
The Education of a Software Engineer

Mehdi Jazayeri

Technical University of Vienna
mehdi.jazayeri@tuwien.ac.at

Abstract
A successful software engineer must possess a wide
range of skills and talents. Project managers know how
difficult it is to find, motivate, and retain such people.
Educators face a complementary, and perhaps more
challenging, problem: how to prepare such engineers.
The challenge of what to teach software engineers
evolves over time as technologies, applications, and
requirements change. As software technology has
rapidly spread through every aspect of modern societies,
the challenge of educating software engineers has taken
on new form and become more complex and urgent. In
this talk, I present the broad outline of an educational
program for a complete software engineer. A new
curriculum for computer science has been developed
based on these ideas and will start in October 2004 at
the University of Lugano in Switzerland.

1. Introduction
Over the years, the teaching of software engineering has
changed only slightly and most textbooks of software
engineering follow rather traditional and similar lines.
This might give the impression that there is general
consensus on what must be taught to software engineers.
On the other hand, listening to discussions between
academics and practitioners at conferences reveals deep
disagreements. Many practitioners believe that
universities are not doing a good job and many
academics argue that industry does not use the latest,
best technology.
There are deep, underlying, reasons why universities
have difficulties in educating software engineers. A
software engineer must combine formal knowledge,
good judgment and taste, experience, and ability to
interact with and understand the needs of clients. It is
not easy to teach all of this, certainly not in one or two
courses on software engineering!
The typical courses on software engineering concentrate
on the phases of the development process: requirements
analysis, specification, design, implementation, and
testing. In recent years, some of these issues have been
enhanced because of new research results. For example,
requirements is now treated much more systematically,

often using UML as a standard notation. Software
architecture has become a standard topic, providing a
bridge from requirements to design. Still, most of the
emphasis is on these forward engineering development
steps. Some courses also cover management aspects, but
mostly in a theoretical sense. These treatments leave out
the entire “experience” aspect: it is one thing to read
about how to design a module and quite a different thing
to design a specific module that is supposed to meet
specific requirements and fit in with modules designed
by others. To provide some level of experience with the
techniques that are taught in textbooks, many courses
include, or are complemented by, a project component
in which the students, usually in small teams, develop a
medium-sized software application. While the aim of
the project is to show the student what the “real world”
of development is like, and often these projects are the
most time-consuming projects that students undertake in
their studies, by necessity the project must be
constrained to ensure that it can be completed within the
semester with a reasonable amount of work. Sometimes
the instructor specifies the requirements, hiding the
most difficult aspect of the real world, in which the
requirements are never really known. Usually the
infrastructure and the development environment are pre-
determined and are ones that the students are familiar
with, the schedule is fixed and the project has already
been trimmed to an appropriate size by the instructor,
and there are no compatibility or legacy requirements.
None of these constraints reflect the real world of
software projects but they are necessary for practical
reasons to respect the academic calendar in which
semesters come to a quiescent end, with no possibility
of lawsuits or contract disputes!
The solution to these challenges is to design a whole
new curriculum of computer science that integrates the
different topics that we teach and addresses the new
realities in the application world. Because of the
importance of software, its engineering, and how we
teach it, is a core component of such a curriculum. In
this paper, I will attempt to outline the challenges of
teaching software engineering today, the emerging
requirements that software engineers must satisfy, and

propose a modern curriculum to address these
challenges. A curriculum of this type has been designed
in the last two years and will start for the first class of
students in October 2004 at the University of Lugano.

2. Traditional challenges of Teaching
Software Engineering

Teaching software engineering has never been easy and
no consensus has emerged from the many debates about
how best to do it. At the base of the problem lies the fact
that the complexity of software engineering comes from
the complexity of problems and it is impossible to
construct complexity in a classroom setting. Indeed, the
purpose of classroom teaching is to peel enough
complexity away that the problems become doable by
students. In software engineering, unfortunately, if you
peel away complexity, you are left with unrealistic
(sometimes called toy) problems.
Another difficulty of teaching software engineering is
that it is a multi-faceted discipline. As a result, there are
many tradeoffs that an instructor must make, thus
limiting the experience of the student. Some of the
common tradeoffs are:
-Practice versus theory. How much should we teach
about current state of the practice and how much about
an idealized approach that our theories cover? The
theoretical approach emphasizes the importance of
formal specifications, program verification, and in
general a disciplined and systematic approach to
software development. In the practical approach, one
emphasizes the difficulties that arise in the real world,
despite taking a systematic approach to software
development. These problems range from unreasonable
customers who can’t make up their minds to difficult
colleagues who refuse to change their interface to
accommodate new requirements to incompatible
versions of the version control system. This tradeoff is a
manifestation of what Fred Brooks [1] has described as
essential versus accidental complexity of software. The
theoretical approach deals with the essential complexity
while the practice-oriented approach deals with the
accidental complexity. The usual solution to this
tradeoff is to combine a lecture course, dealing with the
theory, with a laboratory course, in which the students
face practical issues. With the caveat that one cannot re-
create the real world in a classroom, close
approximations to the real world are possible.
-Development versus management. From the birth of
software engineering, some have viewed the problems
as being primarily managerial and others as primarily

development-oriented. One could teach about how to
form teams and establish proper communication
channels or one could teach about module design. One
could teach about making the quality assurance team
independent from the development team or one could
teach about testing techniques. In reality, the
differences are not so sharp and the most important
problems cross the boundaries of development and
management. For example, as Parnas [6] has pointed
out, the essential concept of modularity that guides
module design can be used as the basis for work
assignment in a project. An architectural approach to
development supports better management practices.
-Product versus process. Should we teach about the
software object and its constituents or about how we
construct the software object? In the former approach
we emphasize the programming and other languages
and in the latter we emphasize at what step we should
use those languages. In the product-based approach we
emphasize more design issues and in the process-based
approach we emphasize the problems that occur in the
process. This tradeoff has always been the focus of
software quality improvement approaches. Capability
Maturity Model (CMM) is the well-known assessment
approach that measures the software production quality
of an organization solely based on process-related
issues.
-Formal versus empirical. This tradeoff is between
learning by studying versus learning by doing. The two
schools of thought view software engineering as a
mathematical science or as an empirical science.
Empirical software engineering emphasizes experiments
and statistics to characterize the results of those
experiments. A laboratory approach to some degree
supports the empirical approach

Of course, most textbooks and most courses try to cover
all of the above aspects, making more or less conscious
choices about the tradeoffs. If we were sure what the
graduate of the course would end up doing, it would be
easier to decide on the tradeoffs but we usually do not
know that. A textbook, in particular, tries to address a
general audience and for software engineering the
general audience is not very homogeneous. In any case,
the necessity of making choices among these tradeoffs
has made the teaching of software engineering a
challenging task.

3. New realities
The traditional challenges of software engineering have
been exacerbated in recent years by the growing

importance of software and by new technological
developments. In this section, I discuss what I consider
to be the trends with the most significant impact on the
teaching of software engineering.
-Distribution. The change of computing platform from
mainframe computing to distributed computing requires
a fundamental reconsideration in the way we view the
structure of software and the basic notion of modularity.
Historically, software engineering practice, and software
engineering textbooks too, have dealt with centralized
(mainframe) software systems. The often-maligned
metric of lines of code to measure the complexity of
software or the productivity of programmers is an
indication of this mainframe bias. Today’s world,
however, is distributed by default. This means that we
must begin with distribution as a starting point rather
than as a special case of software engineering. To what
degree must we teach about communication,
synchronization, caching, security, fault-tolerance, and
other such concepts that are traditionally the domain of
distributed systems? In fact, no software engineer can
ignore these issues and they are complex enough that
they must be engineered if they are to be included in any
system. This argues for a closer coupling of software
engineering and distributed systems. But if we already
had too much to teach in a software engineering course,
how are we going to include the new distribution
considerations?
Another aspect of distribution involves the people and
processes in software engineering. Increasingly,
software is being developed by teams of engineers that
are geographically, and often also organizationally,
distributed. While this does not change the formal or
theoretical aspects of software engineering, it does have
a fundamental impact on the processes, tools, and
practices that can and should be used. There are
interesting ways that traditional formal concepts are
affected by such practical realities. For example, the
practice of outsourcing makes some traditional concepts
such as module decomposition and program
specification more important than ever before.
-Pervasive computing. Pervasive computing seems to
be the technological trend of distribution extended to its
extreme. There are several different views of pervasive
computing but the common one refers to the availability
of unlimited computing and communication elements in
the environment, where every object can communicate
with other objects. Pervasive computing requires us
once again to question our assumptions about the
structure of software. The most important difference is
the introduction of dynamicity. The software must be
able to deal with computing elements that enter and

leave the environment at arbitrary times. Software
services and applications must be created dynamically
out of these computing elements. This dynamic world is
at odds with traditional software engineering in which
we try to fix (bind) as much as we can as early in the
process as possible. Traditional software engineering
favors static decisions and pervasive computing forces
most decisions to be made dynamically.
-The Internet. Of course, the Internet has changed
everything and software engineering is no exception.
The Internet has had several different effects on
software engineering. First, it is used as an execution
platform. Second, it is used as a development platform.
Third, it is used as a delivery vehicle for software. Each
of these engenders its own version of software
engineering issues. For example, using the Internet as an
execution platform can be based on various Internet
protocols and security mechanisms and infrastructure.
We are beginning to see book titles such as Software
Engineering for the Internet. There are even degrees
offered on Web Informatics.
A more direct impact of the Internet on education in
general, not only in software engineering education, is
the availability of an unlimited reservoir of information.
For example, the open courseware library offered by
MIT on the Internet (ocw.mit.edu) is a wonderful source
of material for instructors and students alike. It is not
clear, however, how best to exploit this information in a
traditional course setting.
-Proliferation of software tools and environments.
Practitioners and educators alike have always
recognized the importance of tools and environments to
support software. The state of practice, however, has
changed considerably over time. At some point in time,
tools were used to enforce certain methodologies or
company policies. The adoption of such tools by
companies is a major decision with large impact on the
processes and future decisions of the company. The
assumption is that the experience of the company’s
engineers in the use of the tools is so valuable that the
tools must be used over a long period of time. Adopting
a different toolset or environment discards the hard-
earned employees’ experience. Furthermore, a
company’s software engineering processes build around
the set of tools being used. Changing tools requires
changing processes, which is also an expensive
undertaking. As a result, the state of tool adoption in
industry is rather static and conservative. On the other
hand, over the last decade, there have been tremendous
developments in the area of software tools, spurred in
part by the very active research on software
environments in the 1970s, in part by the open source

movement, and in part by the existence of the Internet
platform for execution and delivery. The pace of
technology development and supporting tools has
picked up so considerably that the conservative
approach of earlier times is no longer viable. A software
engineer must now be able to pick up a new tool and an
associated process quickly, regardless of his or her
vested experience in a previous tool. Internet-time has
certainly affected tools and processes and requires
agility on the part of the software engineer. On the one
hand, this implies that the choice of, and emphasis on,
tools in a software engineering class is not as important
because almost certainly the students will use very
different tools in their profession. On the other hand, it
implies that the student must gain the skills to be able to
switch among tools. Where and how is this skill to be
acquired?
-Software evolution. It is now generally accepted that
the initial focus of software engineering on development
ignored the importance of software evolution. We now
acknowledge that we have problems with legacy
software that must be maintained by software engineers.
There is significant research currently going on in the
area of software evolution, from theories to tools to
processes. It is more likely that a software engineer will
be employed in software evolution than new software
development. Should this new reality shift the emphasis
we place in software engineering courses from software
development to software evolution? More likely, we
have to seriously consider evolution alongside
development. But we face the same problems of
creating a realistic evolution experience in the
classroom. What makes evolution difficult is the size
and complexity of the software, company organizational
issues, and the necessity of parallel development.
Recreating these issues in the classroom makes the class
unmanageable and restricting them to make the class
manageable defeats the learning objectives.
-Software quality. Complaints about software quality
are commonplace. Most of us acknowledge the
shortcomings in today’s software but few of us do
anything about it. As software pervades society’s
infrastructures and runs most of its services, software
quality cannot be ignored. With emerging pervasive
computing applications and services, software quality
becomes even more challenging. Software engineers
must have tools and techniques to build high-quality
software. Where do they get these tools and techniques?
Most software engineering courses and textbooks go
little beyond testing techniques in this area. The
problem here is a lack of concrete techniques. The best
that can be done today is to impart a sensitivity to

quality issues. Software engineers must learn that “time-
to-market” is not the only measure of project success.
They must learn tradeoffs that take into account quality
factors as well as more concrete factors. This area needs
much more research but educational needs are rather
acute and cannot wait for research results. The only way
I know to emphasize this subject is to teach the
responsibilities of a professional software engineer. This
has to be a critical part of a software engineer’s
education. There is not a wealth of material on this
subject but a good starting point is [2].
-Computing platform. With a distributed computing
environment providing the hardware platform,
middleware provides the software platform, something
analogous to operating systems of the past in centralized
systems. Most middleware systems offer similar
facilities but they also have significant differences.
Software engineering on top of different middleware
systems could be based on different approaches and
techniques. Should a middleware platform be part of the
study of a software engineer? While we would like to
believe that the concepts and principles are independent
of the actual middleware, a skilled software engineer
needs detailed knowledge of the middleware principles
and the gap between general concepts and concrete
middleware practices is growing rather large. The
choice of which middleware platform to use in
classroom teaching involves similar considerations as
the choice of what programming language to use.
Should we choose a platform for its teaching value or
for its current popularity? A disturbing trend is the
mixing of marketing and technical considerations. The
argument that one platform is better because it has more
users is not a valid argument for educational choices.
Regardless of how fast technology develops, we in
universities must prepare engineers who will cope with
the technologies of at least the coming decade.
-Interdisciplinary informatics. Pervasive computing
refers to a branch of (distributed) computing that
considers abundant computing power embedded in
everyday environments. The field lies at the intersection
of embedded and distributed systems. We can, however,
interpret “pervasive” computing in a more general
sense, in the sense that computing is now pervasive in
all aspects of society, ranging from business, to
government, to education and science. No profession
can function or advance without computing. New drug
discoveries, new material inventions, new business
products and processes, are all based on heavy use of
computing and software. This means that software is
being developed to address the needs of many diverse
disciplines. Indeed, we once taught informatics as if

every computer scientist was going to work with other
computer scientists. But today most computer scientists
and software engineers will go to work with non-
computer scientists working in different, sometimes
novel, application areas. New application areas of
computer science are emerging. While some of them
have names—such as bioinformatics—many software
engineers find themselves working in emerging
interdisciplinary informatics settings that do not have
names yet. An interdisciplinary software engineer must
be conversant in other disciplines, perhaps able to work
with different disciplines. This ability relies on strong
abstraction and modeling skills, two skills that are
essential in software engineering and are even more so
for interdisciplinary informatics.

4. Non-technical skills
So far, I have discussed only technical skills required by
a software engineer but there are some non-technical
skills that are also essential to the success of a software
engineer. The two most important such skills are
communication and the ability to work in a team.
Communication. A lot of the time of a software
engineer is spent communicating with others: with
clients, peers, managers, suppliers, and others.
Communication is indeed the basis of requirements
engineering. Documentation is the most concrete
example of communication. Sadly, managers at
companies often complain that engineers, even those
trained at best universities, are deficient in both written
and oral communication skills. Communication is more
than using a language according to correct grammar, in
writing reports or in making speeches. What is difficult
is to choose the right level of abstraction depending on
the subject of discussion and the communication
partner. Modeling skills are also an important
requirement for successful communication. Indeed,
since requirements-related problems are the most costly
problems during software development, and
communication problems are a major source of such
requirements problems, we must invest a lot more in
educating software engineers in the area of
communication. There are probably different kinds of
communication techniques required to interact with peer
software engineers, with those in other disciplines, with
managers, with clients, and so on. In all cases, however,
listening is an important part of communication.
Ability to work in a team. All software engineering
projects are executed by teams. And it is well-known
that effort spent on a project goes up proportionally to
the square of the number of people involved in the

project. This is believed to be due to the overhead of
increased communication. Certainly, good
communication skills can help one be a better team
player, and reduce the communication overhead, but
good communication skills is not enough. Working in a
team requires making room for others, making
compromises, asserting oneself when necessary and
accepting others’ judgments when needed. We do little
in university education in general, and in software
engineering courses, in particular, to teach teamwork. In
fact, we usually emphasize individual skills and ignore
the role of the individual as a team member. Indeed, the
role of the individual is sometimes even glorified as the
one who comes through at the last minute to save a
project. Clearly, organizations that rely on such heroics
are not engineering-oriented.
We must of course recognize that one’s attitude towards
teamwork, working with others, accepting authority, and
other such matters is heavily influenced by one’s
cultural upbringing. We therefore cannot expect
principles that apply throughout the global landscape.
What we have to keep in mind is that software is
developed by teams and a software engineer is only one
of a number of people working on that team. Therefore,
the engineer must learn not only how to produce his or
her modules, and how his or her modules must fit with
modules produced by others, but also how he or she
must fit within the team.
There are technical solutions such as module
decomposition and tools such as configuration
management systems that help support better workings
of a team. Here, I am concentrating on the non-technical
skills required. These skills are even more drastically
required—because the problems of teamwork are
magnified—when we have distributed teams of
engineers. Software engineers rely on social and casual
contact for important communication—a luxury that is
not available to geographically distributed teams.

A final important quality of a software engineer is
experience and good judgment. Clearly, experience only
comes with time. Good judgment, it is said, comes from
learning from making lots of mistakes. The role of
engineering education is to create an environment in
which mistakes can be made that will help in developing
good judgment.

5. Ingredients of a curriculum
Considering the traditional and emerging challenges
facing a software engineer outlined so far, it is unlikely
that one, or even a few, courses on software engineering

can prepare a software engineer for the real world of
software development. What is necessary is an
integrated curriculum that tries to cover the many facets
of software engineering or, indeed, a software-
engineering focused curriculum of computer science. In
this sense, I interpret software engineering in a broad
sense, almost equating it to computer science. In fact, if
we consider informatics as the study of concepts and
methods that enable the creation and manipulation of
software, software engineering is at the core of
computer science. All of the techniques of software
engineering: problem-solving, problem definition and
specification, planning, scheduling, verification,
documentation, and so on are ingredients of any other
fields of computer science such as databases, compilers,
and graphics. Therefore, I consider here a curriculum for
software engineering or a curriculum for informatics
based on software engineering principles.
In summary, the challenge of designing a curriculum for
informatics today is to find a way to combine formal
with practical learning, technical with non-technical
skills, and informatics with interdisciplinary knowledge.
To do this, we need to, as much as possible, create a
real-world environment at the university. The purpose is
to enable the learning of non-technical skills in a formal
way. This environment can be created in the context of
carefully designed projects. These projects should be
integrative and comprehensive, rather than associated
with a single course. On the basis of these projects, we
can create a project-focused curriculum. I suggest that
students should spend about half of their time in
classroom learning and the other half on projects. Each
semester is structured with specific courses and one
semester-long project. The goals of the project, which
vary in degree from semester to semester, are:
• to show the application of classroom theory to

practice
• to integrate the material from various subjects
• to teach the proper use of tools
• to show the relationship between accidental and

essential complexity
• to enhance teamworking ability, including

communication skills
Clearly, due to the key role projects play in the
curriculum, they must be designed and administered
with care. For example, consider the teaching of
programming. Typically, we teach the concepts of
programming languages along with some syntax of the
language, and leave the students to struggle with
compilers, interpreters, and other tools. Fortunately,
today’s tools are much better than we had ten years ago
and they do not give as many incomprehensible error

messages as they once did. On the other hand, a
compiler is not the only tool one needs for
programming. Other useful tools are: editing and
testing, configuration management, defect tracking, help
system, documentation generator, and so on. A
systematically-guided project should teach the student
about the whole programming environment rather than
just a collection of tools. Such an approach also helps
the student see the bigger picture of software
development in the context of a multi-person project,
rather than just a programming exercise. The semester-
long projects can be designed in increasing level of
sophistication, initially involving individual work and
gradually leading to small team projects, larger team
projects, and larger interdisciplinary team projects. The
project environment can also be used for holding formal
classes on project management, covering such topics as
project estimation, scheduling and reporting. Special
seminars on communication techniques and teamwork
can draw on specific project experiences.

6. A planned curriculum
In the last two years, I have been involved in designing
a curriculum for a new bachelor’s degree in informatics
at the University of Lugano (official name in Italian:
Università Svizzera Italiana) in Lugano Switzerland
(www.unisi.ch/en/informatica). The bachelor’s degree,
as mandated by the Bologna Convention of the
European Union, requires three years to complete. The
Bologna Convention envisions that all European
universities will have a 3-year bachelor’s degree
followed by a 2-year master’s degree. The uniform
length of the bachelor’s degree program is expected to
facilitate “mobility” among universities, enabling
students to pursue their master’s degree in a different
university than the one in which they earn their
bachelor’s degree.
This curriculum in Lugano is based on the ideas I have
presented in this paper. In this section, I discuss some of
its most interesting aspects.

Overall structure.
The curriculum is structured around five different areas
that are essential for an interdisciplinary education in
informatics.
Theory. Any scientific discipline has its theoretical
underpinnings that are essential for the study and
understanding of the subject. Regardless of how we
emphasize practical issues and the real world, a theory is
necessary for the identification, specification, and
analysis of problems. No amount of communication

skill can make up for lack of theoretical knowledge.
There is debate in computer science and software
engineering about what this theory is and how much of
it is necessary for students. We have decided on discrete
mathematics, logic, analysis, statistics, along with
theoretical computer science.
Technology. One of the problems faced by students and
instructors of computer science is the rapid pace of
technology. Clearly, theory should be taught
independently of current technology. It should cover
principles that will last years—perhaps for ever—and
survive several generations of technologies. On the
other hand, technology is important in informatics and
for software engineers because it progresses so fast and
its advances make qualitative differences in what is
possible. Also from a practical point of view, graduates
should be familiar with (some of the) current
technology, whether they are going to work in the
commercial world or take part in research projects. In
software engineering, technology covers such fields as
programming languages, operating systems,
middleware, and programming environments. In this
part of the curriculum, students encounter several
different such technologies.
System approach. Software is almost always part of a
larger computer system. And a computer system is also
almost always part of a larger system itself. It is
therefore important for a software engineer to be able to
take a system view of problems and solutions. The
building of large systems and predicting their behavior
and their impact once they are deployed is notoriously
difficult. It is certainly difficult to teach system-level
thinking in a single course whose emphasis is on a
particular topic. For example, an algorithms course must
concentrate on algorithms and a database curse must
concentrate on models and algorithms for databases.
Putting together a system that includes a network of
databases, web servers, and client machines usually falls
outside the purview of any single class. Thus it is not
easy for a student to get the “big picture.” The
curriculum tries to impart system-level thinking through
the use of semester-long projects. For example, one can
start with an existing system (perhaps built in a previous
semester), analyze its behavior and performance, and
plan and implement extensions and improvements to the
system, followed by further analysis of the system.
Another aspect of systems thinking is to consider not
only the technical aspects of building the system but
also the impact of the introduction of the system on the
behavior of the people and processes in the
organization. Also this aspect requires an
interdisciplinary approach.

Interdisciplinary applications. Anticipating that the
graduate’s career will involve working in different
application areas, the curriculum attempts to familiarize
the student with several different application areas. This
is done in two ways. One is to assign projects that deal
with different application areas, ranging from life
sciences to economics and business. Unlike typical
projects in computer science courses in which the
emphasis is on how to apply learned computer skills,
these projects emphasize solutions that benefit the
application area. The plan is to form teams that include
software engineers but also members from other
faculties in the targeted application area. The second
way in which an interdisciplinary approach is pursued is
to teach the models and modeling techniques of several
other disciplines. Life science models and economic
models are covered as part of the curriculum with this
goal in mind. The reasoning is that if software engineers
are familiar with models used by specialists in
application areas, they are better able to understand the
problems of the application area and to communicate
with their clients.
Communication and teamwork. This part of the
curriculum emphasizes so-called “soft” or behaqvioral
skills. As argued earlier, these skills are especially
important for software engineers. These skills are
taught with the help of semester-long projects,
complemented with focused seminars on theories and
techniques. The importance of communication can be
seen in requirements engineering, especially in
interdisciplinary projects. But students will see first-
hand the need for communication, and its difficulties, in
team projects.
To enhance the emphasis on teamwork, the building that
is to house the computer science department has been
designed to include “teamwork areas.” In fact, the
requirements for the architect called for areas that
support teams of students working together. Each floor,
rather than containing large laboratories, includes
modular structures that can be set up to accommodate
different team sizes. Each team area has its own
infrastructure support for the team.
Teaching methodology.
As can be seen from the discussion in this section, the
curriculum makes heavy use of, and is reliant on, the
educational value of projects. Such project-based
teaching has been gaining interest in the last few years
in different areas. Some disciplines, such as architecture,
have a long tradition of project-based education. In
other disciplines, its adoption has followed advances in
educational theory and technology. There are various
reasons cited for the adoption of a project-based

approach. One is that it engages the student and
therefore increases motivation. Another is that in certain
fields (more like crafts) learning by doing is the most
effective. The former reason is cited by MIT as its
motivation to recently convert its introductory physics
course to be project-based. The latter reason is why
many architecture schools adopt a project-based
curriculum. For informatics, the situation is different.
As I have tried to argue in this paper, addressing all the
challenges faced in teaching software engineering, or
informatics in general, requires a holistic approach. I see
projects as the vehicle to bring all the disparate issues
together and trade them off against one another. Of
course, they should motivate the students more than the
traditional classroom teaching. Of course, they should
enable the students to learn by doing. But more than
these reasons, a project-based approach should enable
the students to apply system-level thinking, see
technologies in use, and appreciate the difficulties and
benefits of working with others in a team.
Course structure.
Tables 1-3 list the courses as envisioned for the three
years of the bachelor curriculum. This is a draft
proposal and it is likely that the exact set of courses will
change somewhat as we gain experience with the
curriculum. Also, I have not shown credit hours
associated with each course as this will also change. The
list, however, does give a flavor for the diversity of
courses and the coverage of other disciplines.

Programming fundamentals
Computer architecture
Discrete structures I
Computer network architecture
Mathematics
Technology lab
Semester projects

Table 1. Courses in the first year

In the first year (Table 1), and every other year, the
hours are divided roughly evenly between courses and
the semester projects. Each semester has one semester-
long project. The discrete structures course (continued
in the second year) covers the theoretical background
necessary for reasoning about discrete systems. The
technology lab allows the student to learn about a
particular technology. For example, if the student wants
to learn about Linux or a programming language that is
not normally covered in the curriculum, the technology
lab provides a way to do that. Often, such courses can
be taken on-line and the university does not need to

provide customized courses for every available
technology. This is one way that traditional universities
can adopt the use of distance education to enhance
traditional education.

Discrete structures II
Algorithms and data structures
Software design
Net-centric computing
Software development
Information and knowledge management I
Life sciences models
Technology lab
Semester projects

Table 2. Courses in the second year

Hardware and software co-design
The business of software
Information and knowledge management II
Technology lab
Economics and business models
Informatics elective
Semester projects
Final project

Table 3. Courses for the third year

In the second year (Table 2), there are two modules on
software: one deals with software design and the other
with software development. Traditional courses on
software engineering in fact do not spend much time on
software design because it is not an easy thing to teach.
It is usually covered by discussing design notations. We
have separated it into a distinct module to emphasize its
importance. In fact, there are probably more general
design (and architecture) issues than apply to just
software. To be more specific, we have limited the
module to software design. The intent is to examine
examples of good designs and have lectures by good
designers. The course on software development then
covers the practical issues of software engineering, that
is, tools and processes. Net-centric computing
introduces a distributed systems view of computing.
Traditional resource management issues of operating
systems are covered in this course, along with
communication and middleware. Information and
knowledge management (continued in the third year)
combines elements from programming languages,
databases, artificial intelligence, and knowledge
management. The purpose of combining them in a
single course is to take an integrated view and see their

common goals and models. Indeed, each of these
subjects contains fundamental concepts and models that
are important for every computer scientist.
Unfortunately, it is not possible to require a complete
course on each of these topics in a bachelor’s degree
program. By offering an integrated course, we intend to
emphasize the different but related modeling and
analysis approaches in these fields.
In the third year (Table 3), the course on the business of
software deals with ethical and professional issues, as
well as licensing models. It addresses both the role of
software in business and the role of business in
software. It is a way for the students to see a different
big picture. The economics and business models course
covers organizational theory and the role of information
technology and systems in business. The informatics
elective is a place-holder for different topics that are not
covered in the curriculum. For examples, there are no
required courses on compilers or graphics. This elective
gives the student the opportunity to follow such a
subject.
Master’s degrees.
Clearly, three years are not enough to educate a
complete computer scientist or software engineer. The
Bologna convention calls for a two-year specialization
master’s program. The trend is for each university to
offer several different specialized master’s degrees,
rather than a single master’s degree in informatics. In
Lugano, we have decided to continue our emphasis on
interdisciplinary computer science in the master’s
program and offer master’s degrees in “Informatics and
…” This is, however, still under discussion and details
are to be worked out. We have had many suggestions
from people in different disciplines, both in industry and
academia, that a combination of informatics and their
discipline makes a lot of sense because informatics is
such a central part of their business. For example, a
master’s degree in financial informatics could prepare a
graduate who is conversant both in informatics and
financial models and practices. The pervasiveness of
computing and software has created a need for
interdisciplinary informatics specialists. The master’s
degree is the right vehicle for providing this education.

7. Conclusions and open issues
In this paper, I have presented my view of the
difficulties of educating a software engineer. Individual
software engineers may use the problems I have
mentioned as a guide or starting point for enhancing
their background. But to institutionalize the educational
experience, we need new curricula in universities. I have

presented one such curriculum that is going to start in
October 2004 at the University of Lugano. The
curriculum is integrative, or holistic, interdisciplinary,
and project-based. In some years, we will be able to
report on the results of the curriculum and how it fares
in comparison to more traditional curricula. In the
meantime, there is room for other innovative curricula
for software engineers because the problems of software
engineering education are real, even if solutions are less
clear.
For anyone interested in such issues, there are a few
useful sources. Foremost is the curriculum
recommendations proposed by ACM and IEEE. In
particular, the two recommendations, one on computer
science [3] in general and the other on software
engineering [4], are full of ideas and arguments on how
to teach individual courses as well as on choices of how
to structure curricula depending on the size of the
department, number of faculty members, orientation of
the faculty, and so on. We have found the descriptions
of the courses and the division into core areas and
optional areas both inspiring and practically useful. The
course contents take a modern view of computer science
and clearly take into account recent developments in
research and technology.
An interesting source of information is the website of
the Career Space consortium (http://www.career-
space.com). This consortium, consisting of many large
multinational corporations involved in information
technology, was sponsored by the European
Commission to identify skill shortages, job profiles, and
future needs of the European Union in information and
communication technologies (ICT). This consortium
also identifies behavioral (sometimes called “soft”)
skills as an important requirement for engineers and
offers recommendations for structuring curricula with
the use of a final capstone project. In the United States,
the Software Engineering Institute (www.sei.cmu.edu),
sponsored by the US Department of Defense, offers
guidelines and courses on software engineering,
primarily focused on practical matters.
Then there are of course textbooks on software
engineering. A randomly picked example is [5]. One
can find books with different emphases. Most try to be
comprehensive and cover all the phases of the software
process with some management thrown in. There are
several factors that may be used to differentiate the
textbooks. One is the view of object-orientation. Some
assume object-orientation is the only way to do software
engineering while others consider object-orientation as
one of the approaches to software design. Another
differentiating factor is depth versus breadth. Some try

to cover all known techniques while others take a few
techniques and cover them in depth. At one extreme,
some textbooks consider only one specific approach,
such as software engineering with UML or extreme
software engineering.
Regardless of the abundance of textbooks and proposed
curricula, one issue in software engineering education
remains open and that is the question of how to teach
software design. It would help the whole field of
software engineering if we had a better idea of how to
educate designers. This is of course not an easy matter
since good designers exhibit abilities such as creativity,
ingenuity, and good taste that are not necessarily
teachable. On the other hand, we should be able to do
better, perhaps by relying on other fields that have been
teaching design for a longer time. We are planning to
work with the Academy of Architecture in Mendrisio,
Switzerland, to develop an interdisciplinary approach to
teaching (software) design.

8. References
[1] Brooks, F. P., Jr. "No Silver Bullet: Essence and
Accidents of Software Engineering," Computer, Vol.
20, No. 4 (April 1987): 10-19.
[2] Parnas, D. L., “The Professional Responsibilities of
Software Engineers,” IFIP Congress (2) 1994: 332-339.
[3] Computing curricula 2001, Computer Science,
http://www.computer.org/education/cc2001/final/
[4] Computing curricula 2001, Software Engineering,
http://sites.computer.org/ccse/
[5] Ghezzi, C., Jazayeri, M., and Mandrioli, D.
Fundamentals of Software Engineering, Second Edition,
Prentice-Hall, 2002.
[6] Parnas, D.L., “On A Buzzword: Hierarchical
Structure,” Proc. IFIP Congress 1974, Amsterdam,
North Holland, 1974

