
Compilers — Homework 2
P0 interpreter

Due: Wednesday, 26 Sep 2012, 13:30

For this project, work in pairs. Larger or smaller groups, or groups containing both Bachelor and
Master’s students are not allowed, except with the instructors permission.

1 P0

Over this semester, you will build a compiler for a subset of Python. We start this project with a smaller
subset of Python that we’ll call P0. P0 consists of integers, variables, arithmetic expressions, assignment
statements, print statements, and calls to the input function. Read the sections of the Python Reference
Manual (http://docs.python.org/reference/) that apply to P0:

• Integers are plain integers (i.e., 32-bit integers) as defined in Section 3.2. You do not need to imple-
ment integer overflow.

• Integer literals are as defined in Section 5.2.2 and 2.4.4. You do not need to implement long integer
literals (because they are not 32 bit).

• The arithmetic operators are as defined in Sections 5.5 and 5.6. These include the usual unary and
binary arithmetic and bitwise operators. You do not have to implement the power operator (**) or
the division and remainder operators (/, //, %).

• Evaluation order is left-to-right (Section 5.14)

• The input function is in Section 2.1. The input function should read only integer constants, and
return an integer.

• The print statement is as defined in Section 6.6, but accepts only a single integer expression as its
argument, not a tuple. The extended “print chevron” statement should not be supported.

• Assignment statements as as defined in Section 6.2, but can assign to only one variable, not to a
tuple.

Note that there are no control-flow statements or booleans in P0. All values should be plain integers.

2 Interpreter

Create a Python script named interp.py that takes the name of a file as a command-line argument. The
file should contain the text of a P0 program and interprets that program, printing the output of the pro-
gram to the standard output (stdout). Your interpreter should be a recursive function over the Python
ASTs from the compiler.astmodule and patterned after the num_nodes function in the lecture notes. You
are not allowed to use Python’s built-in eval function. For example, given a file test1.pywith the follow-
ing contents:
x = - input()
print x + input()

running python interp.py test1.py should read two integers (e.g., 99 and 55, below) and subtract the
first from the second.
$ python interp.py test1.py
99
55
-44

If a program is not a legal P0 program, your interpreter should print an error message and exit grace-
fully. It should not just crash.

1

3 Testing

When developing your interpreter, you should use test-driven development. Write test cases—that is,
P0 input files—that exercise each feature of your interpreter. Writing thorough tests before you write
the interpreter itself will help ensure that you cover all the cases correctly. Be sure to include both legal
programs and illegal programs. Since P0 is a subset of standard Python, for legal programs you can
compare your output against the standard Python interpreter.

4 Submission

When submitting the assignment, include the names of both members of the pair in each file of your
submission. Only one member of the pair needs to submit the code. If both submit, the later submission
will be graded. Submit both your source code and test cases. Code that does not parse or that fails
because it calls undefined functions or tries to read undefined variables will be given a 0.

Both your code and tests will be graded. Be sure they are readable and well-documented.

2

	P0
	Interpreter
	Testing
	Submission

