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Abstract

Range functions are an important tool for interval computations, and they can be em-
ployed for the problem of root isolation. In this paper, we first introduce two new classes of
range functions for real functions. They are based on the remainder form by Cornelius and
Lohner [7] and provide different improvements for the remainder part of this form. On the
one hand, we use centred Taylor expansions to derive a generalization of the classical Taylor
form with higher than quadratic convergence. On the other hand, we propose a recursive
interpolation procedure, in particular based on quadratic Lagrange interpolation, leading
to recursive Lagrange forms with cubic and quartic convergence. We then use these forms
for isolating the real roots of square-free polynomials with the algorithm EVAL, a relatively
recent algorithm that has been shown to be effective and practical. Finally, we compare the
performance of our new range functions against the standard Taylor form. Range functions
are often compared in isolation; in contrast, our holistic comparison is based on their per-
formance in an application. Specifically, EVAL can exploit features of our recursive Lagrange
forms which are not found in range functions based on Taylor expansion. Experimentally,
this yields at least a twofold speedup in EVAL.
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1 Introduction

This paper addresses two related computational problems: (P1) range functions and (P2) root isolation.
Computing the range of functions is arguably the most basic task in interval computation [23, 19, 11]. Root
isolation is also a fundamental task in the huge classical literature on root finding [17]. These two problems
are connected by the fact that root isolation can be reduced to evaluating range functions. To see this, the
next two subsections review the relevant literature on range functions and root isolation.

1.1 Range functions

We first consider problem (P1). Let f : R→R be a real function. For any S ⊆R, the range of f on S is the
set f (S ) := { f (x ) : x ∈ S}, and we define the magnitude of S as |S | := sup{|s | : s ∈ S}. Let R denote the set
of closed bounded intervals. For any I ∈ Rwith I = [a , b ], the width, radius, and midpoint of I are given
by w (I ) := b −a , r (I ) := (b −a )/2, and m (I ) := (a + b )/2, respectively. Note that |I |=max{|a |, |b |}. A range
function (or inclusion function) for f is a function of the form

f : R→ R,

where f (I )⊆ f (I ) for all I ∈ R. If f (I ) = f (I ) for all I , we call it the exact range function. Note that ‘ f ’ is
a generic name for a range function of f ; we use subscripts and/or superscripts to identify particular range
functions: for example, g f , T

2 f , or L
3 f . We can compare range functions using a natural “tightness partial

order” on range functions of f : we say that 1 f is as tight as 2 f , denoted 1 f ⪯ 2 f , if 1 f (I ) ⊆ 2 f (I )
for all I . Generally, we prefer range functions that are as tight as possible, ideally the exact range function.
But since tight range functions are inefficient (that is, expensive to compute), we must choose a trade-off
between tightness and efficiency. Comparative studies of range functions based on tightness or efficiency
are often done in isolation, independent of any application. For example, see [9, 8, 31]. In this paper, we give
a holistic or integrated comparison of range functions, namely comparisons in the context of an application
(see Section 5).

A more robust way to evaluate range functions is to look at “asymptotic tightness”. We say that f has
order k convergence (for k ≥ 1) on I0 if there exists a constant C0 > 0 that depends on f and I0 but not on I ,
such that

q ( f (I ), f (I ))≤C0w (I )k
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for all I ⊆ I0, where q ([a , b ], [a ′, b ′]) :=max{|a −a ′|, |b − b ′|} is the Hausdorff distance on intervals. If f has
at least order 1 convergence, then we call f convergent. Note that for any sequence (Ii )i≥1 of intervals that
converges monotonically to a point p ∈ I0, a convergent range function satisfies

f (p ) = lim
i→∞

f (Ii ).

Such a convergent range function is also called a box form of f [31]. When k = 2, we say that f has quadratic
convergence.

Cornelius and Lohner [7]were the first to introduce techniques for higher than quadratic convergence.
For any function g : R→R, they consider range functions of f of the form

g f (I ) := g (I ) + Rg (I ), (1)

where Rg := f − g is the remainder function. They call g the exact part of this range function because its
range must be computed exactly. This limits g to polynomials of small degree d (Cornelius and Lohner
suggest d ≤ 5). The remainder part Rg (I ) need not be exact, but its width controls the overall Hausdorff
distance, since [7, Theorem 4]

q ( f (I ), g f (I ))≤w ( Rg (I )).

It follows that the remainder form g f (I ) has order k convergence, if w ( Rg (I ))≤C0w (I )k .
Cornelius and Lohner show that this can be achieved by letting the exact part g be a Hermite interpolant

of f . In fact, if f is k times continuously differentiable, x0, . . . , xℓ ∈ I are distinct interpolation nodes, p0, . . . , pℓ
are positive integers with

∑ℓ
i=0 pi = k , and g is the unique polynomial of degree at most k −1, such that

g ( j )(xi ) = f ( j )(xi ), j = 0, . . . , pi −1, i = 0, . . . ,ℓ, (2)

then the remainder function can be expressed for any x ∈ I as

Rg (x ) =
1

k !
f (k )(ξx )

ℓ
∏

i=0

(x − xi )
pi , (3)

for some ξx ∈ I . We now define the remainder part as

Rg (I ) :=
1

k !
f (k )(I )

ℓ
∏

i=0

(I − xi )
pi , (4)

where f (k )(I ) is what Ratschek and Rokne [23, p. 23] call the natural interval extension of f (k )(x ). For
example, if f (k )(x ) is a polynomial, we write it as an expression E (x ) in the nested Horner form and define

f (k )(I ) := E (I ). The remainder form g f (I ) in (1) then has order k convergence, because |I − xi | ≤ w (I )
and Lemma 1.6 in [23, p. 24] imply

w ( Rg (I ))≤ 2| Rg (I )| ≤ 2
| f (k )(I )|

k !
w (I )k ≤ 2

| f (k )(I0)|
k !

w (I )k .

The simplest example of this approach is the convergent mean value form around x0,

M V
x0

f (I ) := f (x0) + f ′(I )(I − x0),

which is obtained by letting ℓ= 0 and p0 = k = 1, so that g is the constant interpolant of f at x0. This form
has even quadratic convergence, if the range f ′(I ) is approximated with a Lipschitz range function [23].

Cornelius and Lohner further point out that it is also possible to define the exact part as

ĝ (x ) := g (x ) +
y

k !

ℓ
∏

i=0

(x − xi )
pi

for some y ∈ f (k )(I )⊂ f (k )(I ) and the remainder part (cf. (4)) as

Rĝ (I ) :=
1

k !
( f (k )(I )− y )

ℓ
∏

i=0

(I − xi )
pi . (5)
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Algorithm 1 Real root isolation with range functions
Input: f : R→R and I0 ∈ R
Output: Z containing isolators for each ζ ∈ Zero f (I0)

1: procedure EVAL( f , I0)
2: initialize Q := {I0} and Z :=∅
3: while Q is non-empty do
4: I :=Q .pop(), where I = [a , b ]
5: if 0 ∈ f (I ) then ▷ I is implicitly discarded if 0 /∈ f (I )
6: if 0 ∈ f ′(I ) then
7: Q .push([a , m ], [m , b ]), where m =m (I )
8: else ▷ f is strictly monotonic
9: if f (a ) f (b )≤ 0 then ▷ 0 ∈ f (I )

10: Z .push(I )
11: return Z

If f (k ) is Lipschitz continuous, then this gives one extra order of convergence, because | f (k )(I )− y | ≤
w ( f (k )(I )) ≤ C ′0w (I ) for all I ⊆ I0 and some constant C ′0 > 0 that depends on f and I0 but not on I [7,
Theorem 2]. In this variant, ĝ is of degree k and the condition that distinguishes ĝ from g is that ĝ (k ) = y ,
while g (k ) = 0. Evaluating ĝ (I ) exactly is of course more costly than evaluating g (I ), because ĝ has a higher
degree than g . Note that we can also get this extra order of convergence by adding one Hermite interpolation
condition to the definition of g . The evaluation of the exact part would then be as costly as the evaluation
of ĝ (I ), but the remainder part would depend on f (k+1), while the remainder part in (5) depends on f (k ), a
fact that we shall exploit in Section 3.2.

The Cornelius–Lohner framework appears to suggest that convergence is limited by the exact part alone,
without attaching much interest to the remainder part. In this paper, we suggest the contrary: for any
function f with exact part g , the remainder part Rg (I ) in (1) can vary. Despite having the same order of
convergence, their actual performance in an application like root isolation can diverge significantly.

We propose two new ideas for defining such improved remainder parts. The first relies on expressing the
remainder function (3) in centred form (Section 2.1), the second approximates f (k )(I ) in (4) using again the
remainder form in (1), thus applying the idea of Cornelius and Lohner recursively (Section 3).

1.2 Real root isolation and EVAL

We next turn to (P2). Consider again a real function f : R→ R. The zero set of f on S ⊆ R is Zero f (S ) :=
{x ∈ S : f (x ) = 0}, and # f (S ) denotes1 the cardinality of Zero f (S ). An isolator for f is an interval I such
that # f (I ) = 1, and we say that I isolates the unique zero of f in I . The root isolation problem can then
be formalized as follows: Given f and an interval I0 ∈ R, compute a set Z of isolators for f , such that
each ζ ∈ Zero f (I0) is isolated by some I ∈ Z . Assuming f to be nice, in the sense that f is continuously
differentiable and the zeros of f in I0 are simple (that is, f (ζ) = 0 implies f ′(ζ) ̸= 0), we can reduce problem
(P2) to (P1) using a procedure that we call EVAL (see Algorithm 1).

Note that the numerical computation of EVAL is reduced to evaluating two range functions, one for f
(line 5) and one for its derivative f ′ (line 6). Moreover, EVAL uses two queues to hold intervals, an active
queue Q and an output queue Z . The intervals I are bisected until either 0 /∈ f (I ) or 0 /∈ f ′(I ) holds. We
may call these two conditions the exclusion and inclusion predicates.

EVAL terminates and solves problem (P2), if we assume the two range functions f and f ′ to be
convergent on I0. It is then clear that each I ∈ Z represents a unique root ζ ∈ Zero f (I0), because I is
added to Z if and only if f (a ) f (b )≤ 0 (line 9), which guarantees the existence of a root by the intermediate
value theorem, and if f is strictly monotonic on I = [a , b ] (line 8), which assures the uniqueness of that
root. Moreover, each ζ ∈ Zero f (I0) is represented by at most two isolators. In case two isolators I , J ∈ Z
represent ζ, then ζ ∈ I ∩ J is a common endpoint of I and J . Such duplication is easily detected and removed,
or avoided upfront. For example, if f is a polynomial with rational coefficients and rational arithmetic is
used in EVAL, then we can replace the weak inequality in line 9 by the strict inequality f (a ) f (b ) < 0 and
instead test f (m ) = 0 after line 7, adding the point interval [m , m ] to Z if the test holds.

Despite its simplicity, the subdivision tree size of EVAL is optimal when f is an integer polynomial [3, 4, 28]
and the box forms f and f ′ are the “maximal” centred Taylor forms T

2 (see Section 2). In other words, it

1Note that root multiplicity is not used in the definitions of Zero f (S ) and # f (S ). In particular, Zero f (S ) is a set, not a multiset.
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asymptotically matches the tree size achieved by powerful tools like Sturm sequences or Descartes’ rule of
signs! However, EVAL does not require f to be a polynomial [32].

1.3 Some broader literature

Besides the book of Ratschek and Rokne [23] on range functions, we refer to Neumaier [20, Chapter 2.4] and
Stahl’s thesis [29] for further investigations of the remainder forms of Cornelius and Lohner [7], which are
also referred to as interpolations forms.

To our knowledge, the first version of EVAL is from Mitchell [18] in the context of ray tracing in computer
graphics. Its current formulation as a root isolation algorithm, together with complexity analysis, began
with [5]. Yap et al. introduced EVAL as a 1-dimensional analogue of the 2-dimensional algorithm of Plantinga
and Vegter for isotopic approximation of non-singular curves [22, 14, 15]. Besides EVAL, Yap et al. also
introduced CEVAL [25] for complex roots and AEVAL [32] for analytic roots. The complexity analysis of these
algorithms can be captured under the elegant framework of “continuous amortization” [4, 3, 28].

Root finding for polynomials is a highly classical problem [16, 17] that has remained active to the present.
The modern complexity-theoretic approach to root finding was initiated by Schönhage in 1982 [26]. A basic
quest is to construct “near-optimal” algorithms, and in the last decade, significant progress has been made
in this direction; see Sagraloff and Mehlhorn [24] (for real roots) and Becker et al. [2, 1] (for complex roots).
The new near-optimal algorithms are based on the subdivision paradigm; moreover, they were implemented
soon after their appearance [13, 12]. In contrast, the original near-optimal algorithm [21] has never been
implemented (see [21, p. 703] for some challenges).

1.4 Overview of the paper

In Section 2, we introduce a family of range functions based on Taylor expansions. Technically, these functions
are not new, but within the Cornelius–Lohner framework, we highlight their true role as improvements on
the remainder parts. In Section 3, we introduce range functions based on recursive Lagrange interpolation.
These are new, but again, we can view them as improvements of the remainder parts. In Sections 4 and 5, we
evaluate the deployment of eight of these range functions in the EVAL algorithm; here, the Lagrange form
begins to shine because of its “distributed evaluation” scheme (see Section 4.1). We conclude in Section 6.

2 New range functions based on centred Taylor expansions

A classic approach for designing a remainder form (1) with quadratic convergence is to choose ℓ= 0 and
p0 = k = 2 in (2) and letting x0 =m :=m (I ), so that the exact part is the linear Taylor polynomial of f about
the midpoint of I , that is, g1(x ) := f (m )+ (x −m ) f ′(m ). This gives the centred form g1

f (I ) := g1(I )+ Rg1
(I ).

One option now is to follow Cornelius and Lohner and express the remainder part as in (4),

Rg1
(I ) =

1

2
f ′′(I )(I −m )2, (6)

where f ′′(I ) is the natural interval extension of f ′′(x ). We call the resulting version of g1
f (I ) the minimal

(centred) Taylor form.
This can be improved considerably, if f is n times continuously differentiable for n > 2, by using the

(n −1)-th order Taylor expansion of f about m to write the remainder function as

Rg1
(x ) =

n−1
∑

i=2

f (i )(m )
i !

(x −m )i +
f (n )(ξx )

n !
(x −m )n , (7)

for some ξx ∈ I . We now define

ci :=
f (i )(m )

i !
, i = 0, . . . , n −1, cn :=

| f (n )(I )|
n !

, (8)

where the magnitude of the natural interval extension f (n )(I ) can be replaced by f (n )(m ) in the definition
of cn , if f (n ) is a constant, for example, in the case of f being a polynomial of degree d ≤ n . We then get the
following improvement of (6):

Rg1
(I ) :=

n
∑

i=2

ci (I −m )i = r 2[−1, 1]S2,n , S2,n :=
n
∑

i=2

|ci |r i−2, (9)
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where r := r (I ). Computing the ci ’s takes O (n log n ) arithmetic steps (or O (n 2) in simple implementations,
as in Section 5); for bit-complexity, see [30]. In contrast, the natural interval extension (6) requires O (n ) steps.
What do we get in return? Although this does not change the quadratic convergence of the centred form

g1
f (I ), it may be much better than the remainder part in (6) of Cornelius and Lohner, because successive

terms of S2,n converge with higher and higher order. This is dramatically illustrated below in Tables 2–4
(columns eET

2 and ET
2 ). Recalling that the exact range of g1 is g1(I ) = c0+ r [−1,1]c1 (see Appendix A.1), we

realize that the resulting centred form

T
2,n f (I ) := c0+ r [−1, 1]c1+ r 2[−1, 1]S2,n (10)

is actually just the classical Taylor form of order n (or “level n” using our terminology below) [23, p. 77], with
the range f (n )(I ) approximated by | f (n )(I )| · [−1, 1].

2.1 Taylor forms with order k convergence

Following Cornelius and Lohner, we can raise the convergence order from quadratic to basically any order
k > 2, simply by replacing g1 with the (k −1)-th order Taylor polynomial of f about m ,

gk−1(x ) :=
k−1
∑

i=0

f (i )(m )
i !

(x −m )i =
k−1
∑

i=0

ci (x −m )i .

But instead of expressing the remainder function Rgk
= f − gk in terms of the k -th derivative of f as (cf. (3))

Rgk−1
(x ) =

1

k !
f (k )(ξx )(x −m )k ,

we continue the Taylor expansion of f (k )(x ) all the way to n −1 for some n ≥ k (assuming that the derivatives
exist), to obtain (cf. (7))

Rgk−1
(x ) =

n−1
∑

i=k

f (i )(m )
i !

(x −m )i +
f (n )(ξx )

n !
(x −m )n ,

for some ξx ∈ I . As above (cf. (9) and (10)), we then get the generalized Taylor form of (convergence) order k
and level n ,

T
k ,n f (I ) := gk−1(I ) + r k [−1, 1]Sk ,n , Sk ,n :=

n
∑

i=k

|ci |r i−k ,

where the ci are defined as in (8). The level n is minimal if n = k , and maximal if n =∞. The maximal
level is only possible when f is analytic and r sufficiently small, so that Sk ,∞ is convergent. Clearly, if f is a
polynomial of degree d , then Sk ,∞ is a finite sum and convergent for any r . We call the corresponding range
functions minimal and maximal Taylor forms of order k , denoted by eTk f (I ) and T

k f (I ), respectively. This
definition includes the minimal Taylor form based on g1 (cf. (6)) as a special case for k = n = 2.

For k = 3, computing the exact range of the quadratic Taylor polynomial g2 is only marginally more
costly (see Appendix A.2) than computing g1(I ) and the cubic convergence gives a noticeable performance
gain when used in EVAL (see Section 5). But already for k = 4 the computational overhead of determining
the range g3(I ) exactly (see Appendix A.3) appears to outweigh the benefit of the better convergence order,
at least in the context of EVAL, leaving only a slight advantage in terms of running time. Note that there
is a similar phenomenon in Newton’s method where quadratic convergence is the sweet spot despite the
possibility of achieving cubic (Halley’s method) or higher convergence.

3 New range functions based on recursive interpolation

Another approach to improving the remainder part is by recursively applying the idea of Cornelius and
Lohner. To this end, let h0 be the Hermite interpolant of f for a certain choice of interpolation nodes xi and
multiplicities pi , and with degree at most k − 1. According to (3), the remainder part Rh0

= f −h0 can be
written as

Rh0
(x ) =

ω(x )
k !

f (k )(ξx ), ω(x ) :=
ℓ
∏

i=0

(x − xi )
pi ,
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for some ξx ∈ I , and the magnitude of its (exact) range satisfies

|Rh0
(I )| ≤Ω| f (k )(I )|, Ω :=

|ω(I )|
k !

. (11)

Here we assume that the range ω(I ) can be computed exactly, which is certainly true for small k (as in
Section 3.1 below), but it is also possible to replaceω(I )with some range estimate ω(I ). We now split f (k )

in (11) into the Hermite interpolant h1 of f (k ) (for the same interpolation nodes and multiplicities) and a
remainder part Rh1

. Since |Rh1
(I )| ≤Ω| f (2k )(I )|, we obtain

| f (k )(I )| ≤ |h1(I )|+Ω| f (2k )(I )|.

If f is nk times continuously differentiable for some n ≥ 1, we may repeat this procedure (always with the
same interpolation nodes xi and multiplicities pi ) to obtain Hermite interpolants h j of f ( j k ) for j = 1, . . . , n .
This gives a recursive remainder bound

|Rh0
(I )| ≤

n−1
∑

j=1

|h j (I )|Ω j +Ωn | f (nk )(I )|=: Tk ,n . (12)

Sinceω(x ) scales with r k as I varies, we have Ω ∈O (r k ) and also Tk ,n ∈O (r k ). It follows that the recursive
remainder form of order k and level n ,

R
k ,n f (I ) := h0(I ) + [−1, 1]Tk ,n , (13)

has indeed order k convergence. The minimal form R
k ,1 f (I ) for the smallest level n = 1 is essentially the

remainder form of Cornelius and Lohner (cf. (4)), if we replaceω(I ) in (11) by ω(I ). As in Section 2, the
advantage of higher levels of n is due to the fact that the terms of Tk ,n converge with successively higher
order. Again, the maximal level n =∞ that induces the maximal recursive remainder form R

k ,∞ f (I ), is only
possible if Tk ,∞ is convergent, which is the case if f is analytic and r sufficiently small, or if f is a polynomial.
Note that in the latter case, evaluating this form requires just a finite number of point evaluations of f and
its derivatives, akin to the evaluation of the maximal Taylor forms.

3.1 Recursive Lagrange form with cubic convergence

One particular instance of the recursive remainder form (13) that will prove beneficial for EVAL is based on the
endpoints and the midpoint of I = [a , b ] as simple interpolation nodes, that is, to use ℓ= 2, x0 = a , x1 =m ,
x2 = b in (2) and p0 = p1 = p2 = 1, so that k = 3. In this setting, h j is the quadratic Lagrange interpolant of
f (3 j ) at a , m , and b , which can be expressed in centred form as

h L
j (x ) := d j ,0+d j ,1(x −m ) +d j ,2(x −m )2 (14)

with coefficients

d j ,0 := f (3 j )(m ), d j ,1 :=
f (3 j )(b )− f (3 j )(a )

2r
, d j ,2 =

f (3 j )(b )−2 f (3 j )(m ) + f (3 j )(a )
2r 2

,

where r := r (I ). A simple calculation shows that the exact range of

ω3(x ) := (x −a )(x −m )(x − b )

is ω3(I ) =
2
p

3
9 r 3[−1,1], so that Ω3 := 1

6 |ω3(I )| =
p

3
27 r 3. We denote the resulting recursive Lagrange form of

level n by
L
3,n f (I ) := h L

0 (I ) + [−1, 1]T3,n , (15)

where (cf. (12))

T3,n :=
n−1
∑

j=1

|h L
j (I )|Ω

j
3 +Ω

n
3 | f (3n )(I )| ∈O (r 3). (16)

If f is a polynomial of degree d , then the maximal recursive Lagrange form L
3 f (I ) := L

3,∞ f (I ) depends

on the 3(⌊d /3⌋+1) values f (3 j )(a ), f (3 j )(m ), f (3 j )(b ), j = 0, . . . , ⌊d /3⌋, which is comparable to the d +1 values
needed for the maximal Taylor forms T

k f (I ).
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As the cubic convergence of L
3,n f (I ) is independent of how the range of h L

j is estimated for j ≥ 1 in (16),

we can replace the exact evaluation of h L
j (I ) by the cheaper centred form evaluation

T
2 h L

j (I ) = d j ,0+ r [−1, 1]|d j ,1|+ r 2[−1, 1]|d j ,2|.

This yields a less tight range function (cf. (15))
L ′

3,n f (I ) := h L
0 (I ) + [−1, 1]T ′3,n , (17)

where

T ′3,n :=
n−1
∑

j=1

�

|d j ,0|+ r |d j ,1|+ r 2|d j ,2|
�

Ω
j
3 +Ω

n
3 | f (3n )(I )| ∈O (r 3),

which depends on the same data values as L
3,n f (I ). In the context of EVAL, this increases the size of the

subdivision tree slightly, but seems to be more efficient in terms of running time (see Section 5).

3.2 Recursive Lagrange form with quartic convergence

Another variant of the recursive Lagrange form can be obtained by applying Cornelius and Lohner’s general
trick to get one extra order of convergence. To this end (cf. (14)), let

ĥ L
0 (x ) := h L

0 (x ) +
f ′′′(m )

6
ω3(x ) = d0,0+ d̂0,1(x −m ) +d0,2(x −m )2+ d̂0,3(x −m )3, (18)

where

d̂0,1 := d0,1− r 2 f ′′′(m )
6

, d̂0,3 :=
f ′′′(m )

6
,

be the (unique) cubic polynomial that interpolates f at a , m , and b , like h L
0 , and also matches the third

derivative of f at m , in the sense that
�

ĥ L
0

�′′′
(m ) = f ′′′(m ). Similarly as above, we then have

|Rĥ L
0
(I )| ≤Ω3| f ′′′(I )− f ′′′(m )|=Ω3| f̂3(I )|,

where f̂3(x ) := f ′′′(x )− f ′′′(m ). We now split f̂3 into the Lagrange interpolant

ĥ L
1 (x ) := h L

1 (x )− f ′′′(m ) = (d1,1+d1,2(x −m ))(x −m ) (19)

of f̂3 at a , m , and b and the remainder Rĥ L
1

, which satisfies

|Rĥ L
1
(I )| ≤Ω3| f̂ ′′′3 (I )|=Ω3| f (6)(I )|,

hence | f̂3(I )| ≤ |ĥ L
1 (I )|+Ω3| f (6)(I )|. From here on, we repeat the splitting procedure as in the construction of

L
3,n f (I ) and finally arrive at the recursive Lagrange form of level n ,

L
4,n f (I ) := ĥ L

0 (I ) + [−1, 1]T4,n , (20)

where (cf. (16))

T4,n := |ĥ L
1 (I )|Ω3+

n−1
∑

j=2

|h L
j (I )|Ω

j
3 +Ω

n
3 | f (3n )(I )|.

The advantage of L
4,n f (I ) in (20) over L

3,n f (I ) in (15) is that |ĥ L
1 (I )| ∈O (r ), which follows from (19), so that

T4,n ∈O (r 4). This implies that L
4,n f (I ) has quartic convergence, at the cost of requiring the evaluation of the

exact range of the cubic polynomial ĥ L
0 in (18).

Note that L
4,n f (I ) depends on the same data as L

3,n f (I ), and analogous to (17), we can replace the exact

evaluation of ĥ L
1 (I ) and h L

j (I ) for j ≥ 2 by centred form evaluations to get the cheaper, but less tight range
function

L ′

4,n f (I ) := ĥ L
0 (I ) + [−1, 1]T ′4,n ,

where T ′4,n := T ′3,n − |d1,0|Ω3, without compromising the quartic convergence order, because also T ′4,n ∈O (r 4).
A valid question at this point is: why did we not consider applying Cornelius and Lohner’s trick for

increasing the convergence order to the generalized Taylor forms in Section 2.1? The answer is surprisingly
simple: because it does not give anything new! In fact, if we modify the exact part gk−1(x ) of the Taylor

form T
k ,n f (I ) accordingly and consider the alternative exact part ĝk−1(x ) := gk−1(x )+

f (k )(m )
k ! (x −m )k , then

we eventually get the Taylor form T
k+1,n f (I ), because ĝk−1 = gk .

7



4 Real root isolation with EVAL and the new range functions

4.1 Advantage of the Lagrange form in EVAL

What is to recommend the generalized Taylor form or the recursive Lagrange form? We give the intuition
for the advantages of the Lagrange form in the context of root isolation with EVAL for polynomials. Recall
that computing the maximal Taylor form T

k f (I ) for a polynomial of degree d requires us to evaluate f (i )

at m =m (I ) for i = 0, . . . , d . To compute the maximal recursive Lagrange form L
3 f (I ), we must evaluate f (3 j )

at a , m , b , where I = [a , b ] for j = 0, . . . , ⌊d /3⌋. Considered in isolation, the two forms are comparable in
computational complexity, since they each need about d function or derivative evaluations. But in the
context of the EVAL algorithm, the Lagrange form begins to shine: after estimating the range of f over [a , b ],
we would typically need to further estimate the ranges over [a , m ] and [m , b ]. For the Lagrange form,
estimating the range over [a , m ] needs only ⌊d /3⌋+1 additional evaluations of f (3 j ) at (a +m )/2, since we
already computed f (3 j )(a ) and f (3 j )(m ). In contrast, the Taylor form must still make d +1 evaluations of f
and its derivatives at (a +m )/2. A similar remark holds for [m , b ]. Therefore, we may expect a roughly 3-fold
speed up of EVAL when using the Lagrange instead of the Taylor form, although we should keep in mind
that the performance is also influenced by other factors. For example, the tightness of the two forms is not
identical and the Lagrange form requires a more elaborate memory management so that some of the data
needed for processing [a , m ] and [m , b ] can be inherited from the data computed for [a , b ].

4.2 Range functions for derivatives

Before presenting the results of our numerical experiments, there is one more issue that needs to be dealt
with: EVAL not only needs to estimate the range of f over I , but also the range of f ′.

For the generalized Taylor form, a simple calculation shows that the generalized Taylor form (of level n−1)
applied to f ′ is

T
k ,n−1 f ′(I ) = g ′k (I ) + r k [−1, 1]S ′k ,n−1, S ′k ,n−1 :=

n
∑

i=k+1

i |ci |r i−k−1,

where gk is the k -th order Taylor polynomial of f about m , that is, g ′k (x ) =
∑k

i=1 i ci (x −m )i−1, and the ci

are defined as in (8). Therefore, T
k ,n f (I ) and T

k ,n−1 f ′(I ) both have order k convergence and depend on the
same data.

For the Lagrange form, it is more complicated, since L
3,n f ′(I ) depends on the evaluation of f (3 j+1) at

a , m , and b and would thus double the computational cost. To re-use the data needed for computing
L
3,n f (I ), we recall a result by Shadrin [27], which asserts that the error between the k -th derivative of f

and the k -th derivative of the Lagrange polynomial h (x ) that interpolates f at the ℓ+1 nodes x0, . . . , xℓ ∈ I
satisfies

| f (k )(x )−h (k )(x )| ≤ |ω(k )(I )|
| f (ℓ+1)(I )|
(ℓ+1)!

, x ∈ I ,

for k = 0, . . . ,ℓ andω(x ) =
∏ℓ

i=0(x − xi ). In the context of L
3,n , this implies

| f ′(x )−
�

h L
0

�′
(x )| ≤ |ω′3(I )|

| f ′′′(I )|
6

, x ∈ I .

Sinceω′3(I ) = r 2[−1, 2] andΩ3| f ′′′(I )| ≤ T3,n , we conclude that f ′(I ) can be estimated by the recursive Lagrange
forms

L
2,n f ′(I ) :=
�

h L
0

�′
(I ) +

3
p

3

r
[−1, 1]T3,n ,

and
L ′

2,n f ′(I ) :=
�

h L
0

�′
(I ) +

3
p

3

r
[−1, 1]T ′3,n ,

which have only quadratic convergence, but depend on the same data as L
3,n f (I ) and L ′

3,n f (I ). Note that we

cannot derive a similar range function for f ′ with cubic convergence from L
4,n , because ĥ L

0 is not a Lagrange
interpolant and Shadrin’s result does not apply.
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Table 1: Combinations of range functions for f and f ′ used by EVAL in our experiments.

Taylor forms recursive Lagrange forms

eET
2 ET

2 ET
3 ET

4 EL
3 EL ′

3 EL
4 EL ′

4

range of f e

T
2

T
2

T
3

T
4

L
3

L ′
3

L
4

L ′
4

range of f ′ e
T
2

T
2

T
3

T
4

L
2

L ′
2

L
2

L ′
2

Table 2: Size of the EVAL subdivision tree.

f I0 eET
2 ET

2 ET
3 EL

3 EL ′
3 ET

4 EL
4 EL ′

4

T20 931 319 211 239 243 195 227 231
T40 183115 663 439 471 479 423 455 463
T80 [−10, 10] — 1379 931 983 1007 863 931 955
T160 — 2751 1859 1943 1979 1723 1875 1899
T320 — 5611 3795 3875 4003 3467 3735 3851

H20 491 259 179 195 195 151 191 191
H40 18039 443 319 359 363 303 347 351
H80 [−25, 25] — 851 639 683 695 547 671 683
H160 — 1319 1063 1123 1131 1011 1111 1119
H320 — 2251 1967 1975 2063 1527 1939 1987

M21 3873 169 97 113 113 91 109 109
M41 — 339 181 215 215 181 213 213
M81 [−1, 1] — 683 367 445 445 359 423 423
M161 — 1379 757 905 905 721 857 857
M321 — 2771 1513 1801 1801 1459 1711 1711

S100 629 973 521 633 633 509 609 609
S200 1251 1941 1045 1281 1281 1019 1221 1221
S400

[−10, 10]
2503 3887 2083 2555 2555 2035 2435 2435

S800 5005 7753 4161 5103 5103 4053 4875 4875

5 Numerical experiments

We implemented a general version of the EVAL procedure (see Algorithm 1) in C++ and derived from it
eight versions (see Table 1) that differ by the concrete range functions used for estimating the ranges of f
and f ′ in lines 5 and 6. The first version eET

2 estimates both ranges with the minimal Taylor form (cf. (6) in
Section 2). The next three versions ET

k for k = 2,3,4 employ the order-k convergent Taylor form for both
ranges (see Section 2.1). The remaining four versions use recursive Lagrange forms with cubic or quartic
convergence (see Sections 3.1 and 3.2) to estimate the range of f and the recursive Lagrange form with
quadratic convergence (see Section 4.2) for f ′. Note that the version ET

2 represents the state-of-the-art of

EVAL [5] and serves as the “baseline” for performance. Except for e
T

2 , all these Taylor and Lagrange forms are
the maximal versions.

The input data for our experiments come from four representative families of integer polynomials: dense
with all roots real (Chebyshev, Tn and Hermite, Hn ), dense with only 2 real roots in I0 (Mignotte cluster,

M2k+1 = x 2k+1 −2(4x 2 −1)k , from [12]) and sparse without real roots (Sn (x ) = 1+ x +
∑log2

n
100

i=0 x 2i 100). Note
that these polynomials do not have multiple roots, a prerequisite for EVAL’s halting. Our implementation,
including these data and experiments, may be downloaded from the Core Library webpage [33, 6].

We summarize the results of our experiments in three tables, with columns grouped by convergence
order. Table 2 reports the size of the EVAL subdivision tree for the various polynomials. It is a good measure
of the tightness of the various range functions, since the size of the recursion tree is inversely proportional
to the tightness of the range functions used. In each row, the smallest tree size, which is always achieved
by ET

4 , is highlighted in boldface. In general, we observe that the tree size decreases as the convergence order
of the range functions increases and that the “cheaper” variants of the recursive Lagrange forms lead to
(slightly) larger subdivision trees. The difference between the tree sizes for the Taylor and Lagrange versions
of EVAL with the same convergence order is mainly due to the inferior recursive Lagrange form with only
quadratic convergence that is used for f ′. In fact, if we use T

3 instead of L
2 for the range of f ′ in EL

3 , then
the tree sizes are almost identical to those of ET

3 , and likewise for EL
4 versus ET

4 . However, the price of larger

9



Table 3: Average running time of the EVAL algorithm with 1024-bit floating point arithmetic in seconds.

f I0 eET
2 ET

2 ET
3 EL

3 EL ′
3 ET

4 EL
4 EL ′

4 σ

T20 0.1242 0.02161 0.01526 0.01457 0.01200 0.01459 0.01496 0.01208 1.80
T40 69.96 0.1470 0.0996 0.0677 0.0549 0.0987 0.0689 0.0555 2.68
T80 [−10, 10] — 1.173 0.775 0.379 0.328 0.725 0.365 0.315 3.58
T160 — 9.43 6.39 2.48 2.29 5.80 2.42 2.22 4.12
T320 — 77.2 52.5 17.7 17.3 48.4 17.0 16.7 4.46

H20 0.06296 0.01762 0.01283 0.01214 0.01022 0.01167 0.01271 0.01014 1.72
H40 6.263 0.0945 0.0685 0.0499 0.0403 0.0679 0.0505 0.0412 2.34
H80 [−25, 25] — 0.706 0.528 0.258 0.223 0.450 0.259 0.222 3.17
H160 — 4.40 3.54 1.46 1.31 3.40 1.41 1.28 3.36
H320 — 31.5 27.0 8.9 8.8 21.1 8.8 8.5 3.58

M21 0.5314 0.01389 0.007585 0.007525 0.005753 0.006891 0.007448 0.005920 2.41
M41 — 0.07723 0.04097 0.03071 0.02430 0.04075 0.03071 0.02376 3.18
M81 [−1, 1] — 0.5599 0.3020 0.1681 0.1409 0.2940 0.1624 0.1376 3.97
M161 — 4.620 2.507 1.152 1.049 2.403 1.094 0.9977 4.41
M321 — 38.52 21.08 8.247 7.842 20.47 7.883 7.449 4.91

S100 0.8973 1.080 0.582 0.346 0.301 0.572 0.336 0.292 3.59
S200 6.124 8.54 4.62 2.27 2.09 4.50 2.19 2.00 4.09
S400

[−10, 10]
47.22 66.9 36.3 16.2 15.4 35.2 15.4 14.7 4.34

S800 368.3 527 281 120 117 273 113 112 4.50

Table 4: Average running time of the EVAL algorithm with multi-precision rational arithmetic in seconds.

f I0 eET
2 ET

2 ET
3 EL

3 EL ′
3 ET

4 EL
4 EL ′

4 σ

T20 0.2005 0.02917 0.01966 0.02115 0.01656 0.02004 0.02255 0.01758 1.76
T40 123.1 0.1928 0.1305 0.1083 0.0837 0.1320 0.1127 0.0868 2.30
T80 [−10, 10] — 1.520 1.026 0.659 0.534 0.964 0.643 0.519 2.85
T160 — 13.28 8.86 4.74 3.95 8.27 4.65 3.88 3.36
T320 — 159.8 104.8 52.4 45.7 94.9 50.7 44.1 3.50

H20 0.1024 0.02337 0.01716 0.01779 0.01378 0.01639 0.01968 0.01521 1.70
H40 10.37 0.1364 0.1010 0.0871 0.0660 0.1018 0.0897 0.0683 2.07
H80 [−25, 25] — 0.977 0.725 0.484 0.379 0.632 0.494 0.389 2.58
H160 — 6.80 5.44 3.02 2.37 5.19 3.06 2.39 2.87
H320 — 71.7 61.8 31.9 25.9 47.6 31.9 25.1 2.77

M21 0.9342 0.01787 0.009825 0.01176 0.008525 0.009681 0.01172 0.009060 2.10
M41 — 0.1047 0.05708 0.05195 0.03939 0.05636 0.05217 0.04041 2.66
M81 [−1, 1] — 0.7824 0.4081 0.3086 0.2459 0.4023 0.3012 0.2349 3.18
M161 — 6.937 3.707 2.258 1.887 3.630 2.184 1.786 3.68
M321 — 85.82 43.78 25.58 21.94 42.03 24.49 20.65 3.91

S100 1.039 1.180 0.615 0.509 0.404 0.596 0.500 0.393 2.92
S200 8.019 11.17 5.70 3.87 3.24 5.52 3.72 3.09 3.45
S400

[−10, 10]
103.4 154.0 76.2 45.8 41.1 73.8 43.6 39.7 3.75

S800 1556 2322 1160 636 589 1123 569 561 3.94

subdivision trees seems to be well compensated for when it comes to the actual performance of the different
EVAL variants.

Our experimental platform is a Windows 10 laptop with 1.8 GHz Intel Core i7-8565U processor and
16 GB RAM. The average running times (over 1600/n runs for Tn , Hn , 800/k runs for M2k+1, and 4000/n
runs for Sn ) of our eight versions of EVAL on our list of 19 polynomials are obtained by using two kinds of
computer arithmetic: 1024-bit floating point arithmetic (Table 3) and multi-precision rational arithmetic
(Table 4). No times (and tree sizes in Table 2) are reported, if an EVAL version did not terminate within 1
hour. Both arithmetic variants come from the multiple-precision arithmetic library GMP [10]. For rational
arithmetic, we replaced the constant

p
3 in the definitions of Ω3, L

2 , and L ′

2 with the slightly larger rational
number 17320508075688773/1016, so that the validity of the bounds is not altered. Moreover, we temporarily
switch to 1024-bit floating point arithmetic for computing square roots. The latter is unavoidable when
computing the exact ranges of cubic polynomials (see Appendix A.3) and thus needed by the range functions
with quartic convergence.
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We draw several conclusions from the tables: 1) The EVAL version eET
2 based on minimal forms may be

utterly non-competitive with the maximal form ET
2 (the former timed out after 1 hour for degrees n > 40 for

the first 3 sets of polynomials). We expect the same conclusion for other minimal forms. 2) The EVAL versions
based on recursive Lagrange forms outperform the ones based on Taylor forms with the same convergence
order, despite the larger subdivision trees. We attribute this to the fewer number (about one-third) of
derivative values that are computed. 3) It does not pay to use range functions with quartic convergence
order, because the overhead of computing exact ranges of cubic instead of quadratic polynomials seems to
cancel the advantage of smaller tree sizes. 4) Based on speed and implementation simplicity, we declare the
EVAL variant EL ′

3 as the winner in this comparison. 5) Viewing ET
2 as the state-of-art, we see that EL ′

3 is at least
twice as fast but asymptotically 3 to 5 times faster: this is seen in the speedupσ, defined as the ratio of the
timings ET

2 : EL ′
3 , in the last column of Tables 3 and 4.

6 Conclusions

Bounding the range of a function is an important problem in many scientific disciplines, but most range
functions have only quadratic convergence order. Higher convergence orders and other improvements
are particularly important for generic root finding applications (of which root isolation is only one aspect).
This is because root finding is a demanding application, in part because its long history and literature has
produced some very good algorithms which any new algorithm must contend with. The upshot is that tight
and efficient range functions are in demand.

In this paper, we use the framework of Cornelius and Lohner [7] to investigate range functions of any
order convergence k . For a fixed k , we explore the two formulations of the remainder form: Taylor expansion
and Lagrange interpolation. We see that this remainder form can be refined to any “level” n (n ≥ k ); the
remainder form is minimal if n = k and maximal when n =∞. Experimentally, we show that the minimal
form may be far inferior to the maximal form. This phenomenon should be investigated theoretically.

We then proceed to a holistic comparison of the resulting recursive Lagrange forms and the generalized
Taylor forms with cubic and quartic convergence in the context of the EVAL root isolation procedure. Our
empirical study suggests that both forms behave similarly and that the recursive Lagrange form with cubic
convergence is particularly well-suited for EVAL, giving a significant speed-up, compared to the state of the
art.

One limitation of our empirical work is that the floating point version of EVAL has not accounted for
round-off errors. But we verified experimentally that our floating point version agrees with that of the rational
arithmetic version in two ways: (a) they generate subdivision trees of the same size (that explains why there
is only one Table 2) and (b) they both count the same number of isolator intervals. To address the issues of
implementation including errors from rounding in machine arithmetic, it is possible to apply the 3-levels
“AIE methodology” in [31] to our algorithms.
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A Exact ranges for low degree polynomials

Let I = [a , b ], r = (b −a )/2, m = (a + b )/2, and

A :=min{g (a ), g (b )}, B :=max{g (a ), g (b )}. (21)

A.1 Linear polynomials

The exact range g (I ) = [A, B ] of the linear polynomial g (x ) = c0+ c1(x −m ) is given by the assignment in (21),
because g is monotonic. The range can also be expressed as

g (I ) = c0+ r [−1, 1]c1.

A.2 Quadratic polynomials

To determine the exact range g (I ) = [A, B ] of the quadratic polynomial g (x ) = c0+ c1(x −m ) + c2(x −m )2 we
first observe that the extremum of g occurs at

x ∗ =m −
c1

2c2
,

which is inside I , if and only if |c1|< 2|c2|r . If x ∗ /∈ I , then g is monotonic on I and the assignment in (21)
gives the correct range. Otherwise, we check the sign of c2 to see if g has a minimum (c2 > 0) or a maximum
(c2 < 0) at x ∗ and accordingly replace A or B with

g (x ∗) = c0−
c 2

1

4c2
.

Note that the special case of g being linear (or constant) with c2 = 0 is automatically handled correctly by
this procedure.

A.3 Cubic polynomials

To find the exact range g (I ) = [A, B ] of the cubic polynomial g (x ) = c0+ c1(x −m )+ c2(x −m )2+ c3(x −m )3,
we assume that c3 ̸= 0. If c3 = 0, then g (x ) is a polynomial of degree at most two and its range can be found
with the method in Section A.2.

We now analyze the stationary points of g by considering the quadratic equation

g ′(x ) = c1+2c2(x −m ) +3c3(x −m )2 = 0

and in particular its discriminant
∆= c 2

2 −3c1c3.

If ∆ < 0, then g does not have any local extrema, and if ∆ = 0, then g has a stationary point of inflection.
In both cases, g is monotonic and its range is given by the assignment in (21). If∆> 0, then g has a local
minimum at x− and a local maximum at x+, where

x± =m −
c2±
p
∆

3c3
. (22)

To determine the range of g , we need to know whether x− and x+ are inside or outside I and must distinguish
four cases:
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Algorithm 2 Computing the exact range g (I ) = [A, B ] of the cubic polynomial g (x ) =
∑3

i=0 ci (x −m )i with
c3 ̸= 0 over I = [a , b ].

1: A :=min{g (a ), g (b )}
2: B :=max{g (a ), g (b )}
3: ∆ := c 2

2 −3c1c3

4: if∆> 0 then
5: L := sgn(c3)(c1+3c3r 2)
6: R := 2|c2|r
7: if L >R then
8: if |c2|< 3|c3|r then
9: x− :=m − (c2−

p
∆)/(3c3)

10: x+ :=m − (c2+
p
∆)/(3c3)

11: A :=min{A, g (x−)}
12: B :=max{B , g (x+)}
13: else if L >−R then
14: if c2 > 0 then
15: x− :=m − (c2−

p
∆)/(3c3)

16: A := g (x−)
17: else if c2 < 0 then
18: x+ :=m − (c2+

p
∆)/(3c3)

19: B := g (x+)
20: return [A, B ]

1) If x−, x+ ∈ (a , b ), then g (I ) = [min{A, g (x−)}, max{B , g (x+)}].
2) If x− ∈ (a , b ) and x+ /∈ (a , b ), then g (I ) = [g (x−), B ].

3) If x+ ∈ (a , b ) and x− /∈ (a , b ), then g (I ) = [A, g (x+)].

4) If x−, x+ /∈ (a , b ), then g is monotonic over I and g (I ) = [A, B ].

In all four cases, A and B are assumed to be as in (21).
We shall now work out rather simple conditions for detecting these cases. To this end, we first conclude

from (22) that
x± ∈ (a , b ) ⇔ |x±−m |< r ⇔ |c2±

p
∆|< 3|c3|r.

Since the larger of the two values |c2−
p
∆| and |c2+

p
∆| equals |c2|+

p
∆, it is clear that both x− and x+ are

inside I , if and only if
|c2|+
p
∆< 3|c3|r ⇔

p
∆< 3|c3|r − |c2|. (23)

Squaring both sides of the last inequality gives

∆= c 2
2 −3c1c3 < 9c 2

3 r 2−6|c2||c3|r + c 2
2 ⇔ 2|c2|r <

c3

|c3|
(c1+3c3r 2),

but, of course, this is equivalent to (23) only if the right-hand side of the last inequality is positive. Hence,
the condition for the first case above is

x−, x+ ∈ (a , b ) ⇔ σ(c1+3c3r 2)> 2|c2|r and |c2|< 3|c3|r, (24)

whereσ= c3/|c3|= sgn(c3). In a similar way, it can be shown that

x− ∈ (a , b ), x+ ̸∈ (a , b ) ⇔ 2|c2|r ≥σ(c1+3c3r 2)>−2|c2|r and c2 > 0

and
x+ ∈ (a , b ), x− ̸∈ (a , b ) ⇔ 2|c2|r ≥σ(c1+3c3r 2)>−2|c2|r and c2 < 0,

and the condition for the last case above is simply that none of these three cases occur. Note that this includes
the case when c2 = 0 and c1+3c3r 2 = 0, which turns out to be equivalent to the condition {x−, x+}= {a , b }.
Overall, this analysis leads to Algorithm 2.
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