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Abstract

Planar polynomial curves have rational offset curves, if they are either Pythagorean-
hodograph (PH) or indirect Pythagorean-hodograph (iPH) curves. In this paper,
we derive an algebraic and two geometric characterizations for planar quartic iPH
curves. The characterizations are given in terms of quantities related to the Bézier
control polygon of the curve, and naturally extend to quartic and cubic PH and
quadratic iPH curves.
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1 Introduction

Let r (t ) = (x (t ), y (t )) be a parametric curve in the plane. The offset curve to r at some (signed) distance d ∈R
can be written as rd (t ) = r (t )+d n (t ), where n (t ) = (y ′(t ),−x ′(t ))/σ(t ) is the unit normal of the curve r (t )
andσ(t ) = ‖r ′(t )‖=

p

x ′(t )2+ y ′(t )2 is its speed. Offset curves arise in a variety of applications, including
CNC machining, railway design, and shape blending [22, 18, 16], but due to the square root in the definition
ofσ(t ), they are usually not rational and can thus not be represented exactly in common CAD systems [10, 5].
Therefore, research on conditions for polynomial curves to have rational offsets and methods for constructing
such curves has attracted a lot of attention [10, 5, 13, 14], and the theoretical analysis of the rationality of
generalized offsets to irreducible hypersurfaces was studied, too [2, 21].

Especially in computer-aided geometric design and manufacturing [4], planar polynomial curves are
often expressed in Bézier form as r : [0, 1]→R2,

r (t ) =
n
∑

i=0

p i B n
i (t ), (1)

where B n
i (t ) =

�n
i

�

(1− t )n−i t i are the Bernstein basis polynomials of degree n ∈ N and p0, . . . , pn ∈ R2 are
the control points. Connecting the control points forms the control polygon that provides an intuitive
approximation and description of the curve. A subset of these curves has exactly representable rational
offset curves.

The first class of polynomial curves with rational offsets are Pythagorean-hodograph (PH) curves, which
were introduced by Farouki and Sakkalis [10]. For these curves, the speedσ(t ) is a polynomial, so that the
two components of the curve’s first parametric derivative or hodograph r ′(t ) = (x ′(t ), y ′(t )) andσ(t ) form a
polynomial Pythagorean triple, that is, x ′(t )2+ y ′(t )2 =σ(t )2. PH curves and their applications have been
studied intensively, and we refer the interested reader to the book by Farouki [8] and the references therein.

The second class of polynomial curves that have rational offsets with respect to a properly chosen
reparameterization was discovered by Lü [13, 14]. For such a (non-PH) offset-rational or indirect Pythagorean-
hodograph (iPH) curve [15], there exists a suitable rational quadratic parameter transform t : [0, 1]→ [0, 1]
with t (0) = 0, t (1) = 1, and t ′(s ) > 0 for s ∈ [0,1], such that the speed σ̃(s ) of the reparameterized curve
r̃ (s ) = r (t (s )) and the two components x̃ ′(s ) and ỹ ′(s ) of its first derivative form a rational Pythagorean
triple [14, 15].

In this paper, we study a class of quartic iPH curves, which has been shown to be capable of interpolating
first-order Hermite data with up to four different solutions [14], akin to quintic PH curves [5, 9]; see Figure 1.
We focus on properly parameterized curves, for which the parameter value t and the curve point r (t ) are in
one-to-one correspondence for all t ∈R, except for parameter values corresponding to self-intersections
of r [8]. For an improperly parameterized polynomial or rational curve, it is always possible to make it
properly parameterized by reparameterization [19, 20]. Following [6], we use the complex representation
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quartic iPH quintic PH quartic iPH quintic PH

Figure 1: Examples of C 1 Hermite interpolants (top), their speeds (middle), and curvatures (bottom). Note that the
prescribed tangents are scaled by a factor of 1/5 to better fit the images.

of planar Bézier curves to analyse the structure of these quartic iPH curves and derive a simple algebraic
characterization, given in terms of the complex form of the control edge vectors (see Section 3), which turns
out to be useful for the construction of C 1 Hermite interpolants (see Section 3.4). We then investigate two
geometric characterizations, where the conditions are stated in terms of quantities related to the control
polygon, which can be used to parameterize this class of quartic iPH curves in an intuitive way (see Section 4).

1.1 Related work

Various geometric and algebraic characterizations of lower degree curves with rational offsets have been
derived, usually in terms of quantities related to their Bézier control polygons, with most work focussing on
PH curves.

We know that a cubic curve is a PH curve, if and only if the two interior angles θ1 and θ2 between adjacent
edges of the Bézier control polygon (see Figure 2) are the same and the lengths Ei = ‖ei ‖ of the control
edge vectors ei = p i+1−p i are in geometric progression, that is, E1 =

p

E0E2 [10], which is equivalent to the
condition that the triangles [p0, p1, p2] and [p1, p2, p3] are similar [17]. Interpreting the edge vectors ei as
complex numbers, these geometric conditions can be combined to the single complex constraint e 2

1 = e0e2 [6],
and we derive a similar algebraic condition for quartic iPH curves in Section 3.

According to the analysis in [23], a quartic curve is a PH curve, if there exists a line, which passes through p2

and intersects with the lines p0p1 and p3p4 at s1 and s2, respectively, such that the angles �(p1− s1, p2− s1)
and �(p2−s2, p3−s2) are equal (see Figure 2) and the lengths Fi = ‖ f i ‖ of the vectors f0 = s1−p1, f1 = p2− s1,
f2 = s2−p2, f3 = p3 − s2, together with the lengths E0 and E3 satisfy the three constraints E0F2 = 3F0F1,
E3F1 = 3F2F3, and F1F2 = 4F0F3. In Section 4, we show that a generalized version of these conditions charac-
terizes quartic iPH curves.
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Figure 2: Notation for the characterization of cubic (left) and quartic (right) PH curves in Bézier form.

Further investigations have revealed an additional condition for a quartic PH curve to have monotonic
curvature [25], algebraic [6] and geometric [3] characterizations of quintic PH curves, three methods for
identifying sextic PH curves [24], as well as geometric properties for PH curves of degree seven [12, 26].

1.2 Contributions

Much less is known for iPH curves, apart from the fact that quadratic curves are iPH, but not PH curves,
as long as the control points p0, p1, p2 are not collinear [11, 14], and an in-depth analysis of geometric
conditions for properly parameterized cubic iPH curves [15]. To the best of our knowledge, this paper is the
first to take a closer look at quartic iPH curves and to derive algebraic as well as geometric characterizations
for an important subset of these curves.

2 Preliminaries

For the analysis of PH and iPH curves, it has turned out to be useful to exploit the complex representation
ofR2 [6]. We follow this approach and throughout this paper identify the planar point (x , y ) ∈R2 with the
complex number x+iy ∈C and likewise for vectors and planar curves. The starting point of our investigations
is a necessary and sufficient condition that was discovered by Lü [14].

Theorem 1. A properly parameterized polynomial curve r (t ) has rational offsets, if and only if its hodograph
can be written in complex form as

r ′(t ) = p (t )(1+k t )w (t )2, (2)

where p (t ) is a real polynomial, k is a complex constant, and w (t ) = x (t ) + iy (t ) is a complex polynomial
with x (t ) and y (t ) relatively prime.

Without loss of generality, we can assume the leading coefficient of p (t ) in (2) to be equal to 1, since all other
cases can be reduced to this situation by multiplying w (t )with the square root of this leading coefficient.
Moreover, the curve r (t ) is a PH curve, if Im(k ) = 0, and an iPH curve, otherwise.

In this paper, we focus on quartic iPH curves. For these curves, we have deg(1+k t ) = 1 and consequently
deg(r ) = deg(r ′) +1= deg(p ) +2 deg(w ) +2= 4, and we distinguish the following cases:

• Class I: deg(p ) = 2 and deg(w ) = 0.

In this case, we can rewrite the hodograph in (2) as

r ′(t ) = ((t −a )2+ b )(1+k t )w (3)

for some a , b ∈ R and k , w ∈ C with Im(k ) 6= 0 and w 6= 0. These curves have a linearly varying
normal [1], and we further recognize three sub-cases:

– Class I.0: b > 0. These curves are regular.

– Class I.1: b = 0. These curves are singular, but tangent continuous at t = a .

– Class I.2: b < 0. These curves have two cusps at t = a ±
p
−b .
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• Class II: deg(p ) = 0 and deg(w ) = 1.

In this case, we can rewrite the hodograph in (2) as

r ′(t ) = (1+k t )(w0(1− t ) +w1t )2 (4)

for some k , w0, w1 ∈Cwith Im(k ) 6= 0, w0 6= 0, w1 6= 0, and Im(w1/w0) 6= 0. These curves are regular.

In particular, we are interested in class II quartic iPH curves, since they can be used for solving the C 1

Hermite interpolation problem [14], but we will see that class I.1 quartic iPH curves, quartic and cubic PH
curves, and quadratic iPH curves play a role in this context, too (see Section 3.4).

3 Algebraic considerations

3.1 Class II quartic iPH curves

Our first observation, which was also mentioned in [14], but without further explanation, is that there exists
an alternative representation for the hodograph of class II quartic iPH curves.

Corollary 1. A properly parameterized quartic curve r (t ) is an iPH curve of class II, if and only if its hodograph
can be written in complex form as

r ′(t ) =
�

u 0(1− t ) +
u 1

a 2
t
�

((1− t ) +a t )2, (5)

where u 0, u 1, a ∈Cwith u 0 6= 0, u 1 6= 0, Im(a ) 6= 0, and Im(a 2u 0/u 1) 6= 0.

Proof. If r ′(t ) is given as in (4), then we can rewrite it as in (5) by letting u 0 =w 2
0 , u 1 = (1+k )w 2

1 , a =w1/w0.
Vice versa, we can convert a hodograph from the form in (5) to the form in (4) by letting k =u 1/(u 0a 2)−1,
w0 =±

p
u 0, w1 =w0a . Note that the additional conditions on k , w0, w1 in (4) and on u 0, u 1, a in (5) imply

each other.

In order to derive an algebraic characterization of class II quartic iPH curves in terms of the control
edges ei = p i+1−p i from their Bézier representation, we recall that the hodograph of a quartic curve r (t )
can be written, by differentiating its Bézier representation in (1), as

r ′(t ) = 4
�

e0B 3
0 (t ) + e1B 3

1 (t ) + e2B 3
2 (t ) + e3B 3

3 (t )
�

. (6)

Comparing the two expressions of r ′(t ) in (5) and (6) for t = 0 and t = 1, we observe that

e0 =
1

4
u 0, e3 =

1

4
u 1, (7)

and, by similarly comparing their derivatives, that is, the two forms of r ′′(t ) that they induce,

e1 =
2

3
a e0+

1

3
a−2e3, e2 =

1

3
a 2e0+

2

3
a−1e3. (8)

Moreover, we need to introduce the concept of non-degenerate Bézier control polygons.

Definition 1. We say that the Bézier control polygon of a quartic curve r (t ) is non-degenerate, if and only if
the first and last control edge do not vanish and the control points are not collinear, that is, e0 6= 0, e3 6= 0,
and Im(ei /e0) 6= 0 for some i ∈ {1, 2, 3}.
This kind of non-degeneracy rules out curves that are singular at either t = 0 or t = 1 and those that describe
a (possibly improperly parameterized) straight line. We are now ready to present our main result.

Theorem 2. A properly parameterized quartic curve r (t ) is an iPH curve of class II, if and only if its Bézier
control polygon is non-degenerate and its control edges satisfy

(e0e3− e1e2)
2 = 4(e0e2− e 2

1 )(e1e3− e 2
2 ) (9)

and either
e0e3 = e1e2 (10)

or

Im
�

2
e1e3− e 2

2

e0e3− e1e2

�

6= 0 and Im
�

4
� e1e3− e 2

2

e0e3− e1e2

�2 e0

e3

�

6= 0. (11)
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Proof. Let us start by assuming that r (t ) is a properly parameterized class II quartic iPH curve. To show
that the Bézier control polygon of r (t ) is non-degenerate, we first recall from Corollary 1 that u 0 6= 0,
u 1 6= 0, and Im(a ) 6= 0, hence a 6= 0. It then follows from (7) that e0 6= 0 and e3 6= 0. Now assume
that all ei are parallel, that is, ei = λi e0 for i = 1,2,3 and some λ1,λ2,λ3 ∈ R \ {0}. By (8), we then have
λ2 = a (2λ1 −a ) and λ3 = a 2(3λ1−2a ). Since Im(a (2λ1 −a )) = 2Im(a )(λ1 −Re(a )) and Im(a ) 6= 0, we con-
clude that λ1 =Re(a ), because λ2 would otherwise not be a real number. With this, however, we find that
Im(a 2(3λ1−2a )) = 2 Im(a )3 6= 0, which contradicts the assumption that λ3 ∈R. We now proceed to prove
the algebraic conditions. It follows from (8) that

e0e3− e1e2 =−
2

9
a (a e0−a−2e3)

2
, (12a)

e0e2− e 2
1 =−

1

9
(a e0−a−2e3)

2
, (12b)

e1e3− e 2
2 =−

1

9
(a 2e0−a−1e3)

2
, (12c)

which immediately implies (9). By (12a), condition (10) is equivalent to a 3e0 = e3, because a 6= 0, and
using (8), we see that more generally ei = a ei−1 = a i e0 for i = 1,2,3 in this special case, which means that
the control edges are in geometric progression, just like the control edges of a cubic PH curve. Otherwise,
e0e3 6= e1e2, and it follows from (12a) and (12c) that

2
e1e3− e 2

2

e0e3− e1e2
= a .

By (7), we further find that e0/e3 = u 0/u 1, and the conditions in (11) then follow from Corollary 1, which
guarantees that Im(a ) 6= 0 and Im(a 2u 0/u 1) 6= 0.

Let us now assume that r (t ) is a properly parameterized quartic curve with a non-degenerate Bézier
control polygon and control edges ei that satisfy conditions (9) and (10). Then, either e0e2 = e 2

1 or e1e3 = e 2
2 ,

but as both identities actually imply each other, by (9) and under the non-degeneracy assumption of the
control polygon, which guarantees e0 6= 0 and e3 6= 0, we can safely assume both of them to be true. Con-
sequently, e2 = e 2

1 /e0 and e3 = e 3
1 /e 2

0 , which means that the control edges are in geometric progression, and
it is not hard to verify that both conditions in (8) hold for a = e1/e0. Consequently, and in view of (7), we
can write the hodograph of r (t ) as in (5) with u 0 = 4e0 6= 0 and u 1 = 4e3 6= 0, and it actually simplifies to
r ′(t ) =u 0((1− t )+a t )3 in this case. To show that Im(a ) 6= 0, let us assume the opposite, that is, Im(e1/e0) = 0.
We then have Im(e2/e0) = Im(a 2) = 0 and Im(e3/e0) = Im(a 3) = 0, thus contradicting the assumption that
the ei are not all parallel to each other. Therefore, Im(a ) 6= 0, which also implies Im(a 2u 0/u 1) = Im(a−1) 6= 0.

Finally, let us assume that (11) holds instead of (10), and note that e0e3 6= e1e2, by (9), implies e0e2 6= e 2
1 .

Letting

a 1 =
e0e3− e1e2

2(e0e2− e 2
1 )

, a 2 =
2(e1e3− e 2

2 )
e0e3− e1e2

,

it then follows from (9) that a 1 = a 2, and it can further be verified that

4a 2
1 e1 =

(e0e3− e1e2)
2

(e0e2− e 2
1 )

2 e1 =
e 2

0 e1e 2
3 −2e0e 2

1 e2e3+ e 3
1 e 2

2

(e0e2− e 2
1 )

2 ,

2a 2
1 a 2e0 =

(e0e3− e1e2)(e1e3− e 2
2 )

(e0e2− e 2
1 )

2 e0 =
e 2

0 e1e 2
3 − e 2

0 e 2
2 e3− e0e 2

1 e2e3+ e0e1e 3
2

(e0e2− e 2
1 )

2 ,

a 1a 2e1 =
(e0e2− e 2

1 )(e1e3− e 2
2 )

(e0e2− e 2
1 )

2 e1 =
e0e 2

1 e2e3− e0e1e 3
2 − e 4

1 e3+ e 3
1 e 2

2 )

(e0e2− e 2
1 )

2 .

Therefore, 4a 2
1 e1 = 2a 2

1 a 2e0 + a 1a 2e1 + e3, and we conclude that the condition for e1 in (8) holds for
a = a 1 = a 2. The condition for e2 can be checked similarly. As in the previous case, we can then write
the hodograph of r (t ) as in (5) with u 0 = 4e0 6= 0 and u 1 = 4e3 6= 0, and the conditions Im(a ) 6= 0 and
Im(a 2u 0/u 1) 6= 0 follow directly from (11).

The key ingredient to the characterization of class II quartic iPH curves in Theorem 2 certainly is condition (9),
and we will now show that this condition is also valid for other quartic Bézier curves with rational offsets,
which are not iPH of class II.
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3.2 Cubic PH and quadratic iPH curves

If r (t ) is a cubic Bézier curve with control edges d0, d1, d2, then the control edges after degree elevation are

e0 =
3

4
d0, e1 =

1

4
d0+

1

2
d1, e2 =

1

2
d1+

1

4
d2, e3 =

3

4
d2, (13)

and a straightforward calculation reveals that

(e0e3− e1e2)
2−4(e0e2− e 2

1 )(e1e3− e 2
2 ) =

3

64
(d0d2−d 2

1 )(d0−2d1+d2)
2.

Therefore, condition (9) is true, if d 2
1 = d0d2 or d1 =

1
2 (d0 + d2), that is, d1 must be the geometric or the

arithmetic mean of d0 and d2. Note that the first case holds, if r (t ) is a cubic PH curve, while the second case
occurs, if and only if r (t ) is a degree-raised quadratic curve. This suggests that there might be characteriza-
tions of cubic PH and quadratic iPH curves that are similar to the one in Theorem 2, but before we get to the
additional algebraic conditions that are needed for this purpose, let us state the equivalents of Corollary 1.

Corollary 2. A properly parameterized cubic curve r (t ) is a PH curve, if and only if its hodograph can be
written in complex form as in (5) with u 0 6= 0, u 1 6= 0, Im(a ) 6= 0, and a 2u 0 =u 1.

Proof. We first recall from [10] that the hodograph of a properly parameterized cubic PH curve can written
as in (2) with k = 0, deg(p ) = 0, and deg(w ) = 1, that is, as

r ′(t ) = (w0(1− t ) +w1t )2 (14)

for some w0, w1 ∈Cwith w0 6= 0, w1 6= 0, and Im(w1/w0) 6= 0. It follows directly, that we can then rewrite r ′(t )
in the form (5) by letting u 0 =w 2

0 , u 1 =w 2
1 , and a =w1/w0. Vice versa, if r ′(t ) is given as in (5), then we get

back to the form in (14) by letting w0 =±
p

u 0 and w1 =w0a . Note that the additional conditions on w0, w1

in (14) and on u 0, u 1, a in the statement imply each other.

Corollary 3. A properly parameterized quadratic curve r (t ) is an iPH curve, if and only if its hodograph can
be written in complex form as in (5) with u 0 6= 0, u 1 6= 0, a = 1, and Im(a 2u 0/u 1) = Im(u 0/u 1) 6= 0.

Proof. Properly parameterized quadratic iPH curves have a hodograph as in (2) with Im(k ) 6= 0, deg(p ) = 0,
and deg(w ) = 0, that is, w (t )2 ≡ u 0 for some u 0 ∈Cwith u 0 6= 0, which can be rewritten as in (5) by letting
u 1 = (1+k )u 0 6= 0 and a = 1, and vice versa.

In view of Corollaries 2 and 3, our previous discovery is actually not surprising, because the identities in (12),
which imply (9), follow only from the representation of the hodograph in (5), but do not depend on the
specific conditions on u 0, u 1, and a . Let us now present the analogues of Theorem 2.

Theorem 3. A properly parameterized cubic curve r (t ) is a PH curve, if and only if its degree-raised, quartic
Bézier control polygon is non-degenerate and its control edges satisfy (9), e0e3 6= e1e2, and

Im
�

2
e1e3− e 2

2

e0e3− e1e2

�

6= 0 and 4
� e1e3− e 2

2

e0e3− e1e2

�2 e0

e3
= 1. (15)

Proof. To prove the necessity of the conditions, let us assume that r (t ) is a cubic PH curve with a hodograph
as stated in Corollary 2. The non-degeneracy of the degree-raised, quartic Bézier control polygon then
follows as in the proof of Theorem 2, because we still have u 0 6= 0, u 1 6= 0, and Im(a ) 6= 0, and the validity of (9)
was derived above. Now, if e0e3 were equal to e1e2, then a 3e0/e3 = 1, by (12a), but it also follows from (7)
and Corollary 2 that a 2e0/e3 = a 2u 0/u 1 = 1, which implies a = 1, thus contradicting the fact that Im(a ) 6= 0.
Expressing the ei in terms of the cubic Bézier control edges d i as in (13) and substituting d2 = d 2

1 /d0, a
straightforward calculation shows that

2
e1e3− e 2

2

e0e3− e1e2
=

d1

d0
=

d2

d1
, (16)

which has a non-vanishing imaginary part, if and only if all d i and thus also all ei are parallel, but we just
showed that the latter cannot happen. The remaining identity in (15) follows directly from (16), because
e0/e3 = d0/d2. The sufficiency of the conditions can be shown with the same arguments as in the proof of
Theorem 2.
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Theorem 4. A properly parameterized quadratic curve r (t ) is an iPH curve, if and only if its twice degree-raised,
quartic Bézier control polygon is non-degenerate and its control edges satisfy (9), e0e3 6= e1e2, and

2
e1e3− e 2

2

e0e3− e1e2
= 1 and Im

�

4
� e1e3− e 2

2

e0e3− e1e2

�2 e0

e3

�

= Im
�

e0

e3

�

6= 0. (17)

Proof. Let us first assume that r (t ) is a quadratic iPH curve with a hodograph as stated in Corollary 3 and
quadratic Bézier control edges c0, c1. After degree elevation, the control edges of the quartic Bézier control
polygon are

e0 =
1

2
c0, e1 =

1

3
c0+

1

6
c1, e2 =

1

6
c0+

1

3
c1, e3 =

1

2
c1. (18)

As before, it is clear that e0 6= 0 and e3 6= 0. Moreover, since Im(e0/e3) = Im(u 0/u 1) 6= 0 by (7) and Corollary 3,
we conclude that at least e0 and e3 are not parallel, hence the quartic control polygon is non-degenerate. We
already discussed above that (9) holds; to show the remaining conditions, we use (18) to get

e0e3− e1e2 = 2(e0e2− e 2
1 ) = 2(e1e3− e 2

2 ) =−
1

18
(c1− c0)

2

and recall Im(e0/e3) = Im(c0/c1) 6= 0, which implies c0 6= c1 and further e0e3 6= e1e2, as well as (17). The
sufficiency of the conditions can again be shown with the same arguments as in the proof of Theorem 2.

3.3 Quartic PH and class I.1 quartic iPH curves

Let us now extend the results above to quartic PH and class I.1 quartic iPH curves. We first observe that
Corollary 1 can be extended to both kinds of curves, if we exclude the occurrence of singularities at t = 0
and t = 1.

Corollary 4. A properly parameterized quartic curve r (t ) is a PH curve with r ′(0) 6= 0 and r ′(1) 6= 0, if and
only if its hodograph can be written in complex form as in (5) with u 0 6= 0, u 1 6= 0, Im(a ) 6= 0, Im(a 2u 0/u 1) = 0,
and a 2u 0 6=u 1.

Proof. We first recall from [10] that the hodograph of a properly parameterized quartic PH curve can be
written as in (2) with either k = 0, deg(p ) = 1 or k 6= 0, Im(k ) = 0, deg(p ) = 0, and deg(w ) = 1, that is, as

r ′(t ) = (t −a )(w0(1− t ) +w1t )2 (19)

for some a ∈R and w0, w1 ∈Cwith w0 6= 0, w1 6= 0, and Im(w1/w0) 6= 0. This representation shows that quartic
PH curves have a cusp at t = a , hence a /∈ {0, 1}, because of the restrictions stated above. It then follows that
we can rewrite r ′(t ) in the form (5) by letting u 0 =−a w 2

0 , u 1 = (1−a )w 2
1 , and a =w1/w0. Vice versa, if r ′(t )

is given as in (5), then we get back to the form in (19) by letting a = a 2u 0/(a 2u 0−u 1), w0 =±
p

u 1−a 2u 0/a ,
and w1 = a w0. Note that the additional conditions on a , w0, w1 above and on u 0, u 1, a in the statement
imply each other.

Corollary 5. A properly parameterized quartic curve r (t ) is an iPH curve of class I.1 with r ′(0) 6= 0 and r ′(1) 6= 0,
if and only if its hodograph can be written in complex form as in (5) with u 0 6= 0, u 1 6= 0, Im(a ) = 0, a /∈ {0, 1},
and Im(a 2u 0/u 1) 6= 0.

Proof. If r ′(t ) is given as in (3) with a /∈ {0, 1} and b = 0, then we can rewrite it as in (5) by letting u 0 = a 2w ,
u 1 = (1−a )2(1+k )w , and a = (a −1)/a . Vice versa, we can convert a hodograph from the form in (5) to the
form in (3) by letting a = 1/(1−a ), b = 0, k = (u 1 −a 2u 0)/(a 2u 0), and w = (1−a )2u 0. As in the previous
proofs, the additional conditions imply each other.

As before, these corollaries pave the way for an algebraic characterization of these kind of quartic curves in
terms of the Bézier control edges.

Theorem 5. A properly parameterized quartic curve r (t ) is a PH curve with r ′(0) 6= 0 and r ′(1) 6= 0, if and only
if its Bézier control polygon is non-degenerate and its control edges satisfy (9), e0e3 6= e1e2, and

Im
�

2
e1e3− e 2

2

e0e3− e1e2

�

6= 0 and 4
� e1e3− e 2

2

e0e3− e1e2

�2 e0

e3
∈R \ {1}. (20)
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Proof. Everything can be shown as in the proof of Theorem 3, except for the necessity of the conditions
in (20). The first of these conditions follows exactly as in the proof of Theorem 2, and the second is a direct
consequence from Corollary 4, which guarantees that a 2u 0/u 1 ∈R \ {1}.

Theorem 6. A properly parameterized quartic curve r (t ) is an iPH curve of class I.1 with r ′(0) 6= 0 and r ′(1) 6= 0,
if and only if its Bézier control polygon is non-degenerate and its control edges satisfy (9), e0e3 6= e1e2, and

2
e1e3− e 2

2

e0e3− e1e2
∈R \ {1} and Im

�

4
� e1e3− e 2

2

e0e3− e1e2

�2 e0

e3

�

6= 0. (21)

Proof. Again, the proof is similar to the ones above and hinges on the conditions related to a in Corollary 5.
In particular, the control polygon is non-degenerate, because Im(u 0/u 1) = Im(a 2u 0/u 1)/a 2 6= 0, as in the
proof of Theorem 4, and the case e0e3 = e1e2, which is equivalent to a 3e0/e3 = a 3u 0/u 1 = 1 is ruled out by
this property, too.

3.4 C 1 Hermite interpolation

An important consequence of Theorems 2–6 is that the C 1 Hermite interpolation problem can always be
solved by a quartic Bézier curve that admits rational offsets. Given two points q0,q1 and two non-vanishing
tangent vectors t 0, t 1 in the plane, the C 1 Hermite interpolation problem consists of finding a curve r (t ) that
interpolates this data at its endpoints. For a quartic Bézier curve, these constraints are met, if and only if

p0 =q0, p1 =q0+ t 0/4, p3 =q1− t 1/4, p4 =q1, (22)

and the remaining control point p2 may be used to guarantee that the curve has rational offsets. Without
loss of generality, let us assume that the four control points in (22) are not collinear, since otherwise the
problem is solved by a straight line, which clearly admits rational offsets. It then remains to substitute

e0 = t 0/4, e1 = p2−p1, e2 = p3−p2, e3 = t 1/4,

in (9), using the values of p1 and p3 from (22), yielding a quartic equation in the unknown p2. This equation
can be solved algebraically, with at least one and up to four solutions. Note that the existence of these
solutions was also derived by Lü [14], albeit by resorting to a different quartic equation in an auxiliary
variable x , and the advantage of our approach is that we compute p2 directly.

Due to the assumption above, each solution corresponds to a quartic Bézier curve r (t ) with a non-
degenerate control polygon, and Theorems 2–6 allow us to distinguish the following cases:

• If e0e3 = e1e2, then r (t ) is a class II quartic iPH curve with control edges in geometric progression.

• If e0e3 6= e1e2, then a = 2(e1e3 − e 2
2 )/(e0e3 − e1e2) is well-defined and nonzero, and we have five

sub-cases:

– If Im(e0a 2/e3) 6= 0 and Im(a ) 6= 0, then r (t ) is a class II quartic iPH curve.

– If Im(e0a 2/e3) 6= 0 and a ∈ R \ {1}, then r (t ) is a class I.1 quartic iPH curve with a tangent
continuous singularity at t = 1/(1−a ).

– If Im(e0a 2/e3) 6= 0 and a = 1, then r (t ) is a quadratic iPH curve.

– If e0a 2/e3 ∈R\{0, 1} and Im(a ) 6= 0, then r (t ) is a quartic PH curve with a cusp at t = e0a 2/(e0a 2−
e3) /∈ {0, 1}.

– If e0a 2/e3 = 1 and Im(a ) 6= 0, then r (t ) is a cubic PH curve.

Note that the missing case with e0e3 6= e1e2, Im(e0a 2/e3) = 0, and Im(a ) = 0, with a 6= 0 defined as in the
second set of cases, cannot occur. Indeed, if Im(a ) = 0, then it follows from Im(e0a 2/e3) = 0 that e0 and e3

are parallel. We further conclude as in the proof of Theorem 2 that e1 and e2 can be expressed as in (8),
that is, as linear combinations of e0 and e3, and therefore they are also parallel to e0, which contradicts our
assumption that p0, p1, p3, and p4 are not collinear.

Figure 3 shows several examples of quartic Bézier curves with rational offsets that interpolate the Hermite
data given in Table 1 and compares them to the corresponding quintic PH interpolants. The examples
confirm that all the cases listed above can occur in practice as special cases and that there are often two
quartic curves that are quite similar to the visually most pleasing quintic curve (see also Figure 1). An
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(a)

(d)

(b)

(e)

(c)

(f)

Figure 3: Examples of C 1 Hermite interpolation with quartic iPH (left) and quintic PH curves (right), including some
special cases (dashed and dotted curves): (a) quadratic iPH curve, (b) class II quartic iPH curve with control edges
in geometric progression, (c) irregular class I.1 quartic iPH curve with singularity at t = 1/2 (dashed) and irregular
quartic PH curves with cusps at t = 1/2 (dotted), (d) cubic PH curve, (e) regular class I.1 quartic iPH curve. Note that the
prescribed tangents are scaled by a factor of 1/5 to better fit the images.

q0 q1 t 0 t 1

(a) (0, 0)
�

1
6 , 8

15

�

(1, 0)
�

− 2
3 , 16

15

�

(b) (0, 0)
�

78857
500000 , 54819

125000

�

(1, 0)
�

− 85293
125000 , 8019

31250

�

(c) (0, 0)
�

1
6 , 1

6

�

(1, 0) (0, 1)

(d) (0, 0)
�

29
75 −

p
2
p

26+2
15 , 4

15 −
p

2
p

26−2
15

�

(1, 0)
�

4
25 , 4

5

�

(e) (0, 0)
�

11969
97200 , 523

2025

�

(1, 0)
�

− 16
25 , 12

25

�

(f) (0, 0)
�

3
40 , 3

40

�

(1, 0) (0, 1)

Table 1: Data for the C 1 Hermite interpolants in Figure 3.

exception is the example in Figure 3 (c), where all quartic curves have vanishing first derivative at t = 1/2.
Two of these curves (dotted) are quartic PH curves with cusps at t = 1/2, and the third curve (dashed)
is a class I.1 quartic iPH curve. The latter actually corresponds to a double root of the quartic equation
induced by condition (9), just like the class II quartic iPH curve with control edges in geometric progression
in Figure 3 (b), which explains why there are only three different quartic Bézier curves that solve the Hermite
interpolation problem in both examples.

4 Geometric considerations

In Section 3, we learned that there are several kinds of polynomial curves with degree at most four, which
admit rational offsets and are characterized by the common property that the control edges from the
representation as a quartic Bézier curve satisfy condition (9). We shall now turn to two different geometric
characterizations of these curves, but let us first introduce a common name for uniting them.

Definition 2. We say that a properly parameterized polynomial curve r (t ) is a quartic (i)PH curve, if it is either
a class II or class I.1 quartic iPH curve, a quartic or cubic PH curve, or a quadratic iPH curve with r ′(0) 6= 0
and r ′(1) 6= 0.
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e0

e1
e 2

e3

p2

p0

p1 r (t )

p3

p4

q2

10

+a1

q1

q3

q0
q4

r1
r2

α
α

α

α

α
α

Figure 4: Notation for points, edges, and angles related to the Bézier control polygon of a quartic (i)PH curve used in
Theorem 7.

Note that the additional conditions on the regularity of r (t ) at t = 0 and t = 1 avoid that the edges e0 and e3

of the quartic Bézier control polygon vanish and that they apply only to class I.1 quartic iPH and quartic PH
curves, since the other curves are regular for all t ∈R.

4.1 First characterization

Theorem 7. A properly parameterized quartic Bézier curve r (t ) with non-degenerate control polygon is a
quartic (i)PH curve, if and only if there exist two points r1 and r2 such that the four triangles

[q0, p1,q1], [q1, r1,q2], [q2, r2,q3], [q3, p3,q4] (23)

are similar1, where

q0 =
p0+2p1

3
, q1 =

p1+ r1

2
, q2 = r1+ r2−p2, q3 =

r2+p3

2
, q4 =

2p3+p4

3
, (24)

as shown in Figure 4.

Proof. We first prove the necessity and assume, by Corollaries 1–5 and (7), that the hodograph of r (t )
can be written as in (5) for some a 6= 0 and with u 0 = 4e0 6= 0 and u 1 = 4e3 6= 0. Letting r1 = p1 +

2
3 a e0

and r2 = p3− 2
3 a−1e3, we then use (8) and the definition of the q i in (24) to get

q1−p1

p1−q0
=

1
3 a e0

1
3 (p1−p0)

= a ,
q2− r1

r1−q1
=

e2− 2
3 a−1e3

1
3 a e0

=
1
3 a 2e0
1
3 a e0

= a ,

which, according to the triangle similarity test with two sides and included angle (SAS), implies that the
triangles [q0, p1,q1] and [q1, r1,q2] are both similar to the triangle [0, 1, 1+a ], where 0= (0,0) and 1= (1,0).
The similarity of the triangles [q2, r2,q3] and [q3, p3,q4] to [0, 1, 1+a ] can be shown analogously.

To prove the sufficiency, we first conclude from the similarity of the triangles in (23) that the four ratios

a 1 =
q1−p1

p1−q0
, a 2 =

q2− r1

r1−q1
, a 3 =

q3− r2

r2−q2
, a 4 =

q4−p3

p3−q3
(25)

are all equal to a common value a = a 1 = a 2 = a 3 = a 4. By the definition of the q i in (24), we then have

r1−p1 = 2(q1−p1) = 2a 1(p1−q0) =
2

3
a e0

1Note that we call two triangles similar, if one can be obtained from the other by translation, rotation, and uniform scaling, but not
by reflection. That is, both triangles have the same shape and orientation.
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quadratic iPH regular class I.1 quartic iPH irregular class I.1 quartic iPH

cubic PH regular quartic PH irregular quartic PH geometric progression

Figure 5: Special cases of quartic (i)PH curves, corresponding to the characterization in Theorem 7.

and

p2− r1 = r2−q2 = a−1
3 (q3− r2) = a−1

3 (p3−q3) = a−1
3 a−1

4 (q4−p3) =
1

3
a−2e3.

Therefore,

e1 = p2−p1 =
2

3
a e0+

1

3
a−2e3,

which is the first condition in (8), and the second condition can be shown similarly.

If r (t ) is a quartic Bézier curve that satisfies the geometric conditions in Theorem 7, then we can further
identify a number of special cases (see Figure 5). On the one hand, if the common value a = a 1 = a 2 = a 3 = a 4

of the ratios in (25) has a vanishing imaginary part, then it follows from Corollaries 3 and 5 that r (t ) is either a
quadratic iPH curve, if a = 1, or a class I.1 quartic iPH curve, if a 6= 1. In both cases, the points p0, p1, q1, r1, q2

are collinear and partition the line segment [p0,q2] in the ratios 3 : a : a : a 2, and the points q2, r2, q3, p3, p4

are collinear and partition [q2, p4] in the ratios 1 : a : a : 3a 2. Moreover, the curve is regular for t ∈ [0,1], if
and only if a > 0.

On the other hand, if the vectors r1−p1 =
2
3 a e0 and p3− r2 =

2
3 a−1e3 are parallel, then a e0 =λa−1e3 for

some λ ∈R \ {0}, hence a 2u 0 = λu 1, and it follows from Corollaries 2 and 4 that r (t ) is either a cubic PH
curve, if λ= 1, or a quartic PH curve, if λ 6= 1. The curve is regular for t ∈ [0,1], if and only if λ > 0, that is,
whenever r1−p1 and p3− r2 do not point in opposite directions.

Finally, if p1, p2, and r1 are collinear, with r1 splitting the segment [p1, p2] in the ratio 2µ : 1 for someµ> 0,
then p2, p3, and r2 are also collinear, with r2 splitting the segment [p2, p3] in the ratio µ : 2, and vice versa.
This indicates the case of a curve, for which all exterior angles of the control polygon are equal to the argument
of a , and the special case of a class II quartic iPH curve with control edges in geometric progression occurs if
and only if µ= 1.

4.1.1 Construction of quartic (i)PH curves

Moreover, we would like to point out that the geometric characterization in Theorem 7 can also be used to
construct the control polygons of quartic (i)PH curves. To this end, we may start with arbitrary control points
p0, p1 6= p0, p2, and choose some a 6= 0. We then let q0 be the point that splits [p0, p1] in the ratio 2 : 1 and con-
struct q1 such that [q0, p1,q1] is similar to T = [0, 1, 1+a ]. Adding q1−p1 to q1 gives r1 and q2 is determined
by the condition that also [q1, r1,q2]must be similar to T . We further construct r2 such that [r1, p2, r2,q2] is a
parallelogram, q3 according to the similarity of [q2, r2,q3] to T , and p3 by adding q3−r2 to q3. The condition
that [q3, p3,q4]must be similar to T specifies q4, and we finally get p4 by adding 2(q4−p3) to q4.

Alternatively, we may choose some r1 6= p1 instead of a . In this case, we first construct q0 as be-
fore and q1 as the midpoint between p1 and r1. The rest of the construction remains the same, except
that we use [q0, p1,q1] as the triangle T to which the other three triangles must be similar. Note that we
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do not need a in this approach, but that it can be constructed or computed easily. In fact, the signed
angle α=�(p1−q0,q1−p1) gives the argument of a (see Figure 4) and the inverse of the ratio between the
lengths of these vectors gives the modulus of a , and any of the ratios in (25) can be used to determine a in
terms of complex arithmetic.

In both cases, the considerations above can be taken into account for constructing the quartic Bézier
control polygons of quadratic and class I.1 quartic iPH curves, cubic and quartic PH curves, and class II
quartic iPH curves with control edges in geometric progression by appropriately constraining the choice
of a or the position of r1.

4.2 Second characterization

Let us now turn to the second geometric characterization and start with an auxiliary result.

Corollary 6. A properly parameterized quartic Bézier curve r (t )with non-degenerate control polygon is a
quartic (i)PH curve, if and only if its hodograph can be written in complex form as

r ′(t ) = ((1− t ) +b 2t )
�

v0(1− t ) +
v1

b
t
�2

(26)

with v0 6= 0, v1 6= 0, b 6= 0, and arg(b ) ∈ (−π2 , π2 ].

Proof. We recall from Corollaries 1–5, that r (t ) is a quartic (i)PH curve, if and only if its hodograph can be
expressed as in (5) for some u 0 6= 0, u 1 6= 0, and a 6= 0. Given this form, we can rewrite r ′(t ) as in (26) by
letting v0 = ±

p
u 0, v1 = ±

p
u 1, b = a−1v1/v0 and choosing the signs of v0 and v1 appropriately such that

arg(b ) ∈ (−π2 , π2 ]. Vice versa, if r ′(t ) is given as in (26), then we get back to the form in (5) by letting u 0 = v 2
0 ,

u 1 = v 2
1 , and a =b −1v1/v0.

To proceed, let h =pe0e3. In terms of vectors, h is the halfway vector2 between e0 and e3, either in clockwise
or counterclockwise direction, with length ‖h‖=

p

‖e0‖‖e3‖. We further define the lines

L1 = {p1+λe0 :λ ∈R}, L2 = {p2+λh :λ ∈R}, L3 = {p3+λe3 :λ ∈R},

as shown in Figure 6. For any β ∈R, we denote by L2(β ) the line that we get after rotating L2 by β around p2,
that is L2(β ) = {p2+λh exp(iβ ) :λ ∈R} and consider the rays

R1(β ) = {p1+λe0 exp(2iβ ) :λ ∈R,λ> 0}, R3(β ) = {p3−λe3 exp(−2iβ ) :λ ∈R,λ> 0}.

Moreover, we let s1(β ) and s2(β ) be the intersections of R1(β ) and R3(β )with L2(−β ) and L2(β ), respectively.
Note that the point s1(β ) may not exist for certain values of β and that it is not unique, if p1 ∈ L2(−β )
and p2 ∈R1(β ). In that case, s1(β )may be any point of R1(β ), and likewise for s2(β ).

Theorem 8. A properly parameterized quartic Bézier curve r (t ) with non-degenerate control polygon is a
quartic (i)PH curve, if and only if there exists some β ∈ (−π2 , π2 ] such that s1(β ) and s2(β ) exist and lie on the
same side of L2, and the lengths E0 = ‖e0‖, E3 = ‖e3‖, and Fi = ‖ f i ‖, where

f0 = s1(β )−p1, f1 = p2− s1(β ), f2 = s2(β )−p2, f3 = p3− s2(β ), (27)

satisfy the conditions
E0F2 = 3F0F1, E3F1 = 3F2F3, F1F2 = 4F0F3. (28)

Proof. To prove the necessity, we recall from Corollary 6 that the hodograph of r (t ) can be expressed as
in (26). Comparing the hodograph in (26) with the one in (6), we observe that

e0 =
1

4
v 2

0 , e3 =
1

4
v 2

1 ,

and

e1 =
1

3
b 2e0+

2

3
b −1h , e2 =

2

3
b h +

1

3
b −2e3, (29)

2That is, the signed angles �(e0, h ) and �(h , e3) are equal.
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e0

e1
e2

e3

p0

p1

p2

p3

p4

f0

f1

f2

f3

θ
θ

r (t )

β

2β

2β

β

s1
s2

L1

L2

L3

h

R1(β ) R3(β )

L2(β ) L2(−β )

Figure 6: Notation for points, edges, angles, and lines related to the Bézier control polygon of a quartic (i)PH curve used
in Theorem 8.

where h = v0v1/4=
p

e0e3. Now let β = arg(b ), s1 = p2− 2
3 b −1h , and s2 = p2+

2
3 b h . Since

�(h , p2− s1) = arg
�

p2− s1

h

�

= arg(b −1) =−β =−arg(b ) =−arg
�

s2−p2

h

�

=−�(h , s2−p2),

it is not only clear that s1 and s2 are on the same side of L2, but also that they lie on L2(−β ) and L2(β ),
respectively. To see that s1 lies on R1(β ), we let b = ‖b ‖ and use (29) to rewrite s1 as

s1 = p1+ e1−
2

3
b −1h = p1+

1

3
b 2e0 = p1+

b 2

3
exp(2iβ )e0.

A similar argument shows that s2 lies on R3(β ), and therefore s1 = s1(β ) and s2 = s2(β ). By (27), we then have

f0 =
1

3
b 2e0, f1 =

2

3
b −1h , f2 =

2

3
b h , f3 =

1

3
b −2e3

and further, since ‖h‖= ‖pe0e3‖=
p

E0E3,

F0 =
b 2

3
E0, F1 =

2

3b

p

E0E3, F2 =
2b

3

p

E0E3, F3 =
1

3b 2
E3,

which implies (28).
For proving the sufficiency, let b =

p

3F0/E0 and b = b exp(iβ ). As s1(β ) lies on R1(β ), we have
f0 =λ0e0 exp(2iβ ) for λ0 = F0/E0 > 0, hence f0 =

1
3 b 2e0. Similarly, we find that f3 =

1
3 b −2e3 after noti-

cing that the first two conditions in (28) give F3 =
1
9 E0E3/F0 =

1
3 E3/b 2. Since s1(β ) and s2(β ) lie on L2(−β )

and L2(β ), respectively, and are on the same side of L2, we can assume without loss of generality that h is ori-
ented such that �( f1, h ) =�(h , f2) =β . Otherwise, we simply replace h by −h . Therefore, f1 =λ1h exp(−iβ )
for λ1 = F1/h > 0 and f2 = λ2h exp(iβ ) for λ2 = F2/h > 0, where h = ‖h‖ = ‖pe0e3‖. We now observe that
the first condition in (28) implies F2 = b 2F1, and substituting this, as well as the previous expression for F3,
into the last condition in (28) gives b 2F 2

1 =
4
9 E0E3 and further F1 =

2
3 h/b . Therefore, f1 =

2
3 b −1h and simil-

arly f2 =
2
3 b h , which yields the conditions in (29), because f0+ f1 = e1 and f2+ f3 = e2. Setting v0 =±2

p
e0

and v1 =±2
p

e3, with the signs chosen such that v0v1 = 4h , we can then write the hodograph of the curve as
in (26).
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quadratic iPH regular class I.1 quartic iPH irregular class I.1 quartic iPH

cubic PH regular quartic PH irregular quartic PH geometric progression

Figure 7: Special cases of quartic (i)PH curves, corresponding to the characterization in Theorem 8.

Let us now take a closer look at the special cases of quartic Bézier curves r (t ) that satisfy the geometric condi-
tions in Theorem 8 (see Figure 7). The first case occurs whenβ = 0, so that s1 and s2 are the intersection points
of L1 and L3 with L2. The length conditions in (28) are then identical to the conditions in [23, Theorem 5]
and reveal that r (t ) is a PH curve (cf. Figure 2). More precisely, r (t ) is a cubic PH curve, if p2 is the midpoint
of the segment [s1, s2] and, equivalently, if p1 and p3 split the segments [p0, s1] and [p4, s2] in the ratio 3 : 1.
Otherwise, r (t ) is a quartic PH curve and regular for t ∈ [0,1]. The second case occurs when β = π/2, so
that s1 and s2 are the intersection points of L1 and L3 with the line L⊥2 through p2 and orthogonal to L2. In
this case, as shown in [23], r (t ) is a quartic PH curve with a cusp at some t ∈ (0,1). Note that in both cases
we have Im(b 2) = 0, so that the previous statements also follow from Corollaries 2, 4, and 6 by observing
that b −2 = a 2u 0/u 1. Moreover, these corollaries reveal that r (t ) is a cubic PH curve, if b = 1, and a quartic
PH curve with a cusp at t = 1/(1−b 2), otherwise.

If f1 is parallel to e0, say f1 =
2
3λe0 for some λ ∈R \ {0}, that is, λ=b −1h/e0 =b −1v1/v0, then it follows

from Corollaries 3, 5, and 6 that r (t ) is either a quadratic iPH curve, if λ= 1, or a class I.1 quartic iPH curve,
if λ 6= 1. Moreover, the curve is regular for t ∈ [0,1], if and only if λ > 0, that is, whenever f1 and e0 do not
point in opposite directions. The initial condition on f1 is actually equivalent to the condition that f2 is
parallel to e3 with f2 =

2
3λ
−1e3, and both imply that f0 =

1
3λ
−2e3 and f3 =

1
3λ

2e0. Moreover, r (t ) is a quadratic
iPH curve, if and only if e0 = f1+ f3 and e3 = f0+ f2.

The last special case happens when p1, p2, and s1 are collinear, with s1 splitting the segment [p1, p2] in
the ratio 1 : 2µ for some µ> 0. This condition turns out to be equivalent to the condition that p2, p3, and s2

are collinear, with s2 splitting the segment [p2, p3] in the ratio 2 : µ, and this case is further characterized
by the condition that all exterior angles of the control polygon are equal, with �(ei−1, ei ) = 2β for i = 1, 2, 3.
Moreover, r (t ) is a class II quartic iPH curve with control edges in geometric progression, if and only if µ= 1.

4.2.1 Construction of quartic (i)PH curves

As in Section 4.1.1, we can use the geometric characterization in Theorem 8 to construct the control polygons
of quartic (i)PH curves. Like before, we start with arbitrary control points p0, p1 6= p0, p2, and choose
some s1 with s1 6= p1 and s1 6= p2. The choice of s1 uniquely determines the angle β ∈ (−π2 , π2 ], as well as
the lines L2(−β ), L2, and L2(β ) (see Figure 6). The location of s2 is then given by the first condition in (28)
and the constraint that s2 must lie on the same side of L2 as s1, and p3 is determined by the third condition
in (28) and the observation that �( f2, f3)must be equal to �( f0, f1). Using β , we finally construct L3 and p4

by using the second condition in (28).
The considerations above further indicate how the special cases of quartic Bézier control polygons for

cubic and quartic PH curves, quadratic and class I.1 quartic iPH curves, and for class II quartic iPH curves
with control edges in geometric progression can be constructed by suitably constraining the position of s1.
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5 Conclusions

In this paper, we set out to find algebraic and geometric characterizations of quartic iPH curves. While
deriving a set of algebraic conditions for the subset of class II quartic iPH curves, we noticed that these
conditions naturally extend to other quartic Bézier curves with rational offsets, namely quartic and cubic
PH, as well as class I.1 quartic and quadratic iPH curves. After all, this is not too surprising, as these curves
can be seen as “limit cases” of class II quartic iPH curves. Going back to Theorem 1 and the representation
of the hodograph in (4), it is clear that r ′(t ) becomes the hodograph of a PH curve as Im(k )→ 0, and that
the degree of this curve is cubic if and only if k → 0 and quartic otherwise. Similarly, r ′(t ) turns into the
hodograph of a class I.1 quartic or quadratic iPH curve as Im(w1/w0)→ 0, with the quadratic case occurring
if and only if w1/w0→ 1. This motivated us to introduce a new term and to refer to all these curves with
rational offsets as quartic (i)PH curves. We further derived two different sets of geometric conditions that
can be used for identifying and constructing quartic (i)PH curves. Note that we did not include the case
when Im(k )→ 0 and Im(w0/w1)→ 0, so that r ′(t ) is the product of a real polynomial p (t ) of degree at most 3
with a complex constant w 6= 0, since it corresponds to the trivial case where the curve r (t ) is a line segment.
Our algebraic and geometric characterizations also do not cover class I.0 and class I.2 quartic iPH curves,
since they are not “limit cases” of class II quartic iPH curves, and it remains future work to analyse them.

Quartic (i)PH curves constitute an interesting family of polynomial curves with rational offsets, as they
can be used for solving the general C 1 Hermite interpolation problem and thus offer a viable alternative
to quintic PH curves, sharing with the latter the fact that there can be up to four solutions (see Figure 1).
This allows a curve designer to select from eight instead of only four curves and to find the “best” Hermite
interpolant with rational offsets, for example, by considering the absolute rotation index [9] or the elastic
bending energy [7]. It remains future work to investigate under which conditions quartic (i)PH curves are
“better” than quintic PH curves and vice versa. More analysis is also needed for identifying upfront, if one
or more of the quartic (i)PH Hermite interpolants might be irregular, which can happen for quartic PH or
iPH curves of class I.1. We should further stress that the rational offsets of quartic (i)PH curves are generally
of degree 14, compared to the degree 9 rational offsets of quintic PH curves, which may be considered a
disadvantage of quartic (i)PH curves.

Last but not least we would like to return to our observation that a special case of quartic (i)PH curves
are the quartic Bézier curves with control edges in geometric progression, a property which also happens to
characterize cubic PH curves. This is actually not coincidental and carries over to Bézier curves of arbitrary
degree. In fact, if r (t ) is a non-degenerate Bézier curve with control edges ei = a i e0 for i = 1, . . . , n and some
constant a with Im(a ) 6= 0, then the hodograph of the curve is

r ′(t ) = n
n−1
∑

i=0

a i e0B n−1
i (t ) = n ((1− t ) +a t )n−1e0,

which shows, by Theorem 1, that r (t ) is a PH curve for n odd and an iPH curve for n even.
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