟨ack,𝑚,𝑔, E, 𝑡𝑠, 𝑝⟩ ∉M then ⊲ send acks we have not yet sent (in T ’s order)
81: r-multicast(⟨ack,𝑚,𝑔, E, 𝑡𝑠, 𝑝⟩ ∉M) to𝑚.𝑑𝑒𝑠𝑡

received: out of all the promises with the highest current epoch, it

picks the longest T . Then, 𝑝 picks the highest clock value out every

promise as the starting clock value of the new epoch E. Before
𝑝 becomes the primary, it must ensure that the new epoch state

is safe in a quorum of processes in 𝑔. Thus, 𝑝 sends a new-state

message to all processes in 𝑔 (line 69). When a process receives the

new-state for the epoch it is promised to (line 70), it installs the

state by setting T and E𝑐𝑢𝑟 , updates its clock, and then sends an

accept message to every process in 𝑔. Once a process has E𝑐𝑢𝑟 = E
and receives a quorum of accepts for E (line 76), it either becomes

the primary (in case of 𝑝) or a follower. Finally, for each tuple

present in T , in order, if the process has not yet sent the respective

ack (i.e., the ack is not present inM), it sends it to the relevant

destinations (line 80).

5.2.7 On liveness. Eventually, from the properties of the leader

election oracle Ω𝑔 and our model assumptions (§2), at each group

𝑔, the same correct process 𝑝 ∈ 𝑔 is forever output by Ω𝑔 at every

process in 𝑔. If 𝑝 is not the primary of 𝑔 then, from the algorithm

(line 57), it will start a new epoch and eventually become the pri-

mary. Any message𝑚 destined to 𝑔 that is a-multicast by a correct

processes, if not yet proposed or delivered in 𝑔 (lines 24 and 35),

will eventually be present in 𝑝’sM set and be proposed by 𝑝 . Since

no other process in 𝑔 starts a new epoch, and 𝑝 is correct, 𝑚 is

eventually assigned a local timestamp in 𝑔. The same is true for

each other group in𝑚.𝑑𝑒𝑠𝑡 and for messages with a smaller times-

tamp than𝑚 in 𝑔, thus𝑚 is eventually assigned a final timestamp

and delivered at 𝑔. In practice, it is enough that primaries at each

group are stable for periods long enough for local timestamps to

be decided and propagated to other groups.

6 EXPLOITING LOOSELY SYNCHRONIZED
CLOCKS

Many datacenters today provide loosely synchronized clocks through

the use of satellite and atomic clocks [12, 40]. When synchronized

clocks are available, we propose the following modification to

PrimCast, inspired by hybrid logical clocks [26]. Assuming that

real-clock() returns the server’s hardware clock value, we modify

line 37 as follows:

𝑐𝑙𝑜𝑐𝑘 ← max(𝑐𝑙𝑜𝑐𝑘 + 1, real-clock())
Assume Δ to be the communication step latency, and that clocks

are synchronized with a maximum skew of 𝜖 from real time (i.e.,

2𝜖 from each other). By having the primary update its clock before

proposing a message’s local timestamp, the failure-free delivery

latency changes from 5Δ to min(5Δ, 4Δ + 2𝜖). The argument is as

follows. Let𝑚 be a message delivered at process 𝑝 ∈ 𝑔 with final

timestamp 𝑡𝑠 , and let 𝑡 be the time at which𝑚 is a-multicast. Since

it takes at most Δ for𝑚 to arrive at any primary in𝑚.𝑑𝑒𝑠𝑡 from

being a-multicast, the maximum timestamp possibly assigned to𝑚

is 𝑡 + Δ + 𝜖 . Let𝑚′ be the message with largest local timestamp at 𝑔

smaller than 𝑡𝑠 . The latest time at which𝑚′ can be a-multicast and

still be ordered before𝑚 by some primary in𝑚.𝑑𝑒𝑠𝑡 is the minimum

of:

PrimCast: A Latency-Efficient Atomic Multicast Middleware ’23, December 11–15, 2023, Bologna, Italy

Figure 1: Example execution of PrimCast, showing only messages needed for 𝑝2 to a-deliver a message a-multicast by 𝑝5.

• 𝑡+2Δ: themaximum time for primaries in𝑚.𝑑𝑒𝑠𝑡 to exchange

proposals and update their clock to 𝑡𝑠 .

• 𝑡 + Δ + 2𝜖 : the time for𝑚 to reach primaries is 𝑡 + Δ, and 2𝜖

comes from the worst case of 𝑡𝑠 being assigned a value 𝜖 in

the future and 𝑡𝑠 ′ a value 𝜖 in the past.

Since the collision-free latency of PrimCast is 3Δ, the final times-

tamp of𝑚′ is known at 𝑝 , at the latest, by time 𝑡+𝑚𝑖𝑛(2Δ,Δ+2𝜖)+3Δ,
allowing for𝑚 to be delivered. Assuming 2𝜖 is smaller than Δ, this
effectively reduces the worst case convoy effect by the difference

between the two. We show in §7.5 that this technique is particularly

effective in a geographically distributed deployment where 2𝜖 can

be roughly an order of magnitude smaller than Δ [12]. We note that

this modification does not impact the correctness of the algorithm,

and also cannot increase the worst case convoy effect, even if clocks

are not synchronized.

7 PERFORMANCE EVALUATION
In this section, we experimentally evaluate PrimCast. Our evalu-

ation has the objectives of (1) showing how PrimCast compares

against the state-of-the-art protocols, under varying system load,

(2) how PrimCast behaves under the worst-case scenario, where all

messages are destined to every group, and (3) showing the impact

of the convoy effect in the different protocols.

7.1 Implementation
We implemented a prototype of PrimCast in Rust using Tokio [41],

an asynchronous runtime for building network applications. The

prototype is available at [35]. Our implementation is not specif-

ically designed for multi-thread execution, but Tokio’s executor

can exploit the parallelism and we run PrimCast with 2 threads.

In our experiments, we compare PrimCast against two state-of-

the-art atomic multicast protocols, FastCast and White-Box (see

§4 for details). Table 1 summarizes the main characteristics of the

three protocols. For both FastCast and White-Box, we use the open-

source implementations provided by the authors in [17] and [43]

respectively, both implemented in C using libevent [29]. We use

in-memory storage for all implementations. We also run PrimCast

using the hybrid clock approach described §6 (PrimCast HC in the

figures).

In our implementation, processes rely on TCP for FIFO ordering,

and use reconnections and timeouts to decide when to request

missing information from other processes. We note this is true for

the other implementations as well. Furthermore, while PrimCast

exhibits a quadratic communication pattern, a lot of the information

exchanged between processes is redundant and needs to be received

only once. Our implementation includes optimizations such as

sending a message’s payload to each replica only once (with the

start tuple) and merging sequential acknowledgements into a

single message when possible.

7.2 Setup and scenarios
We run all experiments in a cluster, each machine consisting of an

eight-core Intel Xeon L5420 2.5GHz processor, 8GB of memory, and

1Gbps ethernet card. The RTT (round-trip time) inside the cluster is

around 0.09ms. Besides the deployment inside a LAN, we consider

two different emulated wide-area network (WAN) scenarios. To

emulate WAN latencies, we used Linux traffic control tools. In all

scenarios we deploy 8 groups, each group consisting of 3 replicas.

Table 2 summarizes the deployment scenarios. The scenario with

colocated leaders evaluates the performance of the protocols in a

WAN deployment when group leaders are colocated in the same dat-

acenter. We emulate 3 geographic regions, each with one datacenter,

and deploy one replica from each group in each datacenter. We use

the latency values reported in [20], with a standard deviation of

5%. To evaluate the convoy effect in the different protocols, we also

emulate a WAN deployment with distributed leaders. Each of the

8 groups is deployed to its own geographic region, the RTT being

Middleware ’23, December 11–15, 2023, Bologna, Italy Leandro Pacheco, Paulo Coelho, and Fernando Pedone

Protocol Collision-free Failure-free Message complexity for a-multicast
latency latency to 𝑘 groups of size 𝑛

FastCast 4 8 𝑘𝑛 + 2𝑘2𝑛 + 2𝑘𝑛 + 2𝑘𝑛2
𝑘 (2𝑘𝑛 + 3𝑛 + 2𝑛2)

(start) + (snd-soft + snd-hard) + (2× paxos 2a) + (2× paxos 2b)

White-Box 3 (at leaders) 5 (at leaders) 𝑘 + 𝑘2𝑛 + 𝑘2𝑛 + 𝑘𝑛
4 6 𝑘 (1 + 2𝑘𝑛 + 𝑛)

(start) + (leaders accept) + (followers ack) + (deliver)

PrimCast 3 5 𝑘𝑛 + 𝑘2𝑛 + 𝑘2𝑛2 + 𝑘𝑛2

𝑘 (𝑘𝑛 + 𝑘𝑛2 + 𝑛 + 𝑛2)
(start) + (leaders ack) + (followers ack) + (bump*)

Table 1: Protocol latency and message complexity. *Bump messages not always required.

Scenario Cross-group RTT Intra-group RTT Description
(between leaders)

LAN 0.09ms 0.09ms 8 groups deployed inside a cluster.

WAN - colocated leaders 0.09ms 60ms, 76ms, 130ms 3 regions, each of the 8 groups deployed across them.

WAN - distributed leaders 90ms 30ms 8 regions, each with 3 datacenters.

Each group deployed in its own region.

Table 2: Deployment scenarios

90ms between regions and 30ms inside a region, with a standard

deviation of 5%.

We collocate one client with each replica in the system. For

each message, a client chooses the destination groups at random,

except for the group of the replica it is connected to, which is

always included. To increase the system load, we uniformly increase

the number of outstanding messages from each client. Latency is

measured at the client as the time from the message being sent to it

being delivered and returned to the client by its replica. We report

latency values gathered from all clients in the system.

7.3 LAN performance
Figure 2 compares the performance of the four protocols in a clus-

ter deployment, as load increases, with every message multicast

to 2 destinations. Our results show that PrimCast has better per-

formance than both FastCast and White-Box, at every load level

measured. FastCast reaches saturation earlier, as it needs to run a

slow and a fast path in parallel for message delivery (§4.1). When

compared toWhite-Box, even though PrimCast relies on a quadratic

communication pattern, the extra data that needs to be exchanged

consists mostly of small acknowledgment information, allowing

for an efficient implementation, as our results show. We also note

that the hybrid clock approach does not have any particular impact

on performance when leaders are colocated, as the convoy effect is

mostly a function of cross-group latency. Even tough none of the

protocols were designed with a LAN deployment in mind, these

results show that PrimCast can be a reasonable alternative in a

LAN.

7.4 WAN with colocated leaders
Figure 3 shows how the three protocols behave under increasing

load, with messages multicast to 1, 2, 4 or 8 destination groups.

 0

 5

 10

 15

 20

 25

 50 100 150 200 250 300 350 400 450 500

9
5
-t

h
 p

er
ce

n
ti

le
 L

at
en

cy
 (

m
s)

Throughput (x 1000 msg/s)

White-Box

FastCast

PrimCast

PrimCast HC

Figure 2: Throughput and 95th-percentile latency in a LAN, with
all messages multicast to two groups.

Both PrimCast and FastCast exhibit the same latency behaviour

until close to saturation. In the common setup of 3 replicas per

group, FastCast can also quickly deliver messages at non-leader

replicas. Even then, PrimCast can deliver from 1.6x (1 destination)

to 5x (2 destinations) the throughput of FastCast. While some of

this difference can be be accounted for by the use of 2 threads in

PrimCast’s asynchronous execution library, FastCast performance

degrades faster with increasing destinations due to the fast and

slow paths that need to be executed by the protocol. White-Box

on the other hand, needs one extra communication step from lead-

ers, where a message is initially delivered, to the other replicas.

This extra latency shows in the 95th percentile latency over all

PrimCast: A Latency-Efficient Atomic Multicast Middleware ’23, December 11–15, 2023, Bologna, Italy

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0.1 1 10 100 1000

9
5

-t
h

 p
er

ce
n

ti
le

 L
at

en
cy

 (
m

s)

Throughput (x 1000 msg/s)

White-Box

FastCast

PrimCast

PrimCast HC

(a) Messages destined to a single group.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0.1 1 10 100 1000

9
5

-t
h

 p
er

ce
n

ti
le

 L
at

en
cy

 (
m

s)

Throughput (x 1000 msg/s)

White-Box

FastCast

PrimCast

PrimCast HC

(b) Messages destined to 2 groups.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0.1 1 10 100 1000

9
5

-t
h

 p
er

ce
n

ti
le

 L
at

en
cy

 (
m

s)

Throughput (x 1000 msg/s)

White-Box

FastCast

PrimCast

PrimCast HC

(c) Messages destined to 4 groups.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0.1 1 10 100 1000

9
5

-t
h

 p
er

ce
n

ti
le

 L
at

en
cy

 (
m

s)

Throughput (x 1000 msg/s)

White-Box

FastCast

PrimCast

PrimCast HC

(d) Messages destined to all 8 groups.

Figure 3: Throughput and 95th latency in a WAN with no cross-group latency (i.e., collocated leaders).

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0.1 1 10 100

9
5

-t
h

 p
er

ce
n

ti
le

 L
at

en
cy

 (
m

s)

Throughput (x 1000 msg/s)

White-Box

FastCast

PrimCast

PrimCast HC

(a) Messages destined to 2 groups.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0.1 1 10 100

9
5

-t
h

 p
er

ce
n

ti
le

 L
at

en
cy

 (
m

s)

Throughput (x 1000 msg/s)

White-Box

FastCast

PrimCast

PrimCast HC

(b) Messages destined to 4 groups.

Figure 4: Throughput and 95th latency in a WAN with high cross-group latency.

Middleware ’23, December 11–15, 2023, Bologna, Italy Leandro Pacheco, Paulo Coelho, and Fernando Pedone

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 100 120 140 160 180 200 220 240

C
D

F

Latency (ms)

White-Box

White-Box Leaders

FastCast

PrimCast

PrimCast HC

(a) 2 destination groups, 2 outstanding msgs per client (low convoy)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 100 120 140 160 180 200 220 240

C
D

F

Latency (ms)

White-Box

White-Box Leaders

FastCast

PrimCast

PrimCast HC

(b) 2 destination groups, 128 outstanding msgs per client (high convoy)

Figure 5: Latency CDFs at two different load levels, corresponding to the 2nd and 8th points from the curves in Figure 4a

clients. Similarly to the results in a LAN, the convoy effect in this

deployment is almost non-existent, as it is a function of cross-group

latency. Hence, using hybrid clocks has no effect on latency.

7.5 WAN with distributed leaders
Figure 4 shows the behaviour of the three protocols with messages

multicast to 2 and 4 destination groups, as load increases. Differently

from the previous deployment, the convoy effect is now clearly

visible. From the latency curves, it can be seen that the convoy effect

kicks in at different load levels in each protocol, but all are affected

by it. As with the previous deployment, White-Box shows worse

95th latency due to extra delay needed to deliver messages at non-

leader replicas. Furthermore, PrimCast is able to deliver messages

at every destination earlier than any of the two other protocols:

exactly one intra-group communication step earlier, around 15ms

in this deployment. Moreover, in this setup, using hybrid clocks

greatly reduces the latency induced by the convoy effect.

Figure 5 shows the latency distribution for all clients in the sys-

tem, for each protocol, at two different system loads: one with low

load and thus low convoy (left), and one with high load (right).

Figure 5a demonstrates how PrimCast consistently delivers lower

latencies at every replica in the system. Figure 5b shows how the

convoy effect impacts most messages in the system once it takes

effect, and also how using hybrid clocks can almost eliminate the ef-

fects of convoy in this particular workload. For White-Box, we also

isolate the latency values for messages multicast and delivered at

group leaders. In a deployment with distributed leaders, White-Box

seems heavily affected by the convoy effect even at low load levels,

and PrimCast has lower delivery latencies even when only con-

sidering deliveries at group leaders. We explain this phenomenon

as follows. In White-Box, both leaders and followers need to wait

for quorums before forwarding information to other processes. In

PrimCast, both acks and clock updates are exchanged immediately,

with quorums only checked when delivering a message.

8 CONCLUSION
This paper presented PrimCast, a genuine atomic multicast protocol

that can deliver messages, from sender to any destination process,

in 3 communication steps. In the presence of conflicting messages,

delivery happens at every destination in at most 5 communication

steps. This is an improvement over previous work, which needed at

least 4 (or 6 in the presence of concurrency) communication steps

for delivery at some of the destinations. PrimCast achieves lower la-

tency through the usage of a primary-based replication mechanism

and a novel way of tracking logical clocks through simple quorum

intersection. We also describe how to exploit loosely synchronized

clocks to reduce the impact of the convoy effect that happens under

high load. Our experimental evaluation of PrimCast shows that it

consistently delivers lower latency than the alternatives while still

providing higher throughput. The results also show that, in some

cases, using loosely synchronized clocks can almost eliminate the

effects of convoy on delivery latency.

ACKNOWLEDGMENTS
We thank the anonymous reviewers and our shepherd, Jérémie

Decouchant, for their valuable feedback. This work was partially

supported by the Swiss National Science Foundation (# 175717), and

Conselho Nacional de Desenvolvimento Científico e Tecnológico—

CNPq Universal project 407139/2021-4.

REFERENCES
[1] Marcos K Aguilera, Carole Delporte-Gallet, Hugues Fauconnier, and Sam Toueg.

2001. Stable leader election. In Distributed Computing: 15th International Con-
ference, DISC 2001 Lisbon, Portugal, October 3–5, 2001 Proceedings 15. Springer,
108–122.

[2] Tarek Ahmed-Nacer, Pierre Sutra, and Denis Conan. 2016. The convoy effect in

atomic multicast. In 2016 IEEE 35th Symposium on Reliable Distributed Systems
Workshops (SRDSW). IEEE, 67–72.

[3] Mahesh Balakrishnan, Dahlia Malkhi, Vijayan Prabhakaran, Ted Wobbler,

Michael Wei, and John D Davis. 2012. Corfu: A shared log design for flash

clusters. In Presented as part of the 9th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 12). 1–14.

[4] Samuel Benz, Parisa Jalili Marandi, Fernando Pedone, and Benoît Garbinato.

2014. Building Global and Scalable Systems with Atomic Multicast. In 15th
ACM/IFIP/USENIX International Middleware Conference (Middleware).

PrimCast: A Latency-Efficient Atomic Multicast Middleware ’23, December 11–15, 2023, Bologna, Italy

[5] Samuel Benz and Fernando Pedone. 2017. Elastic Paxos: A Dynamic Atomic

Multicast Protocol. In 2017 IEEE 37th International Conference on Distributed
Computing Systems (ICDCS). IEEE, 2157–2164.

[6] Carlos Eduardo Bezerra, Daniel Cason, and Fernando Pedone. 2015. Ridge:

high-throughput, low-latency atomic multicast. In 2015 IEEE 34th Symposium on
Reliable Distributed Systems (SRDS). IEEE, 256–265.

[7] Carlos Eduardo Bezerra, Fernando Pedone, and Robbert Van Renesse. 2014. Scal-

able state-machine replication. In 2014 44th Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks. IEEE, 331–342.

[8] Kenneth P Birman and Thomas A Joseph. 1987. Reliable communication in the

presence of failures. ACM Transactions on Computer Systems (TOCS) 5, 1 (1987),
47–76.

[9] Mike Blasgen, Jim Gray, Mike Mitoma, and Tom Price. 1979. The convoy phe-

nomenon. ACM SIGOPS Operating Systems Review 13, 2 (1979), 20–25.

[10] Paulo Coelho, Tarcisio Ceolin Junior, Alysson Bessani, Fernando Dotti, and

Fernando Pedone. 2018. Byzantine fault-tolerant atomic multicast. In 2018 48th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN). IEEE, 39–50.

[11] Paulo R Coelho, Nicolas Schiper, and Fernando Pedone. 2017. Fast atomic mul-

ticast. In Dependable Systems and Networks (DSN), 2017 47th Annual IEEE/IFIP
International Conference on. IEEE, 37–48.

[12] James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost,

Jeffrey John Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,

Peter Hochschild, et al. 2013. Spanner: Google’s globally distributed database.

ACM Transactions on Computer Systems (TOCS) 31, 3 (2013), 8.
[13] James Cowling and Barbara Liskov. 2012. Granola: Low-Overhead Distributed

Transaction Coordination. In 2012 USENIX Annual Technical Conference (USENIX
ATC 12). USENIX Association, Boston, MA, 223–235. https://www.usenix.org/

conference/atc12/technical-sessions/presentation/cowling

[14] Xavier Défago, André Schiper, and Péter Urbán. 2004. Total order broadcast and

multicast algorithms: Taxonomy and survey. ACM Computing Surveys (CSUR)
36, 4 (2004), 372–421.

[15] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. 1988. Consensus in the

presence of partial synchrony. J. ACM 35, 2 (1988), 288–323.

[16] Vitor Enes, Carlos Baquero, Alexey Gotsman, and Pierre Sutra. 2021. Efficient

Replication via Timestamp Stability. In Proceedings of the Sixteenth European
Conference on Computer Systems (Online Event, United Kingdom) (EuroSys ’21).
ACM, New York, NY, USA, 178–193.

[17] FastCast implementation [n. d.]. https://bitbucket.org/paulo_coelho/libmcast.

[18] Udo Fritzke and Philippe Ingels. 2001. Transactions on Partially Replicated

Data based on Reliable and Atomic Multicasts. In Proceedings of the The 21st
International Conference on Distributed Computing Systems. 284–291.

[19] Udo Fritzke, Philippe Ingels, Achour Mostéfaoui, and Michel Raynal. 1998. Fault-

tolerant total order multicast to asynchronous groups. In Reliable Distributed
Systems, 1998. Proceedings. Seventeenth IEEE Symposium on. IEEE, 228–234.

[20] Alexey Gotsman, Anatole Lefort, and Gregory Chockler. 2019. White-Box Atomic

Multicast. In 2019 49th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN). IEEE, 176–187.

[21] Rachid Guerraoui and André Schiper. 1997. Genuine Atomic Multicast. In Pro-
ceedings of the 7th IEEE International Conference on Computer Communications
and Networks. IEEE, 840–847.

[22] Rachid Guerraoui and Andre Schiper. 1997. Total order multicast to multiple

groups. In Proceedings of 17th International Conference on Distributed Computing
Systems. IEEE, 578–585.

[23] Rachid Guerraoui and André Schiper. 2001. Genuine atomic multicast in asyn-

chronous distributed systems. Theoretical Computer Science 254, 1-2 (2001),

297–316.

[24] Vassos Hadzilacos and Sam Toueg. 1994. A Modular Approach to Fault-Tolerant
Broadcasts and Related Problems. Technical Report. Cornell University, Ithaca,
NY, USA.

[25] Flavio P Junqueira, Benjamin C Reed, and Marco Serafini. 2011. Zab: High-

performance broadcast for primary-backup systems. In 2011 IEEE/IFIP 41st Inter-
national Conference on Dependable Systems & Networks (DSN). IEEE, 245–256.

[26] Sandeep S Kulkarni, Murat Demirbas, Deepak Madappa, Bharadwaj Avva, and

Marcelo Leone. 2014. Logical physical clocks. In International Conference on
Principles of Distributed Systems. Springer, 17–32.

[27] Long Hoang Le, Enrique Fynn, Mojtaba Eslahi-Kelorazi, Robert Soulé, and Fer-

nando Pedone. 2019. Dynastar: Optimized dynamic partitioning for scalable state

machine replication. In 2019 IEEE 39th International Conference on Distributed
Computing Systems (ICDCS). IEEE, 1453–1465.

[28] Jialin Li, Ellis Michael, Naveen Kr Sharma, Adriana Szekeres, and Dan RK Ports.

2016. Just Say NO to Paxos Overhead: Replacing Consensus with Network

Ordering. In OSDI. 467–483.
[29] Libevent library [n. d.]. https://libevent.org.

[30] Barbara Liskov and James Cowling. 2012. Viewstamped replication revisited.
Technical Report. Technical Report MIT-CSAIL-TR-2012-021, MIT.

[31] Parisa Jalili Marandi, Marco Primi, and Fernando Pedone. 2012. Multi-ring

paxos. In Dependable Systems and Networks (DSN), 2012 42nd Annual IEEE/IFIP

International Conference on. IEEE, 1–12.
[32] Leandro Pacheco. 2023. Scaling Strongly Consistent Replicated Systems. Ph. D.

Dissertation. Università della Svizzera italiana. https://sonar.ch/usi/documents/

325574

[33] Leandro Pacheco, Raluca Halalai, Valerio Schiavoni, Fernando Pedone, Etienne

Riviere, and Pascal Felber. 2016. GlobalFS: A Strongly Consistent Multi-site File

System. In Reliable Distributed Systems (SRDS), 2016 IEEE 35th Symposium on.
IEEE, 147–156.

[34] Fernando Pedone and André Schiper. 1999. Generic Broadcast. In Proceedings of
the 13th International Symposium on Distributed Computing (DISC’99, formerly
WDAG).

[35] PrimCast implementation [n. d.]. https://github.com/pacheco/primcast.

[36] Luis Rodrigues, Rachid Guerraoui, and André Schiper. 1998. Scalable atomic

multicast. In International Conference on Computer Communications and Networks.
840–847.

[37] Nicolas Schiper and Fernando Pedone. 2007. Optimal atomic broadcast and

multicast algorithms for wide area networks. In Proceedings of the twenty-sixth
annual ACM symposium on Principles of distributed computing. ACM, 384–385.

[38] Nicolas Schiper and Fernando Pedone. 2008. On the inherent cost of atomic

broadcast and multicast in wide area networks. In International conference on
Distributed computing and networking (ICDCN). 147–157.

[39] Nicholas Schiper, Pierre Sutra, and Fernando Pedone. 2010. P-Store: Genuine

Partial Replication in Wide Area Networks. In Symposium on Reliable Distributed
Systems (SRDS).

[40] Amazon Time Sync Service. [n. d.]. https://aws.amazon.com/about-aws/whats-

new/2017/11/introducing-the-amazon-time-sync-service/.

[41] Tokio asynchronous runtime [n. d.]. https://tokio.rs/.

[42] Robbert Van Renesse, Nicolas Schiper, and Fred B Schneider. 2014. Vive la

différence: Paxos vs. viewstamped replication vs. zab. IEEE Transactions on
Dependable and Secure Computing 12, 4 (2014), 472–484.

[43] White-Box implementation [n. d.]. https://github.com/imdea-software/atomic-

multicast.

https://www.usenix.org/conference/atc12/technical-sessions/presentation/cowling
https://www.usenix.org/conference/atc12/technical-sessions/presentation/cowling
https://sonar.ch/usi/documents/325574
https://sonar.ch/usi/documents/325574

	Abstract
	1 Introduction
	2 Model and definitions
	2.1 System model
	2.2 Reliable and Atomic Multicast

	3 Background
	3.1 Timestamp-based message ordering
	3.2 Collision-free and failure-free latency

	4 Related work
	4.1 FastCast
	4.2 White-Box multicast
	4.3 Other protocols

	5 PrimCast
	5.1 Basic ideas
	5.2 Algorithm

	6 Exploiting loosely synchronized clocks
	7 Performance evaluation
	7.1 Implementation
	7.2 Setup and scenarios
	7.3 LAN performance
	7.4 WAN with colocated leaders
	7.5 WAN with distributed leaders

	8 Conclusion
	Acknowledgments
	References

