
Triangulating Point Clouds

with Spherical Topology

Kai Hormann and Martin Reimers

Abstract. Triangulating a set of scattered 3D points is a common
approach to surface reconstruction from unorganized point clouds. Be-
sides several Voronoi-based and incremental algorithms, a recently pre-
sented technique parameterizes the sample points and uses a Delaunay
triangulation of the parameter points in the parameter domain. This
method is limited to reconstructing surfaces that are homeomorphic
to a disc, and we show how it can be extended to handle spherical
topology as well.

§1. Introduction

The problem we consider can be stated as follows: given a set V = {vi}
of points vi ∈ IR3, i = 1, . . . , n, find a triangulation T with these points
as vertices, V (T ) = V . Some methods for solving this problem are based
on the Voronoi diagram and the Delaunay tetrahedrization of the points
[2–4]. Other incremental algorithms start with a single edge or triangle
connecting two or three of the given points and successively add more
points by generating additional edges and triangles [5,13,16].

In this paper we extend a method that was proposed by Floater and
Reimers [12]. They observed that the usual linear parameterization meth-
ods for triangulations do not require the vertices to be organized in a
globally consistent triangulation. The only information needed for setting
up the linear system in the case of harmonic maps [8,17], shape preserv-
ing [9], or mean value parameterizations [10] is the triangle fan around
each vertex, in other words an ordered set of neighbours N(v) for each
v ∈ V . And computing the distance weights for the spring model pa-
rameterizations [14] does not even require this ordering but an unordered
neighbourhood N(v) only. Several ways of defining neighbourhoods of
unorganized points will be explained in Section 2.

Curve and Surface Design: Saint-Malo 2002 215
Tom Lyche, Marie-Laurence Mazure, and Larry L. Schumaker (eds.), pp. 215–224.

Copyright oc 2003 by Nashboro Press, Brentwood, TN.

ISBN 0-9728482-0-7.

All rights of reproduction in any form reserved.



216 K. Hormann and M. Reimers

Fig. 1. Choosing different radii for the ball neighbourhood.

Once these neighbourhoods are specified, it is possible to apply one of
the linear parameterization methods to determine parameter points ψ(v),
one for each v ∈ V , and use one of the standard methods for triangulating
points in two dimensions, e.g. the Delaunay triangulation, to find a trian-
gulation S of the parameter points ψ(v). Finally, a triangulation T of the
given point cloud can be obtained by collecting all triangles [u, v, w] for
which [ψ(u), ψ(v), ψ(w)] is a triangle in S.

The drawback of this method is that it can only handle point sets
that are assumed to be sampled from a single surface patch, i.e., a surface
that is homeomorphic to a disc. However, more complex point sets can
be split into several patches and each patch triangulated separately. In
Section 3 we show how this can be done for points sampled from a surface
homeomorphic to a sphere. For a better understanding of our algorithm,
we explain its details by means of an example in Section 4.

§2. Local Neighbourhoods

The simplest way of defining a set of unordered neighbours N(v) for a
point v from a point cloud V is motivated by discretizing the concept of
neighbourhood on the surface from which the data was sampled. Suppose
the underlying surface is a two-manifold M , and let d(v, w) be the geodesic
distance, i.e., the Euclidean length of the shortest path in M connecting
v and w. Then we can define for each v ∈ M the (open) r-neighbourhood

Nr,M (v) = {w ∈ M : 0 < d(v, w) < r}

for some radius r > 0 and the discrete version

N̂r(v) = Nr,M (v) ∩ V

for the data set V ⊂ M . Of course, M is unknown and we cannot deter-
mine N̂r(v) this way, but the ball neighbourhood

Nr(v) = {w ∈ V : 0 < ‖v − w‖ < r}

is a good approximation as long as the ball radius r is adequately chosen.
If r is too large, then it may happen that the neighbourhood of a vertex
contains points that were sampled from a different part of the surface and
if r is too small then the set of neighbours can be empty for some points
(see Figure 1).



Triangulating Point Clouds 217

1

r = 0.08

k = 8

r = 0.1

k = 10

r = 0.12

k = 12

Fig. 2. Connectivity graph of the data set to the left for different ball neigh-
bourhoods (top) and different numbers of nearest neighbours (bottom).

A data set V ⊂ M is said to be ρ-dense [15] if ρ is the smallest
value such that any sphere with radius ρ and center in M contains at
least one point in V . For a ρ-dense data set we can assure Nr(v) �= ∅
for all v ∈ V if r ≥ 2ρ and if the distribution of the points is reasonably
uniform in addition, r = 2ρ usually is a good choice. However, determining
ρ remains a rather computationally expensive task, and it is simpler to
choose r interactively. More details can be found in [1].

If the density of the point set V varies, it might be preferable to adapt
r to the local density of V in order to avoid big differences in the size of the
neighbourhoods. Another strategy is to fix the size of N(v) and let each
neighbourhood consist of the k nearest points to v. In practice, k ≈ 10
has proven to give good results.

Figure 2 illustrates the effect of choosing different values for r and
k by showing the connectivity graph G = G(V,E) of the data set which
consists of the vertices V and all edges

E = {[v, w] : w ∈ N(v) or v ∈ N(w)}

that are defined by the local neighbourhoods. Note that the neighbour-
hood NG(v) of v ∈ V defined by this graph is symmetric and may be
larger than N(v) as in general w ∈ N(v) implies v ∈ N(w) only for the
ball neighbourhood.

The ball neighbourhood as well as the neighbourhood defined by the
k nearest points are unordered and allow to use parameterization methods
based on distance weights. But computing harmonic, shape preserving,
or mean value weights further requires the neighbours of each point to



218 K. Hormann and M. Reimers

Pv

vi
0

v 0

vvi

T
0

v 0

vi
0

Fig. 3. Projecting the unordered neighbours into the least squares plane (left)
and computing the Delaunay neighbourhood (right).

be ordered. This can be done as follows. Let N(v) = {v1, . . . , vn} be
the unordered neighbours of a point v ∈ V . Then we first compute the
least squares plane Pv of {v} ∪ N(v) and project v and N(v) orthogo-
nally into Pv, yielding new vertices v′ and v′

1, . . . , v
′
n. A slightly different

approach is to rotate the vertices in N(v) into the least squares plane of
N(v) through v [13]. However, in both cases we proceed by computing
the Delaunay triangulation T ′ of the new vertices, defining the Delaunay
neighbourhood

N ′(v) = {vi ∈ N(v) : [v′, v′i] ∈ E(T ′)},

and order the vertices w in N ′(v) in the same way as the corresponding
vertices w′ around v′ in T ′. The process is illustrated in Figure 3.

§3. The Algorithm in General

For triangulating a point cloud V that is sampled from a two-manifold M
that is topologically more complicated than a disc, we can adapt the idea
of Floater et al. [11] for partitioning triangulations with general topology.
That is, we start with a coarse triangulation D with m triangles whose
vertices V (D) are a subset of V and which has the same topology as M .
Then we partition the point cloud V into m subsets V 1, . . . , V m such that
each V i corresponds to one of the triangles Ti ∈ D.

For each edge [v, w] in E(D) we find the shortest path in the connec-
tivity graph G(V,E) connecting v and w, say

Γ(v, w) = [u1, u2] ∪ [u2, u3] ∪ · · · ∪ [ur−1, ur],

where u1 = v, ur = w, and [ui, ui+1] ∈ E. A common algorithm for
determining shortest paths in a graph is Dijkstra’s algorithm [6].

We further let Pvw = {u1, . . . , ur} be the set of vertices traversed by
this path and define the boundary vertices as their union

VB =
⋃

[v,w]∈E(D)

Pvw.



Triangulating Point Clouds 219

VI
i

Puv

Pwu

Pvw

u

v

w

Fig. 4. The vertices traversed by the shortest paths between u, v, and w are col-
lected in the sets Puv, Pvw, and Pwu. The vertices that are surrounded
by these boundary vertices are defined as the interior vertices V i

I .

The remaining interior vertices VI = V \ VB are then split into disjoint
subsets V 1

I , . . . , V m
I such that for each triangle Ti = [u, v, w] in D, the

corresponding set of interior vertices V i
I is bounded by the shortest paths

connecting u, v, and w (see Figure 4). We collect all vertices traversed by
these three paths in the set of boundary vertices V i

B = Puv ∪ Pvw ∪ Pwu

and finally let V i = V i
B ∪ V i

I for all i = 1, . . . , m.
We can now apply the method of Floater and Reimers [12] to each V i,

yielding triangulations T i whose union T = T 1 ∪ · · · ∪ T m gives a trian-
gulation of the whole point cloud V . Note that the order of the boundary
vertices V i

B as required by the meshless parameterization method [12] is
given by the sequence of vertices in the shortest paths.

The final triangulation T is topologically equivalent to D because
the boundaries of the reconstructed patches T i align in the same way as
the corresponding triangles Ti. Consider two neighbouring triangles Ti,
Tj in D and their common edge [v, w]. Then the shortest path between
v and w in G is part of both the boundaries of T i and T j . In fact,
Γ(v, w) = T i ∩ T j .

§4. The Algorithm in Detail

For a better understanding of this algorithm, the following example may
be helpful. The point cloud V in Figure 5 was sampled from an object
homeomorphic to a sphere and we therefore chose the simplest triangula-
tion representing this topology, namely a tetrahedron D. As vertices we
took those vi ∈ V that maximize 〈v − s|wi〉, where s is the centroid of
V and wi are the vertices of a regular tetrahedron, centred in the origin.
In the next step of the algorithm we split the interior vertices into four
subsets V 1

I , . . . , V 4
I , each corresponding to one of the four triangles in D.

Figures 6 and 7 illustrate how this is done.



220 K. Hormann and M. Reimers

Fig. 5. Point cloud of a cat with 1,458 points (left), connectivity graph using
the 12 nearest neighbours (middle), tetrahedron D and shortest paths
corresponding to the edges of D (right).

Fig. 6. Detecting interior vertices by first growing the shortest paths (left), then
finding a connected component in the connectivity graph (middle), and
finally growing that region (right).

Firstly, we temporarily enlarge the set of boundary vertices by adding
all neighbouring vertices

V ′
B = VB ∪

⋃

v∈VB

NG(v),

and keep repeating this process until the number of connected components
Gi in the connectivity graph of the remaining vertices V ′

I = V \V ′
B equals

the number of triangles in D. Then we let V i
I be the vertices of the

subgraphs Gi.



Triangulating Point Clouds 221

Fig. 7. Close-up view to the connectivity graph with shortest path (left). In-
terior vertices are found by growing the shortest paths (middle left),
finding connected components in the connectivity graph (middle right),
and growing these regions (right).

Fig. 8. Reconstructing one of the subsets V i. Connectivity graph (left), pa-
rameterization (middle left), Delaunay triangulation (middle right), and

triangulation T i.

Secondly, the subsets V i
I are enlarged by adding the “missing” interior

vertices. We assign each vertex in V ′
B \ VB to the closest patch V i

I , where
distance is measured in the connectivity graph. For that purpose we used
the Dijkstra algorithm on G with all v ∈ V ′

I as source points and with a
mechanism to retrieve for each vertex v ∈ V the closest source point.

Thirdly we identify each subset V i
I with a triangle [u, v, w] ∈ D and

add the boundary vertices in sequence,

V i = V i
I ∪ Puv ∪ Pvw ∪ Pwu.

Finally, we reconstruct each subset V i with the meshless parameteri-
zation method, yielding triangulations T i (see Figure 8) which are finally
merged to the triangulation T of V shown in Figure 9. Although it looks a
bit crinkly, it is a topologically correct triangulation which can be further
optimized,e.g. with the method of Dyn et al. [7]. Figure 10 shows another
example.



222 K. Hormann and M. Reimers

Fig. 9. Final reconstruction T with 2,912 triangles before (left) and after opti-
mization (right).

Fig. 10. Point cloud of the fandisk with 6,475 points and shortest paths (left),
reconstructed triangulation with 12,946 triangles before (middle) and
after optimization (right).

§5. Conclusion

We have presented a method for triangulating point clouds that reduces
the computational complexity by splitting the problem into subproblems,
each of which can be solved with the method of Floater and Reimers [12].
We have also shown how to automatically generate a suitable base mesh
D in the spherical case. In order to handle general topology we need a
base mesh that meets the following requirements.

As the algorithm creates triangulations that are topologically equiva-
lent to the base mesh, D must provide the correct topology. Furthermore,
the shortest paths Γ(v, w) that correspond to the edges [v, w] of D must
not intersect and meet at the vertices of D only. Otherwise, degeneracies
may be present in the reconstructed triangulation, and our method for



Triangulating Point Clouds 223

splitting the interior vertices into disjoint subsets can even fail. In fact, if
one of the regions that are bounded by the boundary vertices V i

B contains
only few points, the growing procedure of the boundary vertices may “eat
up” all interior vertices of that region or split it into disjoint components.
It is in other words better to avoid long thin triangles in D.

We also realize that D does not necessarily have to consist of triangles
but can be a more general polyhedral object. The user could therefore
specify some vertices of V by hand and connect them either by shortest
or by interactively defined paths such that the so defined D meets the
requirements. We are currently investigating methods to automate the
construction of suitable meshes for general topology and hope to report
on the results elsewhere soon.

Acknowledgments. This work was supported in part by the German
Research Foundation (DFG) under grant HO-2457/1-1.

References

1. Amenta, N. and M. Bern, Surface reconstruction by Voronoi filtering,
Discrete and Computational Geometry 22 (1999), 481–504.

2. Amenta, N., M. Bern, and M. Kamvysselis, A new Voronoi-based sur-
face reconstruction algorithm, Comp. Graphics (SIGGRAPH Proc.)
32 (1998), 415–421.

3. Amenta, N., S. Choi, T. K. Dey, and N. Leekha, A simple algo-
rithm for homeomorphic surface reconstruction, J. Comput. Geom.
and Appl. 12 (2002), 125–141.

4. Amenta, N., S. Choi, and R. Kolluri, The power crust, unions of balls,
and the medial axis transform, Comput. Geom. 19 (2001), 127–153.

5. Bernardini, F., J. Mittleman, H. Rushmeier, C. T. Silva, and G.
Taubin, The ball-pivoting algorithm for surface reconstruction, IEEE
Trans. Visualiz. and Comp. Graphics 5 (1999), 349–359.

6. Dijkstra, E. W., A note on two problems in connexion with graphs,
Numer. Math. 1 (1959), 269–271.

7. Dyn N., K. Hormann, S.-J. Kim, and D. Levin, Optimizing 3D trian-
gulations using discrete curvature analysis, in Mathematical Methods
for Curves and Surfaces: Oslo 2000, T. Lyche and L. L. Schumaker
(eds.), Vanderbilt University Press, Nashville, 2001, 135–146.

8. Eck, M., T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and W.
Stuetzle, Multiresolution analysis of arbitrary meshes, Comp. Graph-
ics (SIGGRAPH Proc.) 29 (1995), 173–182.

9. Floater, M. S., Parameterization and smooth approximation of surface
triangulations, Comput. Aided Geom. Design 14 (1997), 231–250.



224 K. Hormann and M. Reimers

10. Floater, M. S., Mean value coordinates, Comput. Aided Geom. De-
sign 20 (2003), 19–27.

11. Floater, M. S., K. Hormann, and M. Reimers, Parameterization of
manifold triangulations, in Approximation Theory X: Abstract and
Classical Analysis, C. K. Chui, L. L. Schumaker, and J. Stöckler
(eds.), Vanderbilt University Press, Nashville, 2002, 197–209.

12. Floater M. S. and M. Reimers, Meshless parameterization and surface
reconstruction, Comput. Aided Geom. Design 18 (2001), 77–92.

13. Gopi, M., S. Krishnan, and C. T. Silva, Surface reconstruction based
on lower dimensional localized Delaunay triangulation, Comp. Graph-
ics Forum (Eurographics Proc.) 19 (2000), C467–C478.

14. Greiner, G., and K. Hormann, Interpolating and approximating scat-
tered 3D data with hierarchical tensor product B-splines, in Surface
Fitting and Multiresolution Methods, A. Le Méhauté, C. Rabut, and
L. L. Schumaker (eds.), Vanderbilt University Press, Nashville, 1997,
163–172.

15. Hoppe, H., T. DeRose, T. Duchamp, J. McDonald, and W. Stuet-
zle, Surface reconstruction from unorganized points, Comp. Graphics
(SIGGRAPH Proc.) 26 (1992), 71–78.

16. Mencl, R. and H. Müller, Graph-based surface reconstruction using
structures in scattered point sets, in Proc. CGI ’98, 1998, 298–311.

17. Pinkall, U., and K. Polthier, Computing discrete minimal surfaces
and their conjugates, Experimental Mathematics 2 (1993), 15–36.

Kai Hormann
Caltech, MS 256-80
1200 E. California Blvd.
Pasadena, CA 91125, USA
hormann@cs.caltech.edu

Martin Reimers
Department of Informatics
Postbox 1080 Blindern
N-0316 Oslo, Norway
martinre@ifi.uio.no


