
Compilers — Homework 1

Due: Friday, 21 Sep 2012, 13:30

1 Moodle
Enroll in the course on Moodle:

http://www2.icorsi.ch/course/view.php?id=132

2 Installation
Be sure you have Python 2.7 installed. You will need this version for the project. Note that Python 3 is a newer,
incompatible version of the language, and removes some of the libraries we’ll use in the project. Older versions of
Python may also work, but no guarantees.

Be sure gcc and gdb are installed. You will need these later. For Mac users, the developer tools with Xcode
should include everything we’ll use.

3 Python exercises
The following exercises are intended to give you some practice with the Python library and with the use of Python
constructs like lists and dictionaries. Work in pairs. Take a look at the Python documentation at:

http://docs.python.org/library/

Familiarize yourself with the language syntax and libraries. If you are new to Python, you’ll refer to this site often.
For each exercise N below, submit a Python script called exerciseN.py. Include the names of both members

of your pair in each file. Turn in on Moodle by the due date. Scripts that do not parse or that fail with a run-time
error (i.e., a traceback) are worth 0 points. Each exercise below uses a text file as input. A ready source of text files
to test your solutions can be found at http://www.textfiles.com/.

1. [1 pts] Create a script that takes the name of a text file as a command-line argument. The script should read
the text file and count the number of occurrences of each word. The script should ignore the case of the
letters as well as punctuation and numbers. For example, “car”, “car.”, “car,”, “2car” and “Car” should all be
counted as occurrences of the word “car”. After reading the file, print on the standard output all the words
with their number of occurrences. Hint: Take a look at the re module.

2. [2 pts] Create a script that takes two or more command-line arguments:

• the name of a dictionary file

• one or more words

The dictionary should contain a list of words and phrases, one per line. For each word in words, your script
should print to the standard output, one per line, all words in the dictionary that are anagrams of the given
word. You should read the dictionary only once. Two words are anagrams if they are a permutation of each
other. The should ignore case differences and ignore non-letters (punctuation, whitespace, etc). For example,
the following words and phrases are anagrams:

• Elvis — lives

• funeral — real fun

• software — swear oft

Hint: use a dict and sort the letters of each word.

1

3. [2 pts] Create a script that takes two command-line arguments:

• an integer, depth;

• the name of a directory, dir.

The script should display on the standard output all the traversed files and directories below dir, up to the
given depth. dir itself is at depth 0, so if the depth is one is 1, the script should output the immediate children
of dir. Files and directories traversed should be displayed one per line. The traversal should be depth-first.
To avoid possible infinite loops, symbolic links to directories should be printed but not followed. Hint: take
a look at the stat module.

4. [5 pts] In this exercise, you will create a script that builds a dictionary that minimizes the time spent searching
for a word. The script takes the name of a text file as a command-line argument. The script should ignore the
case of the words, punctuation and numbers.

The script arranges the words into a tree. Each node of the tree has a key represented by a string, one parent
node, and a list of children. To keep the tree as small as possible, each new word is compared against a
previous one, and the largest common prefix (if any) is stored into a common parent. Leaves keep a special
key to remember read words. Children are ordered alphabetically.

You should implement this data structure by defining one or more classes.

The script should on the standard output all the nodes of the tree traversing it in breadth first search.

The output format is:

key number-of-children

As an example, if the file contains the words ACCEPT ADDITION ADDRESS ACCEPTABLE, the following
tree will be constructed (the node denoted by + is the root of the tree):

Exercise*4*(4*points)*
The$goal$of$ this$exercise$ is$ to$ createa script$ that$builds$a$dictionary$which$minimizes$ the$

time$spent$when$searching$foraword.$

The$script$receives$ the$name$ofa text$ fileasa$commandFline$argument.$ Thescripthas to$

ignorethecaseofthe$words,$punctuationandnumbers.$

The$script$arrangesthewords$into$a$tree.$Each$node$ofthetreehasa$“key”$representedbya$
string,oneparent$node,$andalistofchildren.Tokeepthetreeassmallaspossible,$each$new$

wordiscompared$against$any$previous$one,andthe$largest$common$prefix$(if$any)$is$stored$

into$ a$ common$ parent.$ Leaves$ keep$ a$ special$ key$ to$ remember$ read$words.$ Children$ are$

ordered$alphabetically.$

After$having$readthefile,thescript$prints$onthestandard$output$allthenodesofthe$tree$

traversingitin$breadth$first$search.$

The$output$format$is:$

key number-of-children

Example.Thefile$contains$the$words$ACCEPT$$ADDITION$$ADDRESS$$ACCEPTABLE.Thefirst$

phase$will$buildthefollowing$tree$(the$node$denotedby‘+’isthe$root$ofthetree):$

$

$
$

Then,thescript$will$print:$
A 2
CCEPT 2
DD 2
ABLE 1
ITION 1
RESS 1

The script should print:

A 2

CCEPT 2

DD 2

ABLE 1

ITION 1

RESS 1

2

