
Efficient point-to-point resistance distance queries
in large graphs
Craig Gotsman · Kai Hormann

Abstract

We describe a method to efficiently compute point-to-point resistance distances in a graph, which
are notoriously difficult to compute from the raw graph data. Our method is based on a relatively
compact hierarchical data structure which “compresses” the resistance distance data present in a
graph, constructed by a nested bisection of the graph using compact edge-cuts. Built and stored
in a preprocessing step (which is amenable to massive parallel processing), efficient traversal of
a small portion of this data structure supports efficient and exact answers to resistance distance
queries. The size of the resulting data structure for a graph of n vertices is O (nk log n), where k is
the size of a balanced edge-cut of the graph. Exact queries then require O (k log n) worst-case
time and O (k) average-case time. Approximate values may be obtained significantly faster by
applying standard dimension reduction techniques to the “coordinates” stored in the structure.

Citation Info

Journal
Journal of Graph
Algorithms and
Applications

Volume
27(1), February 2023

Pages
35–44

DOI
10.7155/jgaa.00612

1 Introduction

Resistance distance between two vertices i and j in a graph G (V , E) containing n vertices is a global measure
of distance between vertices in a graph, taking into account the lengths of all possible paths between
them. Its name stems from the fact that the graph may be thought of as a resistor network with the edges
representing unit-value resistors, and the resistance distance r (i , j) is then the effective resistance between
the two junctions i and j in this network. Resistance distance is a useful measure with many applications in
chemistry and graph analytics, dating back to the seminal paper by Klein and Randić [8]. For more details,
the interested reader is referred to the recent survey by Evans and Francis [5].

Resistance distance may be expressed in terms of the classical “flow” in networks [1, Sec. 10.2]. This is an
assignment of non-negative real numbers fe (the flow) to all edges e of a network, along with a direction per
edge, such that the total incoming flow is equal to the total outgoing flow at all nodes except the source and
sink. At the source, the total outgoing flow is 1, as is the total incoming flow at the sink. In this case r (i , j) is
just the square of the norm of the minimal flow,

r (i , j) =min

(

∑

e∈E (G)

f 2
e : f is a unit flow in G from source i to sink j

)

.

Another way to express the resistance distance as an optimal value uses vectors of real values for the n graph
vertices [2, Corollary 6]:

1

r (i , j)
=min

(

∑

(u ,v)∈E (G)

(xu − xv)
2 : x ∈Rn and xi − x j = 1

)

.

The resistance distance is known to be a metric and is usually computed in one of two ways: the “direct”
method,

r (i , j) = Γi ,i + Γ j , j −2Γi , j , (1)

where Γ = L+ is the pseudoinverse of the positive semi-definite symmetric Laplacian matrix L of G , or the
“spectral” method,

r (i , j) =
n
∑

k=2

1

λk

�

φk
i −φ

k
j

�2
, (2)

where λk andφk are the k -th eigenvalue and normalized eigenvector of L (such that λ1 = 0). While these are
straightforward formulae, they compute simultaneously the resistance distance between all O (n 2) pairs of
vertices in the graph, or, at the very least, the resistance distance between a vertex and all O (n) other vertices.

1

https://doi.org/10.7155/jgaa.00612

They require solving global systems before anything can be done for any pair of vertices, with run-time
complexity of O (n 3). As such, the methods are not practical to use in an application where queries on the
resistance distance between arbitrary pairs of vertices in very large graphs are to be computed rapidly on
demand. This arises, for example, in graph sparsification [12], where an edge is deemed important if and
only if its resistance distance is large. Thus an edge may be discarded if its resistance distance is small, since
there exist many other paths in the graph connecting its two endpoints. Similarly, in the opposite problem of
link prediction [10], a link is predicted to appear in a network in the future if the resistance distance between
its two endpoints is small, implying that there already is a strong indirect connection between the two edge
endpoints.

It may be possible to approximate r (i , j) using (2) by computing only the m ≪ n eigenvalue/eigenvector
pairs for L having the smallest eigenvalues, as these dominate the spectral sum, thus avoiding the compu-
tation of all n pairs. Indeed, if preprocessing and storing the results is allowed, to be used later in a fast
online query, then m eigenvalues and eigenvectors of L may be precomputed and stored, at a storage cost of
O (m) “coordinates” per graph vertex, and a resistance distance query may be answered in O (m) time. Alas,
for many graphs, the value of m necessary to obtain a sufficiently accurate approximation may be quite
large, sometimes m =O (n). Spielman and Srivastava [12] expand on this idea to form a (high probability)
ε-approximation to the resistance distance based on (2), while avoiding explicit computation of eigenvectors.
They preprocess the graph using random projections and an efficient linear solver, resulting in a matrix with
m =O (log n

ε2) entries (“coordinates”) per vertex. This matrix may then be used to answer online queries in
O (m) time. Although asymptotically efficient, the values of ε and the implicit constants needed to produce
high-quality approximations can make this expensive in practice.

In this paper we describe an alternative method to efficiently answer point-to-point resistance distance
queries. This is achieved by preprocessing a graph by recursive edge-cuts, resulting in storage of m =
O (k log n) “coordinates” per vertex and leads to a method to compute r (i , j) exactly in O (m) time, where k is
the size of a balanced edge-cut of G , for example, k =O (

p
n) for planar graphs. Using the same stored data,

a very good approximation of r (i , j)may be obtained in much less time if we apply dimension reduction to
the coordinates.

2 Resistance distance through an edge-cut

If G (V , E) is a connected graph with vertex set V and edge set E , an edge-cut of G is a subset C ⊂ E such that
G (V , E \C) consists of two disconnected components G 1 =G (V1, E1) and G 2 =G (V2, E2), where V =V1 ∪V2,
V1∩V2 =∅ and E = E1∪C ∪E2, E1∩E2 =∅. Denote by B1 the boundary of V1 relative to V2, that is, B1 =V1∩V (C),
and similarly B2 the boundary of V2. If v1 ∈V1 and v2 ∈V2, then we say that C separates v1 and v2, and show
how to express rG (v1, v2) as a function of rGi

(v1, ui) and rGi
(v2, wi) only, where ui and wi are the vertices in B1

and B2, respectively and Gi are graphs simpler than G , as will be described below. Note that we have added
a subscript to the resistance distance function r to indicate the graph to which it is applied.

The starting point for our analysis is the “perturbation formula” of Yang and Klein [14, Theorem 2.1], also
mentioned by Ranjan et al. [11], which describes how the resistance distance between two vertices v1, v2 in a
graph changes when a new edge is added to the graph.

Theorem 1. [14] Let G (V , E) be an undirected graph and G ′ = (V , E ∪e) be the graph after a new edge e = (u , w)
is added. Denote by rG (v1, v2) the resistance distance between vertices v1 and v2 in the graph G . Then,

rG ′ (v1, v2) = rG (v1, v2)−δ(G , v1, v2, u , w),

where

δ(G , v1, v2, u , w) =

�

(rG (v1, u)− rG (v1, w))− (rG (v2, u)− rG (v2, w))
�2

4(1+ rG (u , w))
.

Note that the addition of new edge always decreases the resistance distance, as expected. We apply Theorem 1
to analyse the effect of the edges in an edge-cut on the resistance distance.

Theorem 2. Let G (V , E) be an undirected graph containing an edge-cut C consisting of the k edges {ei =
(ui , wi) : i = 1, . . . , k} partitioning V into V1 and V2. Denote by Gi the graph containing all the edges of G
except the edges {e j : j = i +1, . . . , k} (see Figure 1). If v1, ui ∈ V1 and v2, wi ∈ V2 are on opposite sides of the
edge-cut, then

rG (v1, v2) = rG0
(v1, ui) + rG0

(v2, wi) +1−∆(G , v1, v2, C), (3)

2

C
G2

1G

e1
e2e3

e4

e1
e2e3

e4

G =G4 G3 G2 G1 G0

Figure 1: Left: graph G with edge-cut C (green) consisting of k = 4 edges. Left to right: partial graphs Gi resulting from
successively removing one edge of the cut at a time.

where

∆(G , v1, v2, C) =
k
∑

i=2

δ(Gi , v1, v2, ui , wi). (4)

Proof. Theorem 1 may be applied k −1 times by starting with the graph G1 containing just one edge of C
and repeatedly adding one more edge of C at a time, so that

rG (v1, v2) = rG1
(v1, v2)−∆(G , v1, v2, C). (5)

Observing that the removal of the first edge e1 = (u1, w1) disconnects G1 into G0 consisting of two disconnec-
ted vertex sets V1 and V2 with u1 ∈V1 and w1 ∈V2, we trivially have

rG1
(v1, v2) = rG0

(v1, u1) + rG0
(v2, w1) +1,

from which (3) results.

3 Nested bisection

Assuming the cut C is balanced, namely, partitions V into two sets V1 and V2 of approximately equal size,
then Theorem 2 is applicable in approximately 50% of the cases, when vertex pairs (v1, v2) are separated
by C . In this case, it provides an efficient way to compute rG (v1, v2) if only rGi

(v1, ui) and rGi
(v2, wi) are

known. However, if v1 and v2 are not separated by C , for example, without loss of generality, v1, v2 ∈V1, then
obviously

rG1
(v1, v2) = rG0

(v1, v2)

and the computation of (5) may proceed recursively on G 1 =G0 to evaluate the first term. This means that an
edge-cut C 1 must be found for G 1, and then (5) applied again on G 1. This process will continue recursively
and terminate when v1 and v2 are separated by the edge-cut, at which point (3) is applied. Note that the
superscript i in G i denotes the subgraph of G treated at recursion level i .

Thus, in order that this recursive method apply to any vertex pair, a nested bisection tree [6]must be
constructed, where edge-cuts are computed recursively until small enough vertex sets are obtained. Each
node of the binary tree represents a subgraph of G and an edge-cut of the subgraph. Each descendant of
the node represents one of the two connected components obtained from the edge-cut. Leaves of the tree
represent small subgraphs which are not partitioned further. If the edge-cuts are balanced, the height of
the binary tree will be O (log n). For any vertex v , we say that v is associated with all nodes of the tree that
contain v , and also associated with the subgraphs and edge-cuts in those nodes. In the opposite direction,
we say that these subgraphs and edge-cuts are associated with v .

Once the binary tree is constructed, the resistance distance between v1 and v2 may be computed by
traversing the tree and considering all nodes associated with v1 and associated with v2, namely

rG (v1, v2) = rG d (v1, u) + rG d (v2, w) +1−
d
∑

i=0

∆(G i , v1, v2, C i),

where the G i are the subgraphs of G contained in the nodes along the path of the tree from its root at depth 0
to the node at depth d containing the edge-cut C i separating v1 from v2. The vertices u and w are the
endpoints of the final edge of the edge-cut C d in G d .

3

4 Implementation details

4.1 Preprocessing

In order to use the method described in the previous section to efficiently answer resistance distance queries
between any two vertices of a given graph, it is necessary to precompute the bisection tree and resistance
distances between each vertex and the endpoints of its associated cut edges in the relevant subgraphs. This
is performed just once on the graph, namely, we compute and store “coordinates” of each vertex to all
associated cut edges. This will result in a very compact representation of the resistance distance information
and will facilitate efficient computation of the resistance distance between any two vertices at query time. In
practice the graph is recursively partitioned and a binary tree built. The resistance distances from each vertex
to all associated edge-cuts are then computed postorder (bottom-up). For a leaf of the tree, the resistance
distance matrix is computed simply by applying (1) to the subgraph stored in that leaf. Once we have the
resistance distance matrix of two components of a graph, rG1

and rG2
, the resistance distance matrix rG of the

complete graph is computed by inserting one edge of the cut at a time and updating the matrix accordingly.
Adding the first edge (u , w) (where u ∈V (G1) and w ∈V (G2)) triggers the computation

rG (v1, v2) :=











rG1
(v1, v2), v1, v2 ∈G1,

rG2
(v1, v2), v1, v2 ∈G2,

rG1
(v1, u) + rG2

(w , v2) +1, v1 ∈G1, v2 ∈G2.

Adding any of the other edges ei = (ui , wi) triggers the update

rG (v1, v2) := rG (v1, v2)−δ(G , v1, v2, ui , wi).

As this proceeds, the following “coordinates” (one per each edge ei = (ui , wi) in the cut) are stored for all
v ∈G ,

c (v, ei) :=















rG (v, ui), i = 1, v ∈G1

rG (v, wi), i = 1, v ∈G2

rG (v, ui)− rG (v, wi)

2
p

1+ rG (ui , wi)
, i > 1.

(6)

The end result is a tree data structure containing O
�∑d

i=1 |C
i |
�

values for vertex v , where C i are the edge-cuts
associated with v . There are d =O (log n) such edge-cuts.

Balanced edge-cuts of a graph may be obtained using a variety of methods (see the survey by [3]), some
implemented quite efficiently in the METIS software package [7]. A simple method is the spectral method [13]
which uses the so-called Fiedler eigenvector of the graph Laplacian matrix. Whether these edge-cuts are
compact or not depends on the type of graph. For example, it is well known that both planar graphs and unit
disk graphs with n vertices admit balanced edge-cuts of size O (

p
n) [4, 9]. Unit disk graphs model well radio,

wifi and IoT networks. For these cases, the storage requirements of our method are O (
p

n log n) values per
vertex, as opposed to the naive O (n) values per vertex if all pairwise resistance distances are precomputed
and naively stored for lookup at query time.

4.2 Answering point-to-point queries

At query time, given a pair of vertices v1, v2 ∈G , the coordinates computed in (6) and stored in preprocessing
are used to compute rG (v1, v2) exactly and efficiently by traversing a path of the binary tree, starting at the
root and ending at the node whose associated cut separates v1 and v2. Starting with rG (v1, v2) = 0, at each
node with associated cut C consisting of k edges ei = (ui , wi), i = 1, . . . , k , this is updated as

rG (v1, v2) := rG (v1, v2) +
k
∑

i=2

�

c (v1, ui)− c (v2, wi)
�2

. (7)

At the terminal tree node that separates v1 and v2, we also perform the following update involving the first
edge in the associated cut

rG (v1, v2) := c (v1, u1) + c (v2, w1) +1− rG (v1, v2). (8)

4

Figure 2: Example of the portion of the nested bisection needed to compute the resistance distance between the two
black vertices in two (unweighted) graphs. Left: planar graph containing 401 vertices. Four recursive edges-cuts are
shown, each partitioning the relevant subgraph into two balanced components until the two vertices are separated.
The edge-cuts are coloured (red, green, blue, cyan) with increasing depth (0,1,2,3). In order to compute the required
resistance distance, each of the two vertices must store “coordinates” related only to the 62 edges in their associated cuts.
As the cuts are traversed top-down and the resistance distance then refined bottom-up, the values start at r = 1.0151
and decrease to 0.9572, 0.9173, and the final value 0.9164. Right: Unit disk graph within polygonal domain containing
379 vertices. Similar to (left), four cuts are required to separate the two black vertices, in total 113 edges. The resistance
distance is refined bottom-up as 0.5004, 0.3772, 0.3741, 0.3741.

The time complexity of this computation is O (k log n), where k is the size of an edge-cut. However, observing
that for a balanced edge-cut, 50% of the possible vertex pairs will be separated already at depth d = 1, 25% at
depth d = 2, 12.5% at depth d = 3 and so on, we conclude (by summing a geometric series) that the average
time complexity for a query is O (k).

We note that as the resistance distance is accumulated bottom-up, its value can only decrease (because
of the negative sign in front of rG (v1, v2) in (8)). This is to be expected, as climbing the tree towards the root
exposes more and more of the graph, thus more possible paths between the two vertices, which can only
reduce the resistance distance between them.

5 Approximating the resistance distance

The contribution to the resistance distance between two vertices in a graph separated by an edge-cut of
size k , as described in (7), is the sum of squares of the differences of k −1 values associated with each of the
edges, namely the square of an Euclidean distance between the embeddings of the vertices in a space of
dimension k −1. As such, it is amenable to dimension reduction by principal component analysis (PCA)
to a space of much smaller dimension which captures most of this distance, in which the coordinates are
sorted in decreasing order of “importance”. This has the potential to reduce the storage requirements of
this method dramatically, at the cost of a minor loss of accuracy of the computed resistance distance. This
optimization also reduces the computation runtime, since (4) may be replaced by a sum of much less than k
terms. Note that since the number of vectors m is typically much larger than the dimension k , we use the
PCA method which performs a cheap eigendecomposition of the covariance matrix of size k ×k (rather than
the standard multidimensional scaling method which would require a very expensive eigendecomposition
of a matrix of size m ×m), followed by a projection of the input vectors on to the reduced space.

Another possible optimization leading to an even shorter query time is possible when vertices are close
to each other in the graph. This means that separation occurs deep in the nested bisection tree and most
of the resistance distance is accumulated at the lower levels. In this case, the resistance distance may be
approximated well by using most of the coordinates at the lower levels, and much fewer at the higher levels.
At each level, coordinates are used, starting from the most important, as long as the contribution of that
coordinate is above a threshold. Once the threshold is crossed, all other coordinates at that level are ignored
completely.

5

Figure 3: Unit disk graph on 4,653 vertices with 8.6 neighbors on average, decomposed using nested bisection of depth 9.
Left: exact resistance distance of 0.8047 between the two black vertices is computed using three levels of the tree (red,
green, blue) involving 105+78+71= 254 coordinates. The approximate distance of 0.8057 may be computed on these
levels using 24 of the 55 reduced coordinates on the top level, 5 of 49 at the second level, and 11 of 50 at the third, in total
40 reduced coordinates. Right: Exact resistance distance of 0.5956 is computed on five levels (red, green, blue, cyan,
magenta) using 105+78+69+39+31= 322 coordinates. Approximate resistance distance of 0.5958 is computed using
4/55+11/49+5/39+7/28+11/20 reduced coordinates, in total 38 reduced coordinates.

6 Examples

We have implemented our methods in MATLAB and run them on some sample graphs. Our code may be
found here. Edge-cuts are computed using the spectral method [13] and resistance distance of the leaf
clusters are computed using the Laplacian pseudo-inverse (1). Although our entire implementation is
serial, we note that the method is “embarrassingly parallel” in the sense that it can easily be parallelized to
significantly reduce both the preprocessing time and the query time.

Some results on a planar graph and a unit disk graph are shown in Figures 2 and 3. Figure 2 illustrates the
computation of the exact resistance distance between two vertices in both types of graphs, using four levels
of edge-cuts within a nested bisection in both examples until the vertices are separated. In the planar graph
of 401 vertices, 62 “coordinates” are required, and in the unit disk graph of 379 vertices, 113 “coordinates”
are required. Figure 3 illustrates how the distance may be approximated well using far less “coordinates”
than needed for the exact distance computation. A unit disk graph containing 4,653 vertices is preprocessed
with a nested bisection of depth 9 and the dimension of the coordinate space is reduced at each level using
PCA. As a result the resistance distance may be approximated well: 0.8047 instead of 0.8057 using 40 instead
of 254 coordinates, and 0.6054 instead of 0.6063 using 38 instead of 291 coordinates. In contrast, were we to
use that number of coordinates in the truncated spectral approximation (2), the approximation would have
been completely off by two orders of magnitude.

7 Discussion and conclusion

We have described a method that preprocesses a graph G , building a data structure that may be used to
rapidly answer online queries approximating the point-to-point resistance distance between two vertices
of the graph. The fundamental idea is that the resistance distance between two vertices on opposite sides
of an edge-cut C may be expressed using only values relating the two vertices and the edges of the cut in
each of the two components G1 and G2. This is analogous to the fact that the shortest-path distance d (v1, v2)
between these two vertices may also be expressed in a similar manner as

dG (v1, v2) =min
�

dG1
(v1, ui) +dG2

(wi , v2) +1 : (ui , wi) ∈C
	

6

https://www.inf.usi.ch/hormann/software/P2PRD.zip

Equation (4) expresses the resistance distance in G in terms of the resistance distances to the separating
edges in Gi , which contain partial edge-cuts. It would be more satisfying if it could be expressed in terms of
resistance distances to the fully separated graph G0. Theorems 4.9 and 4.12 in [14] have such expressions for
the cases k = 2, 3, but it seems like the expression for a larger k would be quite cumbersome.

Our method relies on the fact that the graph admits compact edge-cuts. By “compact” we mean O (n p),
preferably for some p ≤ 2

3 . This is true for planar graphs, minor-free graphs, unit disk graphs, hyperbolic
random graphs and geometric inhomogeneous random graphs [4]. For more general graphs, such as the
scale-free (“power law”) graphs that model the internet and social networks, the edge-cuts will be less
compact and we have to rely on the compression of “coordinates” in the approximation stage to reduce the
resulting number to manageable proportions. For example, in a social network graph consisting of 7,623
vertices and 27,805 edges, two vertices are separated at the second level (level 1 = 1,393 edges, level 2 =
577 edges), thus in principle requiring 1,970 coordinates to compute the resistance distance between them
exactly. After dimension reduction, 415+49= 464 coordinates suffice, incurring an error of 1.3%.

Finally, we mention that while our description has dealt with the simple case of unit resistances on the
edges (i.e., unweighted graphs), the entire analysis applies also to arbitrary resistance values (i.e., weighted
graphs). In this case, the off-diagonal entries of the Laplacian matrix mentioned in (1) and (2) are the negative
inverses of the edge weights, and the value “1” appearing in the update formulae should be replaced by the
appropriate edge weight.

References

[1] R. B. Bapat. Graphs and Matrices. Springer, London, 2nd edition, 2014. ISBN 978-1-4471-6568-2.

[2] B. Bollobás. Modern Graph Theory, volume 184 of Graduate Texts in Mathematics. Springer, New York, 1998. ISBN
978-1-4612-0619-4.

[3] A. Buluç, H. Meyerhenke, I. Safro, P. Sanders, and C. Schulz. Recent advances in graph partitioning. In L. Kliemann
and P. Sanders, editors, Algorithm Engineering, volume 9220 of Lecture Notes in Computer Science, pages 117–158.
Springer, Cham, 2016.

[4] P. Carmi, M. K. Chiu, M. J. Katz, M. Korman, Y. Okamoto, A. van Renssen, M. Roeloffzen, T. Shiitada, and S. Smorod-
insky. Balanced line separators of unit disk graphs. Computational Geometry, 86:Article 101575, 14 pages, Jan.
2020.

[5] E. J. Evans and A. E. Francis. Algorithmic techniques for finding resistance distances on structured graphs. Discrete
Applied Mathematics, 320:387–407, Oct. 2022.

[6] A. George. Nested dissection of a regular finite element mesh. SIAM Journal on Numerical Analysis, 10(2):345–363,
1973.

[7] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM Journal
on Scientific Computing, 20(1):359–392, 1998. The METIS source code is available at http://glaros.dtc.umn.
edu/gkhome/views/metis.

[8] D. J. Klein and M. Randić. Resistance distance. Journal of Mathematical Chemistry, 12:81–95, 1993.

[9] R. J. Lipton and R. E. Tarjan. A separator theorem for planar graphs. SIAM Journal on Applied Mathematics,
36(2):177–189, 1979.

[10] B. Pachev and B. Webb. Fast link prediction for large networks using spectral embedding. Journal of Complex
Networks, 6(1):79–94, Feb. 2018.

[11] G. Ranjan, Z.-L. Zhang, and D. Boley. Incremental computation of pseudo-inverse of Laplacian. In Z. Zhang,
L. Wu, W. Xu, and D.-Z. Du, editors, Combinatorial Optimization and Applications, volume 8881 of Lecture Notes in
Computer Science, pages 729–749. Springer, Cham, 2014.

[12] D. A. Spielman and N. Srivastava. Graph sparsification by effective resistances. SIAM Journal on Computing,
40(6):1913–1926, 2011.

[13] D. A. Spielman and S.-H. Teng. Spectral partitioning works: Planar graphs and finite element meshes. Linear
Algebra and its Applications, 421(2–3):284–305, Mar. 2007.

[14] Y. Yang and D. J. Klein. A recursion formula for resistance distances and its applications. Discrete Applied Mathem-
atics, 161(16–17):2702–2715, Nov. 2013.

7

https://doi.org/10.1007/978-1-4471-6569-9
https://www.worldcat.org/search?q=isbn%3A9781447165682
https://doi.org/10.1007/978-1-4612-0619-4
https://www.worldcat.org/search?q=isbn%3A9781461206194
https://doi.org/10.1007/978-3-319-49487-6_4
https://doi.org/10.1016/j.comgeo.2019.101575
https://doi.org/10.1016/j.dam.2022.04.012
https://doi.org/10.1137/0710032
https://doi.org/10.1137/S1064827595287997
http://glaros.dtc.umn.edu/gkhome/views/metis
http://glaros.dtc.umn.edu/gkhome/views/metis
https://doi.org/10.1007/BF01164627
https://doi.org/10.1137/0136016
https://doi.org/10.1093/comnet/cnx021
https://doi.org/10.1007/978-3-319-12691-3_54
https://doi.org/10.1137/080734029
https://doi.org/10.1016/j.laa.2006.07.020
https://doi.org/10.1016/j.dam.2012.07.015

	Introduction
	Resistance distance through an edge-cut
	Nested bisection
	Implementation details
	Preprocessing
	Answering point-to-point queries

	Approximating the resistance distance
	Examples
	Discussion and conclusion

