
Memory management
Nate Nystrom
University of Lugano

Credits

• Tim Teitelbaum, Cornell CS 412 slides, 2008

• Richard Jones and Rafael Lins, Garbage Collection

• Richard Jones, Antony Hosking and Eliot Moss, The Garbage
Collection Handbook

• Matthias Hauswirth, SP slides, 2011

Outline

• Explicit memory management

• Automatic memory management
• reference counting
• mark and sweep
• copying GC
• concurrent/incremental GC
• generational GC

Explicit memory management

Posix interface:
void *malloc(size_t n)
• allocate n bytes of storage on the heap and return its

address
void free(void *addr)
• release storage allocated by malloc at address addr

User-level library manages heap, issues brk calls when
necessary to grow the heap

C++: new/delete usually just call malloc/free

Explicit memory management – error-prone
Double deletes (“freed” twice)
• char* p = malloc(4096);
free(p);
free(p);

Freeing the wrong pointer
• char* p = malloc(4096);
free(p+4);

Dangling pointers (“freed” too soon)
• char* p = malloc(4096);
free(p);
p[0] = 5;

Leaked objects (“freed” too late, or never)
• char* p = malloc(4096);
// never free(p)

Problems with explicit memory mgmt

Makes modular programming more difficult

Every interface needs to agree on a contract
• Have to know what code “owns” a given object so that

objects are deleted exactly once

Naive implementation
Blocks of unused memory stored in a freelist
• malloc finds unused block on freelist
• free puts block onto head of freelist

Simple, but:
external fragmentation = small free blocks scattered in the heap
• Cannot alloc a large block even if sum of all free blocks is

enough
malloc can be O(|heap|)

freelist

Binning

Maintain freelists (bins) for different allocation sizes
• bin(n) is the freelist for chunks of size n

If chunks are all powers of 2 => buddy system
• malloc, free are O(log |heap|) worst case, O(1) in practice

The buddy system
malloc(n)
• round n up to nearest power of 2
• if no chunk of size n –– i.e., bin(n) is empty

• get chunk from bin(2*n)
• split in half, return chunk of size n, add its buddy to bin(n)

free()
• add chunk of size n back to bin(n)
• if 2 buddies of size n are in bin(n), coalesce and add chunk to
bin(2*n)

Trades external for internal fragmentation
• Allocates larger chunks than needed because of rounding
• Typically 25% => no longer used in practice

Automatic memory management

Gives the programmer the illusion that they have infinite
memory

Removes a huge class of bugs

Programmer doesn't have to think about it => huge boost in
productivity

Automatic memory management

Techniques:
• regions
• reference counting
• garbage collection

Regions [Tofte-Talpin 1994]
• Allocate objects into regions with a fixed dynamic scope
• When region goes out of scope, free all objects in the region

• Used in some functional language implementations
• Region inference finds where to insert newregion and
deleteregion and infers in which region a given object
should be allocated

• Performance competitive with garbage collection

r = newregion
var head: ListNode = null
for (i <- 1 to 1000) {
 newNode = allocInRegion[ListNode](r)
 newNode.next = head
 head = newNode
}
deleteregion r

Reachability-based memory management
Want to delete objects if they won’t be used again
• This is undecidable!
• So must be conservative

• might still retain objects that won’t be used again
• but will not free objects that will be used again

Use reachability as an approximation of liveness:
• if there is no way to reach the object from globals, stack,

registers, then object cannot be used again

Can determine reachability via:
• tracing => garbage collection
• reference counting

Reference counting
Idea:
• associate a reference count with each object
• number of references (pointers) to the object

Keep track of reference counts
• For assignment x = e

• decrement ref count for object referenced by x (if any)
• increment ref count for object referenced by e
• do the assignment

When reference count hits 0, object is unreachable => free it

Reference counting

Stack

Globals Heap

2 1

1

1

1

2

1

Reference counting

Stack

Globals Heap

2 1

1

1

1

2

1

Reference counting

Stack

Globals Heap

2 1

0

0

0

1

0

Reference counting

Stack

Globals Heap

2 1

1

Reference counting

Stack

Globals Heap

2 1

1

Reference counting

Stack

Globals Heap

1 1

1

Reference counting

Stack

Globals Heap

1 1

1

Problem: performance

Consider assignment: x.f = y

Without ref counts, one store instruction:
[tx + f_offset] = ty

Problem: performance
With reference counts:

t1 = [tx + f_offset] ; load the old value of x.f
tc = [t1 + rc_offset] ; load the ref count of old value
tc = tc - 1 ; decrement
[t1 + rc_offset] = tc ; store the new reference count
bnz tc, do_not_free ; check if count is 0
reclaim_object(t1) ; if so, reclaim the object
do_not_free:
tc = [ty + rc_offset] ; load the ref count of y
tc = tc + 1 ; increment
[ty + rc_offset] = tc ; store the new reference count
[tx + f_offset] = ty ; store the new value

Reference counting

• Advantage
• Automatic (no programmer errors)
• Frees dead objects immediately
• Easy to implement

• Drawbacks
• Still some pause times (lumpy deletion)
• Space overhead: need count in object header

• typically ~20%
• Pervasive run-time overhead
• Can’t deal with cycles

Idea: backup tracing

To handle cycles, use a backup tracing collector

• In most cases, can reclaim objects immediately when ref
count goes to 0

• Need to GC less often than if there were no ref counting

Can use just a few bits for the reference count
• Sticky counters: when ref count hits maximum (say 3),

don’t decrement it again
• let backup collector recompute counts or reclaim

• Extreme: use 1 bit (object is either shared or not)

Garbage collection

Three popular techniques
• mark-sweep
• mark-compact
• copying

Object graph
Stack, registers, globals are roots of the object graph
Anything reachable from the roots is live, all else is garbage

⬇

Stack Heap

Registers

Abstraction

Useful to ignore the actual content of the object graph

Just treat it like a graph problem: identify unreachable nodes in
the graph

The program is the mutator: it changes the graph

Mark-sweep GC
The classic algorithm

Two phases:
• Mark phase

• start from roots, trace object graph, marking every object
reached

• Sweep phase
• iterate through all objects in the heap
• reclaim unmarked objects
• clear marks

• optional: compact live objects in heap (called mark-compact)

Mark & Sweep GC

Stack

Globals Heap

Mark & Sweep GC

Stack

Globals Heap

Mark & Sweep GC

Stack

Globals Heap

Mark phase
Implemented as depth-first search of object graph
Natural recursive implementation

for each ref p in rootSet:
 mark(p)

mark(p) {
 if (*p marked) return
 mark *p
 for each reference-type field x in *p:
 mark(p->x)
}

Mark phase
stack = new Stack()
for each ref p in rootSet:
 stack.push(p)

while (! stack.empty) {
 p = stack.pop
 if (*p is marked) continue
 mark *p
 for each reference-type field x in *p:
 stack.push(p->x)
}

Mark phase
Question: what happens when we try to mark a long
linked list while explicitly maintaining a stack?

Mark phase
Question: what happens when we try to mark a long
linked list while explicitly maintaining a stack?

Very deep recursion => stack overflow!
Need to preallocate sufficient space for the stack

Mark phase

Can we do marking with no space overhead?

Mark phase

Can we do marking with no space overhead?

Yes!
(otherwise, I probably wouldn't have asked)

Deutsch-Waite-Schorr algorithm

Idea:
• reverse the pointers after following them – no stack needed!
• need a few bits per object to record which field to follow on

next backtrack – can steal the low bits of the pointers

Disadvantage:
• objects are broken while being traversed
• mutator must be halted during mark phase
• => no concurrency allowed

current mark phase pointercurrent top of “stack”

Where to store the mark bits?

Can use bit vector to record marks on the side
• Advantage: don’t have to touch (i.e., pollute the cache with)

objects during sweep phase

Or store a mark bit in the object header
• add another word
• or use a bit of the dispatch table pointer

• pointers aligned 4 have 2 free bits
• need to mask off bits on method dispatch

Mark & Sweep GC

• Advantages
• Automatic
• Handles cycles!

• Drawbacks
• Allocation cost
• Collection cost (stop-the-world)

• Free unreachable objects
• Fragmentation

Cost of mark-sweep

Accesses all memory in use by the program
Mark phase reads only live (reachable) data
Sweep phase reads all of the data (live + garbage)

=> run time proportional to total amount of data!
=> can cause long program pauses!

What’s a pointer?

Root set consists of registers, stack slots, globals
To determine the root set, we need meta-information
• For each instruction in the program, which registers and

stack slots point to the heap?
• Stored in so-called “GC maps”
Optimization
• Only have GC map for instructions where thread has to be

able to stop for GC (GC safe points)
• Loop back-edges (to bound waiting time)
• Call sites
• Allocation sites

Conservative collectors
Allocated storage contains both pointers and non-pointers

Is 22,022,592 an integer or an address?

Conservative collection:
• assume values are pointers unless they can’t be (not in the

range of the heap)
• safe, but not precise: treat non-pointers as pointers
• unsafe: treat pointers are non-pointers (might free some

reachable objects)

requires no language support, no GC maps ==> works for C!

Boehm-Demers-Weiser collector
AKA Boehm-Weiser or BDW

http://www.hpl.hp.com/personal/Hans_Boehm/gc/

Conservative mark-sweep GC for C, C++

Drop-in replacement for malloc
• malloc = GC_malloc
• free = no-op
• On Linux: LD_PRELOAD=/usr/local/lib/libgc.so ./a.out

Can also be used as a leak detector

http://www.hpl.hp.com/personal/Hans_Boehm/gc/
http://www.hpl.hp.com/personal/Hans_Boehm/gc/

Copying collection
Idea: use two heaps
• one in use by the program
• one sits idle until GC needs it

GC algorithm
• copy all live objects from active heap (“from-space”) to the

inactive heap (“to-space”)
• dead objects are left in the from-space
• heaps then switch roles

Issue: must rewrite references between objects

The following algorithm is due to C.J. Cheney 1970

Cheney algorithm
Treat the to-space as a queue

Initialize the queue:
• Copy all objects referenced directly from

roots to the to-space
• Leave a forwarding pointer in place of the

old object

Dequeue an object
• Scan its pointer fields, copying uncopied

children to the queue

When end of queue reached, flip spaces

Not this Cheney

Cheney algorithm
Treat the to-space as a queue

Initialize the queue:
• Copy all objects referenced directly from

roots to the to-space
• Leave a forwarding pointer in place of the

old object

Dequeue an object
• Scan its pointer fields, copying uncopied

children to the queue

When end of queue reached, flip spaces

Not this Cheney

Copying GC

Stack

Globals Heap

Copying GC

Stack

Globals Heap

Copying GC

Stack

Globals Heap

Copying GC

Stack

Globals Heap

Copying GC

Stack

Globals Heap

Copying GC

Stack

Globals Heap

Copying GC

Stack

Globals Heap

Benefits

Simple, no stack space needed
Run time proportional to number of live objects
Automatically compacts, eliminating fragmentation
Bump pointer allocation
• malloc(n) implemented as tail = tail + n

Implementation issues

Precise pointer information required
• difficult to use on languages like C

• (but there are “mostly copying” GC algorithms)

Uses twice as much memory
• but: its virtual memory
• still: might be inappropriate to use copying GC in embedded

systems

Copying GC

• Advantages
• Fast allocation (bump pointer, like stack)
• Fast free (no cost)
• No fragmentation
• Improves locality!

• Drawbacks
• Collection cost (stop-the-world)

• Copy reachable objects
• Only half the heap available

Generational GC
Observation:
• if an object has been reachable for a long time, it is likely to

remain so
• globals, objects referenced from main function

• most objects die young

In a long-running system, mark-sweep, copying collection
wastes time by scanning/copying older objects

String toString() {

 String s = “”;

 for (x : this)

 s += x;

 return s;

}

Generational GC

Stack

Globals Heapyoung old

Generational GC

Stack

Globals Heapyoung old

Generational GC

Stack

Globals Heapyoung old

Generational GC

Stack

Globals Heapyoung old

Generational GC

• Advantage
• Most objects die young:

few get tenured to old generation:
can mostly only collect young generation

• Young generation (nursery) can be much smaller and that
old generation – less wasted space

• Disadvantage
• Write barrier (slows down mutator!)

Track all writes to reference fields

Exercise

Construct a program that behaves poorly with generational
GC

Construct a program that behaves well with generational GC

Roots of the nursery?

Tenured objects might point to new objects

How to avoid scanning them all?

young old
xy

Roots of the nursery?

In practice, few tenured objects point to new objects
• unusual for an object to point to a newer object
• can only happen if older object is modified long after

creation to point to a new object

Keeping track of pointers from old generation to new
• remembered sets
• card marking

Remembered sets

Want to identify:
• p.f = q
• p is tenured, y is not

Write barrier
• When storing a pointer (q) into a field (f) of an old object

(p), record the pointer q in a remembered set

Root set of young generation
• now stack + registers + globals + remembered set

young old
pq

{q}

Card marking
Want to identify:
• p.f = q
• p is tenured, y is not

Divide memory into cards of 2k words (say k = 7..9)
Maintain a bit vector with one bit per card

Write barrier
• When storing a pointer (q) into a field (f) of an old object (p),

mark the card containing the object p

Root set of young generation
• stack + registers + globals + pointers in marked cards

young old
pq

Pros and cons

Advantage of card marking over remembered sets:
• faster, simpler write barrier

Disadvantage:
• less precise – all pointers on a marked card treated as roots

for young gen, not just cards in remembered set
• Smaller cards: more precise, but card table takes more space

Incremental GC
GC might have to “stop the world”
• pause mutator while collecting
• can be unacceptable for interactive applications or real-time

applications
• emacs: "garbage collecting..." status message

Incremental GC
• interleave GC and mutator
• GC a bit, run mutator a bit, GC a bit, ...

Concurrent GC
• Run GC in a separate thread in parallel with mutator

Modern incremental GC = very fast

GC pause times

Azul:
• 100GB heap
• pause times < 10 ms

IBM:
• 100s of MB heap
• pause times < 10 microseconds

Concurrent GC problem

Heap

Stack

Globals

Concurrent GC problem

Heap

Stack

Globals

Concurrent GC problem

Heap

Stack

Globals

Concurrent GC problem

Heap

Stack

Globals

Concurrent GC problem

Heap

Stack

Globals

Concurrent GC problem

Heap

Stack

Globals

Performance

Conventional wisdom

GC is worse then malloc because...
• extra processing
• poor cache performance
• bad page locality
• increased footprint (delayed reclamation)

Conventional wisdom

GC improves performance by...
• faster allocation

(fast path inlining & bump pointer allocation)
• better cache performance

(object reordering)
• improved page locality

(heap compaction)

Reality
Best collector performs as well as or better than malloc
• up to 10% faster on some benchmarks
... but uses more memory
• at least twice
• sometimes 5x

GC good if:
• system has a lot of RAM
GC bad if:
• limited RAM
• competition for physical memory
• RAM relied upon for performance

• in-memory databases, search engines, ...

Matthew Hertz, Emery Berger, Quantifying the Performance of
Garbage Collection vs. Explicit Memory Management, 2007

Object pooling
• manage your own freelists
• usually a bad idea: overhead much more than GC overhead

Marking values null to free early
• good idea (if careful)

Summary

GC simplifies interfaces

Reduces memory errors

Performance often as good as or better than malloc/free

