
RETROSPECTIVE:

Register Allocation and Spilling via Graph Coloring

Gregory Chaitin

IBM T. J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598
chaitin@us.ibm.com

I am delighted that this old paper of mine is being reprinted in
this special issue of SIGPLAN Notices. Most of my publications
are quite theoretical, and are concerned with program-size
complexity, algorithmic information, the halting probability, and
the limitations of formal axiomatic theories. However, more
than half of my professional career has actually been devoted to
stimulating practical work on computer technology and has
involved vast amounts of programming and computer
experimentation. And my 1982 paper on register allocation via
graph coloring that is reprinted here deeply involves both
aspects of my personality. Let me explain how.

This work was undertaken as part of the 801 project at the IBM
T. J. Watson Research Center that took place in the late 1970s
and early 1980s under the intellectual leadership of the late John
Cocke, a legendary figure at IBM. This project was a once-in-a-
lifetime opportunity to reinvent everything, from the machine
architecture, to the programming language and compiler and the
operating system. Everyone on the project was extremely
talented and adventurous. We all worked in a single room, and
design decisions were made as a group as we all coded and
tested our prototype software.

The hardware and software design co-evolved through
evolutionary experimental design. We believed in eating our
own cooking, and we had a prototype of the compiler up and
running almost immediately. I kept experimenting with the
register allocation and redid the whole thing many times.

John had recruited me to invent a new graph-coloring register
allocation technique for the 801 project because this was to be a
reduced instruction set (RISC) machine architecture, and for it to
be able to achieve its goal of running at one instruction per
machine cycle it was crucial to keep operands in registers rather
than in storage. Our goal was to do as much as possible in the
optimizing compiler at compile time so that the machine
architecture could be as simple and as fast as possible, like
vertical micro-code programmed in a high-level language using
a compiler intimately tuned to the machine architecture.

And since I was a mathematician, the register allocation kept
getting simpler and faster as I understood better what was
required. I preferred to base algorithms on a simple, clean idea
that was intellectually understandable rather than write
complicated ad hoc computer code. Indeed, most of the
complications of the machine architecture were reflected in the

20 Years of the ACM/SIGPLAN Conference on Programming Language
Design and Implementation (1979-1999): A Selection, 2003.
Copyright 2003 ACM 1-58113-623-4 $5.00

register interference graph, but not in the graph coloring
algorithm. And most daring of all, spill decisions were made
globally, not locally, in order to transform the register
interference graph into one that could be colored.

So I regard the success of this approach, which has been the
basis for much future work, as a triumph of the power of a
simple mathematical idea over ad hoc hacking. Yes, the real
world is messy and complicated, but one should try to base
algorithms on clean, comprehensible mathematical ideas and
only complicate them when absolutely necessary. In fact, certain
instructions were omitted from the 801 architecture because they
would have unduly complicated the register allocation. On the
other hand, when we saw how well the register allocation
scheme worked, we decided to include 32 registers in our design
instead of 16. This also reduced the amount of spill code and
helped my algorithm, which worked extremely well for small
pieces of code that almost colored without spilling.

The 801 project was so much fun that I could barely wait to get
to work in the morning and hated to go home at night. It
eventually emerged from the lab and into the marketplace as the
IBM RS/6000 UNIX workstation and the PowerPC architecture.
I think that this beautifully illustrates the world-transforming
power of new ideas and the importance of questioning one's
fundamental assumptions and being willing to start over.

Two other papers from this project are included in this
SIGPLAN Notices special issue: paper 4, "An overview of the
PL.8 compiler" by Marc Auslander and Marty Hopkins, and
paper 6, "Optimization of range checking" by Vicky Markstein,
John Cocke and Pete Markstein. And papers 9 and 24, which are
also on register allocation, by Chow and Hennessy and Briggs,
Cooper, Kennedy and Torczon, respectively, build on or react to
the register allocation techniques that we developed in the 801
project, which was very much a collaborative group effort of a
bunch of extremely talented individuals. It was a pleasure and a
privilege for me to work with all of them!

ACM SIGPLAN 66 Best of PLDI 1979-1999

ACM SIGPLAN 67 Best of PLDI 1979-1999

ACM SIGPLAN 68 Best of PLDI 1979-1999

ACM SIGPLAN 69 Best of PLDI 1979-1999

ACM SIGPLAN 70 Best of PLDI 1979-1999

ACM SIGPLAN 71 Best of PLDI 1979-1999

ACM SIGPLAN 72 Best of PLDI 1979-1999

ACM SIGPLAN 73 Best of PLDI 1979-1999

ACM SIGPLAN 74 Best of PLDI 1979-1999

