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Abstract—The paper introduces Heron, a state machine repli-
cation system that delivers scalable throughput and microsec-
ond latency. Heron achieves scalability through partitioning
(sharding) and microsecond latency through a careful design
that leverages one-sided RDMA primitives. Heron significantly
improves the throughput and latency of applications when com-
pared to message passing-based replicated systems. But it really
shines when executing multi-partition requests, where objects in
multiple partitions are accessed in a request, the Achilles heel of
most partitioned systems. We implemented Heron and evaluated
its performance extensively. Our experiments show that Heron
reduces the latency of coordinating linearizable executions to the
level of microseconds and improves the performance of executing
complex workloads by one order of magnitude in comparison to
state-of-the-art S-SMR systems.

I. INTRODUCTION

State machine replication (SMR) is an established technique
for high availability [1], [2]. Servers replicate a service or
application and use consensus to agree on the execution order
of client requests. Classic SMR increases the availability of a
service but does not improve its performance since each replica
stores the complete service state (i.e., full replication) and
executes all the requests. Some approaches have proposed to
partition the service state (sharding) to boost the performance
of state machine replication (e.g., [3], [4], [5]). For example,
with state partitioning, S-SMR improved the performance of
ZooKeeper, a coordination service, scaling throughput linearly
with the number of partitions in some cases and outperforming
a fully replicated ZooKeeper by up to five times [3]. With
state partitioning, requests must be ordered consistently within
partitions and across partitions using an ad hoc ordering
protocol (e.g., [6], [7]) or a communication abstraction like
atomic multicast [8].

Efficiently executing multi-partition requests is challenging.
This is because providing classic SMR’s consistency guar-
antees [9], [10] without limiting the scope of multi-partition
requests (e.g., computation in one partition cannot depend on
data stored in another [11]) requires replicas to exchange data
during request execution. In DynaStar [4], a state-of-the-art
partitioned SMR system, replicas in the partitions involved
in the execution of a multi-partition request migrate the data
needed to execute the request to the replicas of a single
partition, so that these replicas can execute the request. This
data exchange during request execution results in substantial

overhead: DynaStar clients experience latency of around 1
millisecond for single-partition requests and 10× as much for
multi-partition requests.

For years, practical distributed systems have been developed
based on message-passing communication. Recent advances in
shared memory technology, however, such as RDMA, have
enabled systems to benefit from improved communication
performance. RDMA provides the potential for high through-
put and low latency communication by bypassing the kernel
and implementing network stack layers in hardware. With
RDMA, servers can access remote memories without involving
the host server’s CPU. Compared to message passing-based
systems, RDMA introduces two additional complications:
multiple servers might access a memory region concurrently
(race conditions); and a slow server may miss state updates
if a faster server modifies the value before the slow server
(lagger) has had a chance to read the value.

RDMA has been used by several high-performance repli-
cated systems (e.g., [12], [13], [14], [15], [16]). This paper
introduces Heron, the first partitioned state machine replication
system on shared memory (see Figure 1). Heron delivers
scalable throughput through state partitioning and microsecond
latency by careful use of RDMA primitives. Heron relies on an
RDMA-based atomic multicast protocol to consistently order
requests within and across partitions [17]. It executes multi-
partition requests using a combination of different strategies
to handle race conditions and laggers.

Replicas coordinate when executing multi-partition requests
to ensure that partitions are synchronized. Each replica is
responsible for updating its local data only, that is, a replica
can issue local and remote reads, but local writes only. As
a consequence, replicas do not contend on write operations.
Remote reads issued by a replica in one partition that may
conflict with local writes issued by a replica in another parti-
tion are handled with a dual-versioning technique, where reads
are on the most up-to-date version of the object and updates
modify the older version. Replica coordination encompasses
a majority of replicas in each partition involved in a request.
While coordinating with a majority of replicas (instead of all)
avoids blocking due to replica failures, it creates the possibility
of laggers, slow replicas that do not keep up with the fast
majority. Heron uses simple heuristics to reduce the probability
of laggers. Finally, when present, laggers resort to an efficient



state synchronization protocol to update their state.
We extensively evaluate Heron by considering its inherent

coordination latency and performance in TPCC workloads.
We found that Heron adds very low latency of around 3 mi-
croseconds for coordinating executions in a workload in which
requests involve 4 partitions. Heron is able to execute complex
TPCC single-partition requests in 19 microseconds and multi-
partition requests in 35 microseconds. The performance eval-
uation shows more than an order of magnitude performance
improvement when compared to DynaStar [5], a state-of-the-
art message passing-based partitioned SMR system. We also
evaluate Heron’s state synchronization protocol and show that
lagging replicas can be swiftly brought back to date. Heron
is able to recover a replica in a tenth of a second (e.g., about
100 milliseconds for a TPCC warehouse worth of data).

The remainder of the paper is structured as follows. Sec-
tion II presents the system model, RDMA, and atomic multi-
cast. Section III discusses the challenges involved in Heron’s
design, describes its algorithm in detail, and argues about its
correctness. Section IV presents our prototype, and Section V
evaluates its performance. Section VI surveys related work and
Section VII concludes the paper.

II. BACKGROUND

In this section, we introduce the system model and define
linearizability, our consistency criterion (Section II-A), present
the guarantees of atomic multicast, the communication abstrac-
tion used in Heron (Section II-B), and overview Remote Direct
Memory Access (RDMA) technology (Section II-C).

A. Preliminaries

We consider a distributed system consisting of a set of
client and server processes. Processes are correct, if they never
fail, or faulty, otherwise. In either case, processes do not
experience arbitrary (i.e., Byzantine) behavior. The system
is asynchronous: there is no bound on message delay or
on relative process speed. Our protocols ensure safety under
both asynchronous and synchronous execution periods. For
liveness, we assume the system is partially synchronous [22],
that is, it is initially asynchronous and eventually becomes
synchronous. The time when the system becomes synchronous
is called the Global Stabilization Time (GST), and it is un-
known to the processes. Before GST, there are no bounds on
communication and processing delays; after GST, such bounds
exist but are unknown.

Linearizability [9], [10] establishes that there should be a
way to total order client requests such that (a) it respects the
semantics of the objects accessed by the requests, as expressed
in their sequential specifications; and (b) it respects the real-
time ordering of the requests in the execution. There exists a
real-time order among two requests if one request finishes at
a client before the other request starts at a client.

B. Atomic multicast abstraction

In this section, we present the guarantees of the atomic
multicast protocol used by Heron to order requests [17]. Let

Π be the set of server processes in the system and Γ ⊂ 2Π

the set of process groups, where |Γ| = k. Groups are disjoint
and each group contains n = 2f + 1 processes, where f is
the maximum number of faulty processes per group.1 A set of
f + 1 processes in group g is a quorum in g. In Heron, each
process group corresponds to a partition of the system.

A (client) process atomically multicasts a message m to
groups in m.dst by invoking primitive multicast(m), where
m.dst is a special field in m with m’s destinations; a (server)
process delivers m with primitive deliver(m). We define the
relation ≺ on the set of messages processes deliver as follows:
m ≺ m′ iff there exists a process that delivers m before m′.

Atomic multicast ensures the following properties:
• Validity: if a correct process p multicasts a message m,

then eventually all correct processes q ∈ g, where g ∈
m.dst , deliver m.

• Integrity: for any process p and any message m, p delivers
m at most once, and only if p ∈ g, g ∈ m.dst , and m
was previously multicast.

• Uniform agreement: if a process delivers a message m,
eventually all correct processes q ∈ m.dst deliver m.

• Uniform prefix order: for any two messages m and m′

and any two processes p and q such that p ∈ g, q ∈ h and
{g, h} ⊆ m.dst ∩m′.dst , if p delivers m and q delivers
m′, then either p delivers m′ before m or q delivers m
before m′.

• Uniform acyclic order: the relation ≺ is acyclic.
Uniform acyclic order and uniform prefix order ensure that

processes deliver messages consistently across the system. For
example, any two processes p and q that deliver both messages
m and m′, where p and q can be in the same group or in
different groups, deliver m and m′ in the same order. Uniform
prefix order prevents the situation in which messages m and
m′ are multicast to groups that contain p and q, p delivers
m and fails before delivering m′, and q delivers m′ and fails
before delivering m.

The atomic multicast protocol used by Heron assigns a
unique timestamp, stored in m.tmp, to every delivered mes-
sage m, such that for any two messages m and m′, if m ≺ m′

then m.tmp < m′.tmp. Processes in Heron use timestamps
to infer the order of delivered messages.

C. Remote Direct Memory Access

In addition to the atomic multicast abstraction presented
in the previous section, processes in Heron can communicate
through Remote Direct Memory Access (RDMA). RDMA
provides one-sided operations (e.g., read, write), two-sided
operations (e.g., send, receive), and atomic operations (e.g.,
compare-and-swap). The two-sided operations rely on memory
copies in user space and involve the CPU of the remote
host. Thus, when compared to one-sided RDMA verbs, they

1The assumption about disjoint groups has little practical implication since
it does not prevent collocating processes that are members of different groups
on the same machine. Yet, it is important since atomic multicast requires
strong synchronous assumptions when groups intersect [23].
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Fig. 1: Message-passing versus shared memory (RDMA) replicated systems (see Section VI for details).

introduce additional overhead [12]. Previous studies have es-
tablished guidelines to use RDMA operations efficiently [24],
[25], [26]. In Heron, processes communicate using remote
read and write operations only. We refrain from using remote
write operations in the execution of requests since it leads to
simpler logic. We resort to remote writes when coordinating
the execution and handling state transfer.

RDMA offers three transport modes: Unreliable Datagram
(UD), Unreliable Connection (UC), and Reliable Connection
(RC). UD supports both one-to-one and one-to-many trans-
mission without establishing connections, whereas UC and
RC are connection-oriented and only support one-to-one data
transmission. RC guarantees that the data transmission is
reliable and correct in the network layer, while UC does not
have such a guarantee. Heron relies on RC to provide in-order
and reliable delivery. The RDMA-enabled network card on
each remote host creates a logical RDMA endpoint known as
a Queue Pair, which includes a send queue and a receive queue
for storing data transfer requests, to establish a connection
between two remote hosts.

III. SCALABLE STATE MACHINE REPLICATION ON
SHARED MEMORY

In this section, we discuss the challenges involved in
Heron’s design (Section III-A), present Heron in detail (Sec-
tion III-B), argue about its correctness (Section III-C), and
consider a few extensions to the current design (Section III-D).

A. Design overview

In Heron, application state is partitioned (or sharded), for
performance, and each partition is replicated, for high avail-
ability [3], [5], [11], [20], [27]. Clients use atomic multicast to
propagate requests to the partitions involved in the request. A
partition is involved in a request if the request reads or writes
an object in the partition. This scheme assumes that the objects
read and written by a request are estimated before the request
is executed. This assumption is common in partitioned SMR
systems (e.g., [3], [5], [27], [3]) and in some transactional
systems (e.g., one-shot transactions [6]). Moreover, Heron

assumes that the execution of a request has a reading phase,
during which a replica reads local and remote objects without
updating any objects, and a writing phase, during which the
replica updates local objects. Once the replica starts the writing
phase, it does not read any objects. This assumption is not
fundamental and could be relaxed, at the cost of additional
complexity in how Heron executes requests.

Single-partition requests are handled as in classic state
machine replication: replicas of a partition execute requests
deterministically and sequentially in the order induced by
atomic multicast. Since requests involve a single partition, all
data read and written as part of the execution of a request are
local to the replicas of the partition involved.

Multi-partition requests require coordination between par-
titions and remote operations (Figure 2). After a replica ri
delivers a multi-partition request R (Phase 1) and before ri
executes R, ri coordinates with replicas in other partitions
involved in R (Phase 2) to ensure that these partitions have also
delivered R and their state reflects all requests that precede
R. Although the coordination used by Heron is analogous to
barriers, instead of waiting for every replica of each partition
involved in a request, a replica waits for a majority of replicas
in the other partitions. This ensures that no replica remains
blocked in case of replica failures, as each partition has
a majority of correct servers. Coordinating with a majority
of replicas only, however, may leave a replica behind other
replicas in its partition, a lagger. We describe later in the
section how to reduce the likelihood of laggers and how to
cope with them when they happen.

In Heron, all partitions involved in a multi-partition request
execute the request, reading local and remote objects, and
updating local objects only (Phase 3). A replica does not
update objects in other partitions, as these objects will be
updated by the replicas that host the objects (i.e., their local
objects)—in Section III-D we discuss an alternative approach.
The execution of a request has a reading step, when the replica
reads local and remote objects without updating any objects,
and a writing step when the replica updates local objects. In
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order for remote reads issued by replica ri against replica rj
to be consistent, we need to ensure that (a) rj has executed
every request that precedes R, (b) ri and rj do not run into
a race condition while executing R (i.e., ri reads an object
while rj is updating the object), and (c) rj has not started
executing a request that succeeds R.

To ensure case (a), ri only issues remote reads to rj if rj
has coordinated with ri in Phase 2. To avoid race conditions
during the execution of a request (case (b)), Heron adopts a
dual-versioning technique that keeps two versions of every
object. When executing a request, replicas read the most
recent version of the object and update the older version.
Each version is tagged with the timestamp of the request that
creates the version, provided by atomic multicast (Section
II-B). To determine the most recent version of an object, a
replica compares timestamps and chooses the version with
the largest timestamp. To handle case (c), after a replica has
executed request R, the replica coordinates with replicas in
other partitions involved in R to ensure that remote reads
issued by these replicas will be consistent, that is, they do
not reflect requests that come after R (Phase 4). Essentially,
a replica only moves to the next request after the current
request has been executed at every involved partition. After
coordinating with replicas in other partitions, a replica replies
to the client (Phase 5).

We illustrate the need for Phases 2 and 4 with two coun-
terexamples (Figure 3). In the execution on the left, after
delivering request R, replica rk remotely reads objects x and
y, stored at ri and rj , respectively. Although requests are
delivered consistently across replicas (i.e., R′ ≺ R), this order
does not ensure coordinated execution, and rk reads the value
of x from ri that succeeds R′ and the value of y from rj that
precedes R′. This execution is not linearizable as R cannot
be both before and after R′. In the execution on the right,
thanks to Phase 2 coordination, rk only reads from the other
replicas after they both have reached request R, and therefore
completed the execution of R′. This is linearizable since the
values read by rk both reflect R′. Without Phase 4, however,

it is possible that rk completes the execution of R and moves
to the next request, R′′, a single-partition request that updates
object z. This creates the situation in which ri reads z from
rk before R′′ and rj reads z from rk after R′′. This results
in a non-linearizable execution as R cannot be both before
and after R′′. Phase 4 avoids this problem since rk can only
execute R′′ after replicas ri and rj have finished R.

Since Phases 2 and 4 only require a majority of replicas
in each involved partition, a replica may be left behind other
replicas in its partition, a lagger. In this case, the lagger may
not be able to execute a multi-partition request because it may
not be able to consistently read the value of remote objects.
This happens because the replicas that store the object needed
have already moved to a later request and updated the object.
In Heron, a lagger needs to transfer a consistent state from
other replicas in its partition, as described below.

When a replica realizes that it lags behind other replicas
in its partition, the replica requests a state transfer to the
other replicas in the partition. A replica finds out that it is
lagging behind when it reads remote objects with timestamps
higher than the timestamp of the request the replica is currently
executing. A lagger needs to update its state from the state of
other replicas in its partition. To communicate state transfer
requests, Heron replicas maintain the State Transfer Memory,
an array of RDMA-registered buffers of size equal to the
number of replicas in the partition. Each array entry stores
two values: req tmp and status. req tmp is the timestamp of
the request that the replica failed to execute. status is the stage
of state transfer protocol: 0 when there is no state transfer in
execution at the replica and 1 when the replica has requested
a state transfer. In addition, replicas maintain a log record of
updated values while executing requests in normal execution.
This log is used during state transfer to reduce the objects that
must be synchronized.

To reduce the probability that a replica ri lags behind, after
coordinating with a majority of replicas in another partition,
replicas wait an additional small delay to allow ri to catch up,
should ri be slower than a majority of replicas in its partition.
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We show experimentally that waiting for a small fraction of
the time needed to execute a multi-partition request is enough
to practically avoid laggers.

B. Detailed algorithm

Algorithm 1 shows the coordination logic of Heron. Clients
submit a request by atomically multicasting it to the destina-
tion partitions. Upon delivery of a request, a server process
p first checks if the request must be skipped, which is the
case when a client has received state updates through state
transfer after lagging behind (lines 3–4). In case the request is
single partition, process p skips coordinations and executes
the request right away (lines 5–7). Otherwise, p executes
the coordination phase by writing coordination messages on
processes involved in the request and waits for coordination
messages from a majority of processes in each involved
partition (lines 8–10). Next, the request is executed (lines 11–
13). This includes reading states locally and remotely and writ-
ing new values locally using read objects and write objects
procedures. In Phase 4, p goes through another round of
coordination, similar to Phase 2 (lines 14–16). Finally, p
responds to the client (line 17).

Algorithm 2 presents the procedures to perform object
reads and writes. For each object in read set, process p finds
out the object’s partition by querying an application-defined
partitioning method (lines 2–3). If the object is local, p reads
the object value and moves to the next object (lines 4–7). For
the remote objects that are read for the first time, p queries
the object’s address and waits to hear from at least a majority
of processes (lines 8–13). This guarantees that p knows the
memory address of the object in at least one correct process.

Having the memory address of remote objects, p is able to
read object values. For remote reads, p randomly chooses a
remote process in partition h (line 15). To ensure consistency,
the selected process must be among the ones that p has heard
from in Phase 2. If the object address in the selected process is
unknown, p chooses another process (lines 16–18). Otherwise,
p reads the object value. If the remote process is failed, p finds

out about the failure through RDMA exceptions for the read
operation and chooses another process (lines 19–21).

While reading object values, Heron’s dual-versioning tech-
nique ensures that p reads the most recent value. The most
recent value is the one with the smaller timestamp than the
current request’s and is the maximum among the two (line
22). If such a value is not found, it implies that p is lagging
and it must initiate the state transfer protocol (lines 23-25).
After executing a request, a new object version is created and
overwrites the older value of the object (lines 29–31).

Algorithm 3 presents Heron’s state transfer protocol. A
replica initiates state transfer by remotely writing in a pre-
assigned entry in the memory of all replicas in the partition
(lines 2–4). Upon reading a state transfer request, a replica
is deterministically selected for performing state transfer (line
10). Then, the states to be synchronized are specified (line
12) and the replica synchronizes the states (lines 13–15). At
the end of the synchronization, the replica informs the other
replicas in the partition about the completion of state transfer
by updating the request id and status values in their memory
(lines 16–17). request id specifies the last request that its state
modifications are synchronized. Finally, p updates its last req
field to prevent executing earlier requests (line 6). In case the
selected replica is suspected (timeout passed), another one is
selected for state transfer.

The atomicity and coherence of timestamps are essential for
the correctness of remote reads. Timestamps are implemented
as integers, whose access is ensured to be atomic by RDMA
[28]. There is no ambiguity while deciding the appropriate
timestamp while reading remote values because timestamps
are ever-increasing consistent integers across involved parti-
tions thanks to atomic multicast. In order to ensure consis-
tency, Heron prevents reading stale values from laggers. This
is done by reading values from remote replicas involved in the
coordination in Phase 2, which guarantees that the replica has
already delivered and executed all the previous requests.

C. Correctness
In this section, we argue that Heron produces linearizable

executions: For any execution σ of Heron, there is a total



Algorithm 1 Coordination

1: Process p in group g to execute request r
2: upon delivery of request r do
3: if r.tmp ≤ last req then return
4: else last req ← r.tmp

5: if r.dest.size = 1 then
6: response ← exec callback(r)
7: return response to client

8: for all h ∈ r.dest, for each q ∈ h do
9: write coord(q, p, ⟨r.tmp, 1⟩)

10: wait til ∀h ∈ r.dest,∃ majority of q ∈ h :
coord mem[h][q].tmp = r.tmp

11: response ← exec callback(r){
12: read objects(r)...
13: write objects(r)}

14: for all h ∈ r.dest, for each q ∈ h do
15: write coord(q, p, ⟨r.tmp, 2⟩)
16: wait til ∀h ∈ r.dest,∃ majority of q ∈ h :

(coord mem[h][q].tmp = r.tmp &
coord mem[h][q].state = 2) |
coord mem[h][q].tmp > r.tmp

17: return response to client

Variables:
r.tmp: request timestamp
r.dest: destination partitions
r.read set: set of the objects read in the execution of r
r.write set: set of the local objects modified in the execution of r
last req: tmp of the last request, initially 0
object list: set of local objects; there are two versions of objects each
tagged with a timestamp (tmp):

- get() returns the value with the higher tmp
- set() overwrites the value with the lower tmp; updates the tmp

object map: map of ⟨oid, q⟩ to the address of object oid in process q

statesync mem[q]: state sync memory entry for process q
log: log of objects updated while executing requests
timeout: time processes wait for state transfer to complete
coord mem[h][q]: coordination memory entry for proc q in part h

Methods:
multicast(r, r.dest): atomically multicasts request r to r.dest

write coord(q, p, v): rdma write v to process p’s entry in the
coord mem of process q.
exec callback(r): application’s execute callback method
select proc(h, r): returns a process id from h which coordinated in
phase 2 for request r (processes with tmp in coord mem)
query mapping(oid): query the partition that stores object oid
query obj addr(q, oid): query address of oid in the memory of
process q

write state transfer(q, ⟨r, s⟩): write state transfer msg on proc q for
req r with status s

log.get objects(r1.tmp, r2.tmp): returns objects updated from req r1
to req r2 (included)
rdma read(q, addr): rdma read memory address addr on process q

rdma write(q, addr, v): rdma write value v to memory address addr
on process q

Algorithm 2 Execution

1: Procedure read objects(r):
2: for oid in r.read set do
3: h ← query mapping(oid)

4: if h = g then
5: val ← object list.get(oid)
6: r.set value(oid, val)
7: continue

8: if ∀q ∈ h, (⟨oid, q⟩) /∈ object map then
9: for all q in h do

10: query obj addr(q, oid)
11: while not heard from majority in h do
12: q, addr ← wait()
13: object map.set(⟨oid, q⟩, addr)

14: while true do
15: q ← select proc(h, r)
16: addr ← object map.get(⟨oid, q⟩)
17: if addr is null then
18: continue
19: res, val1, val2 ← rdma read(q, addr)
20: if res is RDMA EXCEPTION then
21: continue
22: val ← value with higher tmp smaller than r.tmp in {val1,

val2}; null otherwise
23: if val is null then
24: invoke state transfer protocol
25: return
26: else
27: r.set value(oid, val)
28: break

29: Procedure write objects(r):
30: for ⟨oid, val⟩ in r.write set do
31: object list.set(oid, val, r.tmp)

Algorithm 3 State transfer

1: Process p in group g to initiate recovery
2: upon state transfer invoke on request r do
3: for all q in g do
4: write state transfer(q, ⟨r, 1⟩)
5: wait on statesync mem[p].st to be 0
6: last req ← statesync mem[p].rid

7: Process p in group g to handle recovery
8: upon state transfer for req r, proc q do
9: while true do

10: proc ← choose a process from g
11: if proc = p then
12: objs ← log.get objects(r.tmp, last req)
13: for obj in objs do
14: addr ← object map.get(q, obj.id)
15: rdma write(q, addr, obj)
16: for all proc in g do
17: write state transfer(proc, ⟨last req, 0⟩)
18: return
19: else
20: while timeout not passed do
21: if statesync mem[q].st = 0 then
22: return



order π on client requests that (i) respects the semantics of
the requests, as defined in their sequential specifications, and
(ii) respects the real-time precedence of requests [9], [10].

Let π be a total order of requests in σ that respects ≺, the
order atomic multicast induces on requests. To argue that π
respects the semantics of requests, let Ci be the i-th request
in π and p a process in partition x that executes Ci. We claim
that when p executes Ci, all read operations issued by p as part
of Ci result in values that reflect all requests that precede Ci

and no value created by a request that succeeds Ci. We prove
the claim by induction on i. For the base step, request C0, the
claim trivially holds for local reads, as objects are initialized
correctly. Assume that p successfully reads an object from
process q in partition y. Since p only accepts the remote read
if the timestamp of the value read is smaller than the timestamp
of C0, p knows that q has not executed any later request that
modifies the object read.

For the inductive step, assume the claim holds for C0, ...,
Ci−1. If p reads a local object, then the claim holds from
the inductive hypothesis. Assume that p reads a remote object
from process q in partition y. There are two cases to consider.
When p reads the object, (a) q has already executed every
request that precedes Ci, and (b) q has not executed any
requests that succeed Ci. For (a), from the algorithm, p only
issues a remote read operation for an object stored on q if q
coordinated with p in phase 2. For (b), as in the base step, p
only accepts the remote read if the timestamp of the value read
is smaller than the timestamp of Ci. Thus, q did not execute
any later request that modifies the object read by p when p
reads the object from y.

We now argue that π respects the real-time precedence of
requests in σ. Assume that Ci ends at a client before Cj starts
at a client. We must show that either Ci ≺ Cj ; or neither Ci ≺
Cj nor Cj ≺ Ci. For a contradiction, assume that Cj ≺ Ci.
And let Ck and Cl be two consecutive requests in Cj ≺ ... ≺
Ci, where Ck ≺ Cl. Thus, there is some partition x involved
in Ck and Cl such that servers in x deliver first Ck and then
Cl. Since servers execute one request at a time in the order
they are delivered, it follows that Ck is executed before Cl by
servers in x, and it cannot be that Cl ends before Ck starts.
From a simple induction, it cannot be that Cj ≺ Ci, and so,
either Ci ≺ Cj ; or neither Ci ≺ Cj nor Cj ≺ Ci.

D. Extensions

Heron adopts a relatively simple design in that replicas
execute one request at a time and multi-partition requests
are executed by all partitions involved in a request. We now
comment on how to relax these requirements. We note that
these are not part of our prototype and are left as future work.

1) Multi-threaded execution: Heron scales performance by
partitioning the application state and allowing parallel exe-
cution of requests that do not involve partitions in common.
Nevertheless, execution within a replica is single-threaded.
Several approaches have been proposed to integrate multi-
threaded execution of requests in state machine replication
(e.g., [29]). A common strategy is to identify requests that

do not contain conflicting operations (i.e., requests that do
not access common objects or only read objects in common)
and assign such requests to different working threads within a
replica. Since concurrent requests are non-conflicting, there is
no need to synchronize their execution. Heron could directly
benefit from this technique to introduce multi-threaded execu-
tion of single-partition requests. Multi-threaded execution of
multi-partition requests would probably require a redesign of
the system.

2) On the execution of multi-partition requests: In general,
there are two solutions to the problem of executing a multi-
partition request: (a) all involved partitions execute the request
(i.e., Heron’s approach), and (b) one partition, among the
partitions involved in the request, executes the request. In the
second solution, to execute a request, the active partition reads
local and remote objects, and updates its local objects and the
remote objects stored in the other partitions involved in the
request, the passive partitions. This solution saves computing
resources, as requests are executed by the replicas of the active
partition only. But it complicates the design as replicas in the
active partition compete with each other to update remote
objects in the passive partitions. Moreover, replicas in the
active partition may fail while updating remote objects. Heron
avoids these issues by having each replica update its local
objects as part of the execution of multi-partition requests.

IV. IMPLEMENTATION

We implemented a prototype of Heron in Java. We use an
open-source user-level library developed by IBM for RDMA
communication [30] called jVerbs (DiSNI library v2.1).2

jVerbs offers low latency overhead to applications running Java
by exposing RDMA network hardware resources directly to
the Java Virtual Machine. Heron relies on RamCast [17],3 a
shared-memory atomic multicast primitive for ordered delivery
of requests. RamCast is a state-of-the-art atomic multicast
primitive that leverages RDMA writes to reduce the latency of
message delivery. Heron’s source code is publicly available.4

A. TPCC benchmark

We implemented a Java version of TPCC that runs on top
of Heron. TPCC is an established standard for evaluating
the performance of storage and database systems. TPCC
defines a transactional workload for a database system in a
wholesale supplier company. The company has a possibly
variable number of distributed warehouses (Warehouse table).
Each warehouse has 10 districts (District table) and each dis-
trict services 3,000 customers (Customer table). Warehouses
maintain a stock of 100,000 items (Item and Stock tables).
The customer orders (Order and New-Order tables) are also
stored per order item (Order-Line table), and a history of
customers orders are maintained (History table). There are
five transaction types that simulate a warehouse-centric order
processing application: New-Order (45% of transactions in the

2https://github.com/zrlio/disni
3https://github.com/longle255/libRamcastV3
4https://github.com/meslahik/heron



workload), Payment (43%), Delivery (4%), Order-Status (4%)
and Stock-Level (4%).

Each Heron partition stores one TPCC warehouse. The
Warehouse and Item tables are replicated in all partitions,
since they are not updated in the benchmark. Other tables are
warehouse-specific and replicated in one partition. As shown
in Figure 2, there is no remote writes in the execution phase.
This allows our TPCC implementation to partially execute
transactions in some partitions.

Each row in TPCC tables is an object in Heron. To allow
processes to access remote objects, these objects must be
stored in memory regions, registered with RDMA. Currently,
Java does not support Value Types [31]. This prevents us from
using Java List to store remotely accessible arrays of objects.
One workaround is to store the data in Java’s ByteBuffer.
The serialized data can then be stored in RDMA-registered
memory for remote access. Accessing serialized tables, locally
or remotely, involves deserializing the data to retrieve values
and serializing again in the case of data modification. The
data in two tables, Stock and Customer, are stored serialized.
These tables are accessed by remote processes while executing
TPCC requests. Other tables are stored in memory using Java
HashMap since they are not accessed remotely.

V. EVALUATION

In this section, we motivate our experimental study (Section
V-A), describe the experiment’s environment (Section V-B),
and discuss the results of our evaluation (Sections V-C–V-E).

A. Roadmap

We seek to answer the following questions through three
sets of experiments:

1) Performance (Section V-C): What is the overall perfor-
mance and scalability of Heron while running complex
transactions (i.e., TPCC)? How does Heron’s shared
memory model compare to message passing-based scal-
able SMR systems?

2) Latency (Section V-D): What is the latency of Heron’s
coordination? What is the latency of running TPCC
transactions on Heron?

3) State transfer (Section V-E): How long does it take
for Heron to recover a replica? How to determine the
efficient cut-off time for coordination?

B. Environment and configuration

We conducted all experiments in CloudLab [32] in XL170
nodes. Each node is equipped with one ten-core Intel E5-
2640v4 processor running at 2.4GHz, 64 GB of main memory,
and a Mellanox ConnectX-4 NIC. A 25-Gbps network link
with around 0.1ms round-trip time connects all nodes running
Ubuntu Linux 18.04 with kernel 4.15 and Oracle Java SE Run-
time Environment 11. In all experiments, clients and servers
are independent processes with in-memory storage. Clients
submit requests in a closed-loop, that is, a client submits a
request to servers and waits for a response before submitting
the next request. Unless stated otherwise, each partition has

3 replicas. For performance experiments, we spawn enough
clients to saturate the servers. For latency experiments, we
spawn one client to show the inherent latency of the protocol
execution. The CDF graphs show how tail latencies are differ-
ent from the average. Clients measure latency as the interval
between submitting a request and the response received from
one server in each partition addressed by the request.

C. Performance

1) The performance of Heron: Figure 4 shows the maxi-
mum throughput of 4 sets of TPCC experiments as we increase
the number of warehouses from 1 to 16. In the first three sets,
the ratio of single- and multi-partition requests is given by
TPCC. In the last set of bars (Local Tpcc), all requests are
local. For 1WH experiments, Heron skips coordination since
there is only one partition in the system.

The first set of bars shows the performance of RamCast,
without coordination and execution. Ramcast sports a close-
to-linear scalability as we increase the number of warehouses.
This is a promising result that sets the stage for fast coordi-
nation and execution. The second set of bars represents the
performance of Heron with null requests. This helps under-
stand the cost of coordination in Heron, without the overhead
of request execution. From 1WH to 2WH, performance does
not increase due to the overheard of coordination needed in
2WH. Performance increases by factors of 1.57x, 2.98x, and
4.80x thereafter. The third set of bars shows the performance
of TPCC on Heron. As before, the performance of TPCC is
the same for 1WH and 2WH. Performance for 4WH, 8WH,
and 16WH increases by the factors of 1.52x, 2.65x, 3.98x,
respectively.

In the above experiments, the performance improvement
from 8 to 16 partitions is less pronounced than from 4 to
8 partitions. We attribute this to the network infrastructure
of our testbed. According to Cloudlab documentation [33],
XL170 nodes are connected via an experimental link to
Mellanox switches in groups of 40 servers. Each of the groups’
experimental switches are then connected to another Mellanox
switch at 5x100Gbps. This means that above 40 nodes, there
are always requests that go beyond the Top-Of-Rack switch
to reach destinations, with no bandwidth guarantees.

Finally, as a sanity check, we consider a workload with
local TPCC transactions only. We modify the TPCC client
code so that requests access objects reside in one partition
only. In this case, we expect linear scalability since there in
no cross-partition requests. The forth set of bars confirms this
expectation while executing local TPCC workload.

2) Heron vs. DynaStar: We now compare Heron to Dy-
naStar, a message-passing partitioned SMR system [4] (see
Figure 1). We choose DynaStar because it matches Heron’s
SMR execution model, it supports both single- and multi-
partition requests, it has been shown to outperform other
related systems, it is available as open source, and it is also
implemented in Java. Figure 5 shows peak performance and
latency of both systems when executing TPCC as we increase
the number of warehouses. In the 16WH configuration, we



ran out of machines for DynaStar to deploy enough clients
to saturate the system, which resulted in lower throughput
and latency than expected. The performance results show that
Heron outperforms DynaStar by an order of magnitude in
all configurations considered. Heron improves performance
by 17x in the 1WH experiment, up to 27x in the 16WH
experiment. The latency results show that Heron has substan-
tially lower latency than DynaStar which has 43.9x, 68.3x,
69.7x, and 72.0x higher latency than Heron for 1WH to 8WH,
respectively.

There are three reasons for Heron’s impressive perfor-
mance. First, Heron directly benefits from efficient RDMA
verbs, avoiding expensive message-passing primitives (i.e.,
no overhead with context switches and communication pro-
tocol stacks). This impacts both the coordination and the
execution of application requests. Second, in Heron, multi-
partition requests read remote objects through RDMA verbs,
while in DynaStar, the execution of a multi-partition request
involves rounds of message exchanges to move objects from
one partition to another. Third, Heron benefits from a carefully
designed execution path. Optimizations include a manually
(de)serialization of objects rather than using a serializer library,
and storing strings as byte buffers as (de)serialization of Java
Strings is quite expensive.

D. Latency

1) Latency without contention: Figure 6 (bottom bar) shows
the breakdown of the average latency when one client submits
TPCC New Order requests in a closed loop. We consider a
workload with a single client to avoid queuing effects due
to contention. The breakdown shows the latency footprint of
three stages of running a request on Heron. In this workload,
Heron’s coordination constitutes only about 2 microseconds of
the whole latency of 35.4 microseconds, while ordering and
execution take 18 and 16 microseconds, respectively.

We further study the latency of Heron for requests that
target a fixed number of partitions (four top bars in Figure
6). For that, we modify TPCC NewOrder transactions so that
they access objects in the specified number of partitions. In
the 1WH workload, there is no cross-partition requests: all
requests are local and there is no coordination. In the 4WH
workload, requests always target 4 partitions, accessing at least
one object in each of these partitions.

From 1WH to 4WH, all stages of running a request become
more expensive. For the ordering, the slight increase in latency
is due to the higher number of partitions in the destination of
the request. For the execution, the additional latency comes
from the fact that more remote objects must be read per re-
quest. Coordination latency never goes above 3 microseconds
in all workloads.

The CDF graph in Figure 6 reveals more insights about the
latency of request execution. For 1WH, all requests are local
so latency experiences little variation, with some outliers that
constitute about 8% of the requests. In TPCC, about 10% of
requests are multi-partition. This results in similar latencies as
in 1WH workload for about 82% of the requests. Then, the

outliers of single-partition requests show up until about 90%
of latency values. Multi-partition requests show even higher
latencies. A similar interpretation applies to latencies for other
workloads.

2) The latency of TPCC transactions: Figure 7 shows the
average latency of various TPCC transaction types. For each
transaction type, one client submits that transaction type in
a closed loop. The bars differentiate between latencies for
single- and multi-partition transactions that expand to multiple
partitions (New Order and Payment transactions). The blue
bars show the average latency of single-partition transactions.
The green bars show the additional latency added by multi-
partition requests.

New Order and Payment transactions are heavy transactions.
OrderStatus and Delivery transactions are local, light-weight
transactions and their latencies are as low as 16.5 and 17.6
microseconds, respectively. StockLevel is a heavy local trans-
action that accesses items in the last 20 orders. StockLevel
transactions are expensive because they access many items
in a serialized table (i.e., Stock table), and the data must be
deserialized, modified, and stored back serialized.

E. State transfer

1) The impact on latency of “waiting for all”: We first
measure the impact of tentatively waiting for all replicas in a
partition when coordinating. Table I shows the percentage of
delayed transactions and the average delay in microseconds in
four different configurations: 2 and 4 partitions, and 3 and 5
replicas per partition. A transaction is delayed at a replica
if when the replica checks for a majority of coordination
messages in its data structures, it does not already have
messages from all replicas. The average delay is the amount of
time the replica needs to wait to have coordination messages
from all replicas, if the transaction is delayed. An important
observation from the results is that very few transactions
need to be delayed, in the worst case 8%, and the delay per
transaction is a fraction of the average latency of a transaction.
Since clients wait for a reply from each partition involved in a
request, the perceived increase in latency by the client is given
by the maximum delay among the partitions involved in the
request. Moreover, only the second coordination phase needs
to use this additional delay in order to keep replicas in sync.

In all configurations, the percentage of delayed transactions
increases with the partition id, while the average delay de-
creases. This happens because of the order in which a replica
updates the coordination data structure in the other replicas
involved in a request. In particular, a replica starts with the
smallest partition id and then proceeds to the next partition
id and so on. Within a partition, the replica updates the other
replica in order of their id.

As a result, a replica in the first partition id (among those
involved in the request) has higher chances of finding all
coordination messages when it checks its data structure than
replicas in partitions with higher id. However, the average
delay decreases in replicas with larger id because it takes
longer for these replicas to have all coordination messages, and



Fig. 4: Performance of RamCast, Heron, TPCC, and TPCC local with increasing number of partitions.

Fig. 5: Performance and latency of Heron vs. DynaStar.

Fig. 6: Heron’s latency for single- and multi-partition requests with 1 client: breakdown of average latency (left) and cumulative
distribution function (CDF) (right).

so, the increase in latency is not so substantial as in replicas in
partitions with smaller id. Also, the delay is so small that the
experiments show no meaningful difference between delays in
3- and 5-partition configurations.

2) State transfer latency: Figure 8 shows the latency of
the state transfer for TPCC tables in logarithmic scale. For
each transfer size, we show average latency (bars) and the
standard deviation (whiskers). The standard deviation in all
cases shows minimal deviation from the average latency except
for the “Protocol” experiment. For state transfer, the data is
transferred through RDMA writes with payloads of 32KBs,

which has better performance than smaller payload sizes for
the same amount of data [17].

The “Protocol” bar shows the latency of state transfer for a
null application, when no data is transferred. This represents
the overhead of Heron’s state transfer protocol without data
exchange, and it amounts to two RDMA writes (i.e., one by
the replica that requests the state transfer and the other by the
replica that responds to this request). The next bars show the
state transfer with various data sizes for two scenarios. The two
scenarios differentiate between state transfer of serialized and
non-serialized data. We chose 64KB as a representative small



Fig. 7: Latency of TPCC transactions: average latency of single- and multi-partition transactions (left) and cumulative
distribution function (CDF) (right).

TABLE I: Transaction delay when waiting for all and a majority of replicas during coordination.

2 Partitions
3 replicas per partition 5 replicas per partition

max throughput: 53,340 tps max throughput: 42,658 tps
average latency: 35.7 µs average latency: 45 µs

partition id delayed transactions average delay delayed transactions average delay
#1 1% 5.3 µs 2% 18.6 µs
#2 8% 4 µs 4% 9.3 µs

4 Partitions
3 replicas per partition 5 replicas per partition

max throughput: 92,808 tps max throughput: 73,724 tps
average latency: 41.3 µs average latency: 52.2 µs

partition id delayed transactions average delay delayed transactions average delay
#1 1% 29.6 µs 3% 16 µs
#2 3% 11.8 µs 3% 11.1 µs
#3 3% 6.9 µs 3% 5.4 µs
#4 4% 2.1 µs 4% 8.8 µs

Fig. 8: Latency of state transfer. Protocol shows latency of
state transfer protocol without transferring any data. Other bars
show state transfer for various data sizes.

data size to be transferred during state sync, while 640KB and
6.4MB show state sync when 1% and 10% of a default TPCC
table (i.e., Stock table) is transferred.

In the first scenario, only serialized data (e.g., TPCC Stock
table) is transferred. In this case, state transfer includes writing
the missing data to recipient’s memory where the outdated
data resides. Figure 8 shows that for 64KB of data, it takes 26

microseconds for Heron to perform the state synchronization.
Latency increases proportionally to data size (640KB and
6.4MB) as expected. In the second scenario, non-serialized
data is transferred (e.g., TPCC Item table). In this case, state
transfer includes serializing the data and remotely writing
the data in a part of the receiver’s memory. The receiver
then deserializes the data and updates the application states
accordingly. The results show that (de)serialization has a
considerable degrading effect on the latency.

The time needed to recover depends on how much the
replica lags behind. If the replica misses a single request,
it may recover in tens of microseconds. In the worst case,
upon recovering from a failure, a replica needs to transfer the
complete state from another replica. In our prototype, a ware-
house stores 137.69 MB worth of data, 105.3MB serialized
and 32.39MB non-serialized.5 This amounts to a transfer time
of 109.4ms (36.9ms serialized, 72.5ms non-serialized).

VI. RELATED WORK

In the scope of strong consistency (e.g., linearizability, seri-
alizability), one can categorize replicated systems according to

5This represents some point during the execution, as some tables in TPCC
increase constantly. The changes in size are minimum though and do not
impact the state sync time significantly.



three aspects (see Figure 1): (a) how processes communicate,
either using message passing (e.g., [4], [5], [18], [19], [20],
[21]) or shared memory (e.g., [12], [13], [14], [16]); (b) full
replication (e.g., [13], [14], [15], [18], [19]) versus partial
replication, that is, sharding combined with replication (e.g.,
[4], [6], [12], [16], [20]); and (c) systems that embrace SMR’s
programming model (e.g., [4], [13], [15], [19]) versus systems
with a different programming model, notably transactions
(e.g., [6], [12], [20], [21]). In this context, Heron is the first
partitioned SMR system to rely on shared memory.

A. Message-passing versus shared-memory protocols

Although messaging passing is the prevalent communication
paradigm, some replicated systems have explored the potential
of shared memory and RDMA. By bypassing the kernel,
implementing network stack layers in hardware, and accessing
another server’s memory without involving the host server’s
CPU, RDMA promises high throughput and low latency. To
benefit from these advantages, however, system designers must
address RDMA’s challenges, such as race conditions and
laggers. We have experimentally compared Heron to DynaStar,
a state-of-the-art message-passing replicated system that, as
Heron, implements partitioned SMR. The results have shown
that shared memory fulfills its promise.

B. Full replication versus partial replication

Classic SMR assumes full replication, that is, each replica
stores the whole application state. There have been several
proposals for classic SMR, both for message passing [18],
[19] and shared memory [13], [14], [15], [34]. DARE [13] is
a crash-tolerant replication protocol in which the consensus
leader responds to read requests and replicates requests to its
followers through RDMA writes. APUS [14] is another leader-
based consensus protocol that intercepts inbound socket calls
on the leader host and turns these calls into consensus requests.
The leader executes the requests and replicates the log entry on
followers using RDMA writes. Mu [15] implements Protected
Memory Paxos [35], a consensus algorithm that, in normal
execution, uses one RDMA write to replicate a consensus
request. Mu colocates the client and the leader roles of Paxos
for optimizing latency and makes use of memory protection
semantics of RDMA for leader change. Velos [34] extends Mu
and proposes a leader-based consensus algorithm that relies
solely on one-sided RDMA verbs.

Since in classic SMR every replica executes all requests,
throughput is determined by how many requests replicas can
execute per time unit (or how many requests can be ordered
per time unit). Partial replication (i.e., sharding combined with
replication) addresses the performance limitation of full repli-
cation. Partially replicated SMR systems have been proposed
for message passing (e.g., [3], [4], [5], [11]). Marandi et al.
[11] introduce a variant of SMR in which data items are
partitioned but requests have to be totally ordered and with
the limitation that a partition cannot access objects in other
partitions. S-SMR [3] and DS-SMR [5] allow partially ordered
requests in a statically and dynamically partitioned application,

respectively. DynaStar [4] improves on DS-SMR by employ-
ing a graph partitioning technique to group frequently used
data. Multi-partition requests are executed by a single partition
only, after the partition receives all the data needed.

Partial replication has been also explored by shared memory
systems that do not comply with SMR’s execution model (e.g.,
[12], [16]). In FaRM [12], applications use transactions to
interact with a key/value store that uses RDMA reads for
GETs and RDMA writes for PUTs. Derecho [16] introduces
a library that allows structuring applications into shards and
replicating them. Even though Derecho organizes processes
into subgroups and shards, it does not offer any abstraction that
provides total order for operations involving multiple shards.

C. SMR versus non-SMR protocols

One distinguishing aspect of SMR is that requests are first
ordered and then deterministically executed according to the
established order. In partitioned SMR, in order to be effective,
the partitions involved in a request have to be identified before
the request is executed so that the request can be propagated
to and ordered by the involved partitions. An alternative
approach (i.e., non-SMR) is to define the order of requests as
the execution evolves using locks or optimistic concurrency
control (e.g., [12], [20]). While there is no need to identify
the partitions involved in a request a priori, requests may need
to be undone if they reach a situation in which they cannot
be ordered (e.g., after reading an invalid value). Defining
ordering during request execution is particularly suitable to
transactional systems, as undoing the effects of a request can
be implemented with a transaction abort.

Various attempts have been made to increase the perfor-
mance of state machine replication, targeting both the ordering
of requests (e.g., [18], [36]) and the execution of requests (e.g.,
[37], [38], [39]). These techniques are orthogonal to Heron
(but see discussion in Section III-D).

VII. CONCLUSION

Microsecond latency applications are becoming the de facto
standard for latency-critical services. This paper contributes
to such systems by introducing Heron, the first scalable state
machine replication system that targets microsecond latency
applications. Heron’s contribution include a novel shared-
memory algorithm for coordinating linearizable execution of
requests and a state synchronization protocol that recovers
lagging replicas very quickly. We have implemented Heron
and extensively evaluated its performance. The results show
that Heron provides microsecond latency for coordinating
strongly consistent executions and achieves more than ten-
fold improvement in the throughput of TPCC workloads in
comparison to its competitors.
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