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Abstract

The barycentric forms of polynomial and rational interpolation have recently gained
popularity, because they can be computed with simple, efficient, and numerically stable
algorithms. In this paper, we show more generally that the evaluation of any function
that can be expressed as r (x ) =

∑n
i=0 ai (x ) fi

�∑m
j=0 b j (x ) in terms of data values fi and

some functions ai and b j for i = 0, . . . , n and j = 0, . . . , m with a simple algorithm that first
sums up the terms in the numerator and the denominator, followed by a final division, is
forward and backward stable under certain assumptions. This result includes the two
barycentric forms of rational interpolation as special cases. Our analysis further reveals
that the stability of the second barycentric form depends on the Lebesgue constant asso-
ciated with the interpolation nodes, which typically grows with n , whereas the stability
of the first barycentric form depends on a similar, but different quantity, that can be
bounded in terms of the mesh ratio, regardless of n . We support our theoretical results
with numerical experiments.
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1 Introduction

Given n +1 distinct interpolation nodes x0, . . . , xn with associated data f0, . . . , fn , the classical interpolation
problem consists in finding a function r : R→R that interpolates fi at xi , that is,

r (xi ) = fi , i = 0, . . . , n . (1)

In the case of polynomial interpolation of degree at most n , this problem has a unique solution, which
can be expressed in Lagrange form as

r (x ) =
n
∑

i=0

`i (x ) fi , `i (x ) =
n
∏

j=0, j 6=i

x − x j

xi − x j
.

While this form is advantageous for theoretical analysis, its evaluation requires O (n 2) operations and can be
numerically unstable. It is advisable to consider instead the first barycentric form of r ,

r (x ) = `(x )
n
∑

i=0

wi

x − xi
fi , `(x ) =

n
∏

j=0

(x − x j ), (2)

with the Lagrange weights wi defined as

wi =
n
∏

j=0, j 6=i

1

xi − x j
, i = 0, . . . , n . (3)

The first barycentric form is more efficient than the Lagrange form, as it can be evaluated in O (n ) operations,
after computing the wi , which are independent of x , in O (n 2)operations in a preprocessing step. Higham [12]
further shows that this evaluation is backward stable with respect to perturbations of the data fi . Another
means of evaluating r is given by the second barycentric form of r ,

r (x ) =

∑n
i=0

wi
x−xi

fi
∑n

i=0
wi

x−xi

, (4)

which can be derived from (2) by noticing that 1 = `(x )
∑n

i=0
wi

x−xi
. Evaluating this formula also requires

O (n ) operations, but it comes with the advantage that the wi can be rescaled by a common factor to avoid
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underflow and overflow [3]. Moreover, the second barycentric form is forward stable, as long as the Lebesgue
constant associated with the interpolation nodes xi is small [12], which is the case, for example, for Chebyshev
nodes of the first and the second kind, but not for equidistant nodes.

In the case of rational interpolation, the interpolation problem (1) no longer has a unique solution, but
Berrut and Mittelmann [2] show that every rational interpolant of degree at most n can be expressed in the
second barycentric form (4) for a specific choice of weights wi . Vice versa, Schneider and Werner [17] note
that for any set of non-zero weights wi , the function r in (4) is a rational interpolant of degree at most n . An
important subset of these barycentric rational interpolants are those that do not have any poles in R. This is
obviously true for the Lagrange weights in (3), but also for the Berrut weights [1]

wi = (−1)i , i = 0, . . . , n , (5)

and, assuming the interpolation nodes to be in ascending order, that is, x0 < · · ·< xn , for the family of weights
with parameter d ∈ {0, . . . , n},

wi =
min(i ,n−d )
∑

k=max(i−d ,0)

(−1)k
k+d
∏

j=k , j 6=i

1

xi − x j
, i = 0, . . . , n , (6)

proposed by Floater and Hormann [8]. Note that this family includes the Berrut and the Lagrange weights
as special cases for d = 0 and d = n . For the weights in (6), Floater and Hormann further observe that the
barycentric rational interpolant in (4) with the weights (6) can also be written as

r (x ) =

∑n
i=0

wi
x−xi

fi
∑n−d

i=0 λi (x )
, (7)

where

λi (x ) =
(−1)i

(x − xi ) · · · (x − xi+d )
, i = 0, . . . , n −d . (8)

As the formula in (7) simplifies to (2) for d = n , we refer to it as the first barycentric form of the corresponding
rational interpolant. Note that the first and the second form are identical for Berrut’s interpolant, that is,
for d = 0.

The result of Higham [12] can be extended to show that the evaluation of the second barycentric form (4)
is forward stable, not only in the case of polynomial interpolation, but for general barycentric rational
interpolants, provided that the weights wi can be computed with a forward stable algorithm and that the
corresponding Lebesgue constant is small [16]. For Berrut’s rational interpolant with weights in (5), this
is the case for all well-spaced interpolation nodes [5], including equidistant and Chebyshev nodes. For
the family of barycentric rational interpolants with weights in (6), the Lebesgue constant is known to grow
logarithmically in n , for any constant d > 0 and equidistant [4] as well as quasi-equidistant [13] nodes, and
the formula in (6) turns out to be a forward stable means of computing the weights wi [7].

In this paper, we further generalize the proof of Salazar Celis [16], such that it can also be used for proving
the forward stability of the first barycentric form (7), with two important changes (Section 3). On the one
hand, the result relies on the fact that not only the wi , but also the λi can be evaluated with a forward
stable algorithm. This, however is indeed the case, both for the formula in (8), which requires O (d (n −d ))
operations for 0< d < n , as well as a more efficient, but slightly less stable formula that gets by with O (n )
operations (Section 4). On the other hand, the Lebesgue constant must be replaced by a similar quantity
that depends on the functions λi , for which we prove that it is at most on the order of O (µd ), where µ is the
mesh ratio of the interpolation nodes (Section 6). Moreover, we show that a more efficient formula [14] for
computing the weights in (6) is forward stable, too (Section 4).

Regarding backward stability, Mascarenhas and Camargo [15] show that the second barycentric form
is backward stable under the same assumptions, namely forward stable weights wi and small Lebesgue
constant. Moreover, Camargo [7] proves that the first barycentric form is backward stable, as long as the
denominator in (7) is computed with a special algorithm in O (nd ) operations.

In this paper, we derive a substantially different approach that can be used to show the backward stability
of both barycentric forms (Section 5). For the second barycentric form, our result provides an upper bound
on the perturbation of the data fi that is smaller than the upper bound by Mascarenhas and Camargo [15].
For the first barycentric form, our upper bound is larger than the one found by Camargo [7], but it comes with
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the advantage of holding for a more efficient way of computing the denominator in (7) in O (n ) operations,
which is based on our new O (n ) algorithm for evaluating the λi (Section 4).

It is important to note that our results hold under the assumption that the input values to the algorithm,
xi , fi , and x , are given as floating point numbers, so they do not introduce any additional error when we
compute both forms (4) and (7). Our stability analysis does not cover errors that result from initially rounding
the given values to floating point numbers.

Our numerical experiments (Section 7) confirm that this leads to an evaluation of the first barycentric
form (7) of the rational interpolant with weights in (6), which is considerably faster than the algorithm
proposed by Camargo [7], especially for larger d , at the price of only marginally larger forward errors.
Evaluating the interpolant using the second barycentric form (4) is even faster and can be as stable, but may
also result in significantly larger errors for certain choices of interpolation nodes. However, we also report a
case in which the second form is stable and the first is not.

2 Preliminaries

Following Trefethen [18], a general problem g can be seen as a function g : U → V from a normed vector
space (U ,‖·‖U ) of data to a normed vector space (V ,‖·‖V ) of solutions and a numerical algorithm for solving
the problem on a computer as another function ĝ : U →V that approximates g .

For our analysis, we consider a computer that uses a setFof floating point numbers with the corresponding
machine epsilon ε and let fl: R→ F be the rounding function that maps each x ∈R to the closest floating
point approximation fl(x ) ∈ F. Moreover, we denote by þ the floating point analogue of the arithmetic
operation ∗ ∈ {+,−,×,÷}, that is,

x þ y = fl(x ∗ y ) (9)

for x , y ∈F, and recall [18, Lecture 13] that fl and þ introduce a relative error of size at most ε. That is, for
all x ∈R there exists some δ ∈Rwith |δ|<ε, such that

fl(x ) = x (1+δ)

and likewise
x þ y = (x ∗ y )(1+δ), ∗ ∈ {+,−,×,÷} (10)

for all x , y ∈ F, which follows immediately from (9). We further note that fl(−x ) =−x for all x ∈ F, so that
multiplying a floating point number by (−1)i or taking its absolute value does not entail any rounding error.

In order to analyse and to compare the quality of numerical algorithms, the usual quantities to consider
are the absolute forward error ‖ĝ (u )− g (u )‖V and the relative forward error ‖ĝ (u )− g (u )‖V /‖g (u )‖V . The
algorithm ĝ is called accurate or forward stable, if

‖ĝ (u )− g (u )‖V

‖g (u )‖V

=O (ε)

for all u ∈U with g (u ) 6= 0 and backward stable at u 6= 0, if

ĝ (u ) = g (û ) for some û ∈U with
‖û −u‖U
‖u‖U

=O (ε),

where the notation x =O (ε)means that there exists some positive constant C , such that |x | ≤C ε as ε→ 0.
In the case of forward stability, this constant usually depends on the relative condition number

κ(u ) = lim
δ→0

sup
‖h‖U≤δ

�

‖g (u +h )− g (u )‖V

‖g (u )‖V

�

‖h‖U
‖u‖U

�

of the problem g at u and on the dimensions of U and V .
In this paper, we analyse algorithms for evaluating barycentric rational interpolants, based on the

formulas (4) and (7). Following Higham [12], we assume the evaluation point x ∈F and the interpolation
nodes x = (x0, . . . , xn ) ∈ Fn+1 to be fixed and prove the forward and backward stability with respect to the
data f = ( f0, . . . , fn ) ∈Fn+1. More precisely, we solve the problem

g : (Fn+1,‖·‖∞)→ (R, |·|), g ( f ) = r (x )
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by a numerical algorithm
ĝ : (Fn+1,‖·‖∞)→ (F, |·|), ĝ ( f ) = r̂ (x ),

and we show that for any choice of x , x , and f , the relative forward error is bounded from above (Section 3),

|r̂ (x )− r (x )|
|r (x )|

≤C1ε+O (ε2),

and that there exists some perturbed data f̂ with

‖ f̂ − f ‖∞
‖ f ‖∞

≤C2ε+O (ε2),

such that r̂ (x ; x , f ) = r (x ; x , f̂ ), where the additional arguments of r are used to emphasize the dependence
of the interpolant on the interpolation nodes and the data (Section 5). In both cases, ε is assumed to be
sufficiently small, since this is enough to guarantee that the errors are O (ε). We will see that both constants
C1 and C2 depend linearly on n and a quantity β (x ), which is independent of f and different for the first and
the second barycentric form. It turns out that this quantity is usually smaller when the first barycentric form
is used to evaluate r (Section 7). As mentioned above, the constant C1 further depends on the condition
number of the problem, and more specifically on the componentwise relative condition number [10]

κ(x ; x , f ) = lim
δ→0

sup
h∈Rn+1\{0}
|hi |≤δ| fi |

�

|r (x ; x , f +h )− r (x ; x , f )|
|r (x ; x , f )|

�

max
i=0,...,n

fi 6=0

|hi |
| fi |

�

. (11)

For the derivation of these upper bounds, we shall frequently use the following basic facts:

1. By Taylor expansion,
1

1+ y
=
∞
∑

k=0

(−1)k y k

for any y ∈Rwith |y |< 1. Consequently, if y =O (ε), then

1

1+ y
= 1− y +O (ε2). (12)

Moreover, for any δ ∈Rwith |δ| ≤ ε, there exists some δ′ ∈Rwith |δ′| ≤ ε+O (ε2), such that

1

1+δ
= 1+δ′. (13)

This observation is useful for “moving” the perturbation (10) caused by a floating point operation from
the denominator to the numerator.

2. For any δ1, . . . ,δm ∈ R with |δi | ≤ Ciε for some Ci > 0, i = 0, . . . , n , there exists some δ ∈ R with
|δ| ≤C ε+O (ε2), where C =

∑m
i=1 Ci , such that

m
∏

j=1

(1+δ j ) = 1+δ. (14)

We use this observation to gather the perturbations caused by computing the product of m terms into
a single perturbation1.

3. For any t0, . . . , tm ∈F, there exist some ϕ0, . . . ,ϕm ∈Rwith |ϕ0|, . . . , |ϕm | ≤mε+O (ε2), such that

fl

�

m
∑

i=0

ti

�

= (· · · ((t0⊕ t1)⊕ t2) · · · ⊕ tm ) =
m
∑

i=0

ti (1+ϕi ). (15)

This follows from the previous observation, and we use it to estimate the rounding error introduced by
simple iterative summation of m +1 floating point numbers.

1This is somewhat similar to counting the number of floating point operations with Stewart’s relative error counter [11] and sufficient
for our needs.
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3 Forward stability

For analysing the relative forward error of barycentric rational interpolation, we first observe that (4) and (7)
can both be written in the common form

r (x ) =

∑n
i=0 ai (x ) fi

∑m
j=0 b j (x )

, (16)

where ai (x ) =wi /(x − xi ) for both forms, while m = n and b j (x ) = a j (x ) for the second form and m = n −d
and b j (x ) =λ j (x ) for the first form. Next, we define the functions

α(x ; f ) =

∑n
i=0 |ai (x ) fi |

�

�

∑n
i=0 ai (x ) fi

�

�

(17)

and

β (x ) =

∑m
j=0 |b j (x )|

�

�

∑m
j=0 b j (x )

�

�

. (18)

Assuming now that we have forward stable algorithms for computing ai (x ) as âi (x ) and b j (x ) as b̂ j (x ), we
can derive a general bound on the relative forward error for the function r in (16).

Theorem 1. Suppose that there exist α0, . . . ,αn ∈Rwith

âi (x ) = ai (x )(1+αi ), |αi | ≤ Aε+O (ε2), i = 0, . . . , n

and β0, . . . ,βm ∈Rwith

b̂ j (x ) = b j (x )(1+β j ), |β j | ≤ Bε+O (ε2), j = 0, . . . , m

for some constants A and B . Then, assuming f ∈Fn+1, the relative forward error of r in (16) satisfies

|r̂ (x )− r (x )|
|r (x )|

≤ (n +2+A)α(x ; f )ε+ (m +B )β (x )ε+O (ε2), (19)

for ε small enough.

Proof. We first notice that r̂ is given by

r̂ (x ) =

∑n
i=0 âi (x ) fi (1+δ×i )(1+ϕ

N
i )

∑m
j=0 b̂ j (x )(1+ϕD

j )
(1+δ÷)

=

∑n
i=0 ai (x )(1+αi ) fi (1+δ×i )(1+ϕ

N
i )

∑m
j=0 b j (x )(1+β j )(1+ϕD

j )
(1+δ÷),

where δ×i , ϕN
i , ϕD

j and δ÷ are the relative errors introduced respectively by the product âi (x ) fi , the sums in
the numerator and the denominator, and the final division. It then follows from (10) that |δ×i |, |δ

÷| ≤ ε, while
from (15) we have |ϕN

i | ≤ nε+O (ε2) and |ϕD
j | ≤mε+O (ε2). By (14), there exist some ηi ,µ j ∈Rwith

|ηi | ≤ (n +2+A)ε+O (ε2), i = 0, . . . , n ,

|µ j | ≤ (m +B )ε+O (ε2), j = 0, . . . , m ,
(20)

such that

r̂ (x ) =

∑n
i=0 ai (x ) fi (1+ηi )

∑m
j=0 b j (x )(1+µ j )

. (21)

5



Therefore,

r̂ (x )
r (x )

=

∑n
i=0 ai (x ) fi (1+ηi )

∑m
j=0 b j (x )(1+µ j )

�
∑n

i=0 ai (x ) fi
∑m

j=0 b j (x )

=

∑n
i=0 ai (x ) fi (1+ηi )
∑m

j=0 ai (x ) fi

∑m
j=0 b j (x )

∑m
j=0 b j (x )(1+µ j )

=

�

1+

∑n
i=0 ai (x ) fiηi
∑m

j=0 ai (x ) fi

�

1

1+
∑m

j=0 b j (x )µ j
∑m

j=0 b j (x )

.

Since, by the triangle inequality,

�

�

�

�

∑n
i=0 ai (x )ηi
∑n

i=0 ai (x )

�

�

�

�

≤α(x ) max
i=0,...,n

|ηi | ≤α(x )(n +2+A)ε+O (ε2) (22)

and
�

�

�

�

�

∑m
j=0 b j (x )µ j
∑m

j=0 b j (x )

�

�

�

�

�

≤β (x ) max
j=0,...,m

|µ j | ≤β (x )(m +B )ε+O (ε2), (23)

we can use (12) to express this ratio as

r̂ (x )
r (x )

=

�

1+

∑n
i=0 ai (x ) fiηi
∑m

j=0 ai (x ) fi

��

1−

∑m
j=0 b j (x )µ j
∑m

j=0 b j (x )
+O (ε2)

�

= 1+

∑n
i=0 ai (x ) fiηi
∑m

j=0 ai (x ) fi

−

∑m
j=0 b j (x )µ j
∑m

j=0 b j (x )
+O (ε2)

and obtain the relative forward error of r as

|r̂ (x )− r (x )|
|r (x )|

=

�

�

�

�

r̂ (x )
r (x )

−1

�

�

�

�

=

�

�

�

�

�

∑n
i=0 ai (x ) fiηi
∑m

j=0 ai (x ) fi

−

∑m
j=0 b j (x )µ j
∑m

j=0 b j (x )
+O (ε2)

�

�

�

�

�

.

The upper bound in (19) then follows immediately by using again (22) and (23).

While Theorem 1 holds for any function r that can be expressed as in (16), we shall now focus on the special
cases for the two different forms of the barycentric rational interpolant. For the second barycentric form,
the only assumption we need is that the weights wi can be computed as ŵi with a forward stable algorithm.
Moreover, we recall the definition of the Lebesgue function of the barycentric rational interpolant [4] as

Λn (x ; x ) =

∑n
i=0

�

�

wi
x−xi

�

�

�

�

∑n
i=0

wi
x−xi

�

�

.

Corollary 1. Assume that there existψ0, . . . ,ψn ∈Rwith

ŵi =wi (1+ψi ), |ψi | ≤W ε+O (ε2), i = 0, . . . , n (24)

for some constant W . Then, assuming f ∈Fn+1, the relative forward error of the second barycentric form in (4)
satisfies

|r̂ (x )− r (x )|
|r (x )|

≤ (n +4+W )κ(x ; x , f )ε+ (n +2+W )Λn (x ; x )ε+O (ε2), (25)

for ε small enough.

Proof. We first notice that ai (x ) =wi /(x − xi ) can be computed with one subtraction and one division, so
that, by (10), (13), (14), and (24),

âi (x ) = ai (x )(1+αi ), i = 0, . . . , n
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for some αi ∈ R with |αi | ≤ (2 +W )ε +O (ε2). Hence, the constants in (19) are A = 2 +W and further
B = 2+W , because b j (x ) = a j (x ) in case of the second barycentric form. From the latter, it also follows
immediately that β (x ) in (18) is equal to Λn (x ; x ) in this case, and it only remains to show that α(x ; f ) in (17)
is equal to κ(x ; x , f ) in (11). To this end, we first use the triangle inequality to see that for any δ > 0 and
any h = (h0, . . . , hn ) ∈Rn+1 \ {0}with |hi | ≤δ| fi |,

�

�

�

�

n
∑

i=0

ai (x )hi

�

�

�

�

=

�

�

�

�

n
∑

i=0

ai (x ) fi
hi

fi

�

�

�

�

≤H
n
∑

i=0

|ai (x ) fi |, H = max
i=0,...,n

fi 6=0

|hi |
| fi |

,

where equality is attained for h with hi = δsign(ai (x )) | fi |, i = 0, . . . , n . Dividing both sides of this in-
equality by H and

�

�

∑n
i=0 ai (x ) fi

�

�, taking the supremum over all admissible h and the limit δ → 0, gives
κ(x ; x , f ) =α(x ; f ).

For the first barycentric form, we additionally need to assume that the λi (x ) can be computed with a forward
stable algorithm as λ̂i (x ), and we note that β (x ) in (18) is equal to

Γd (x ; x ) =

∑n−d
i=0 |λi (x )|

�

�

∑n−d
i=0 λi (x )

�

�

. (26)

in this case.

Corollary 2. Assume that the weights w0, . . . , wn can be computed as in (24) and that there existγ0, . . . ,γn−d ∈R
with

λ̂i (x ) =λi (x )(1+γi ), |γi | ≤C ε+O (ε2), i = 0, . . . , n −d (27)

for some constant C . Then, assuming f ∈Fn+1, the relative forward error of the first barycentric form in (7)
satisfies

|r̂ (x )− r (x )|
|r (x )|

≤ (n +4+W )κ(x ; x , f )ε+ (n −d +C )Γd (x ; x )ε+O (ε2), (28)

for ε small enough.

Proof. As the numerator of the first and second barycentric form are identical, the only difference to the
proof of Corollary 1 is that B =C in (19), because b j (x ) =λ j (x ) and m = n −d .

While upper bounds for the Lebesgue function Λn (x ; x ) can be found in the literature [4, 5], we are unaware
of any previous work bounding the function Γd (x ; x ), and we derive such an upper bound in Section 6.

4 Computing the weights wi and evaluating the functions λi

It remains to work out the constants W and C , related to the computation of the weights wi in (4) and
the evaluation of the functions λi in (7). In particular, we study the error propagation that occurs in the
implementation of different algorithms and further analyse them in terms of computational cost.

Regarding the wi , it was shown by Higham [12] that the Lagrange weights in (3) can be computed stably
with W = 2n in (24), and the Berrut weights in (5) can be represented exactly in F, so that W = 0. The same
holds for the weights in (6) if the interpolation nodes are equidistant, because they simplify to the integers

wi = (−1)i−d
min(i ,n−d )
∑

j=max(i−d ,0)

�

d

i − j

�

, i = 0, . . . , n

in this special case [8]. For the general case, Camargo [7, Lemma 1] shows that W = 3d , if the wi are
computed with a straightforward implementation of the formula in (6). While this construction requires
O (nd 2) operations, Hormann and Schaefer [14] suggest an improved O (nd ) pyramid algorithm, which turns
out to have the same precision. Their algorithm starts from the values

v d
i = 1, i = 0, . . . , n −d (29)
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and iteratively computes

v l
i =

v l+1
i−1

xi+l − xi−1
+

v l+1
i

xi+l+1− xi
, i = 0, . . . , n − l (30)

for l = d −1, d −2, . . . ,0, tacitly assuming v l
i = 0 for i < 0 and i > n − l . They show that the resulting values

v 0
i are essentially the weights wi in (6), up to a factor of (−1)i−d .

Lemma 1. For any x0, . . . , xn ∈F, there existφ0
0 , . . . ,φ0

n ∈Rwith |φ0
0 |, . . . , |φ0

n | ≤W ε+O (ε2) for W = 3d , such
that the v 0

i in (30) satisfy
v̂ 0

i = v 0
i (1+φ

0
i ), i = 0, . . . , n .

Proof. The statement is a special case of the more general observation that there exists for any l = d , d−1, . . . , 0
and i = 0, . . . , n − l someφl

i ∈Rwith |φl
i | ≤ 3(d − l )ε+O (ε2), such that v̂ l

i = v l
i (1+φ

l
i ), which can be shown

by induction over l . The base case l = d follows trivially from (29). For the inductive step from l +1 to l , we
conclude from (10), (13), and (14), that v̂ l

i , computed with the formula in (30), satisfies

v̂ l
i =

v̂ l+1
i−1

xi+l − xi−1
(1+ρ1) +

v̂ l+1
i

xi+l+1− xi
(1+ρ2)

for someρ1,ρ2 ∈Rwith |ρ1|, |ρ2| ≤ 3ε+O (ε2), since both terms are affected by one subtraction, one division,
and one sum. By induction hypothesis and (14), we can then assume the existence of someσ1,σ2 ∈Rwith
|σ1|, |σ2| ≤ 3(d − l )ε+O (ε2), such that

v̂ l
i =

v l+1
i−1

xi+l − xi−1
(1+σ1) +

v l+1
i

xi+l+1− xi
(1+σ2),

and the intermediate value theorem further guarantees that

v̂ l
i =

�

v l+1
i−1

xi+l − xi−1
+

v l+1
i

xi+l+1− xi

�

(1+φl
i )

for someφl
i ∈

�

min(σ1,σ2), max(σ1,σ2)
�

with |φl
i | ≤ 3(d − l )ε+O (ε2).

Let us now focus on the functions λi that appear in the barycentric formula (7) and first study the error
propagation when computing them straightforwardly, following the formula in (8).

Lemma 2. For any x ∈ F and x0, . . . , xn ∈ F, there exist θ0, . . . ,θn−d ∈ R with |θ0|, . . . , |θn−d | ≤ C ε+O (ε2) for
C = 2d +2, such that the λi (x ) in (8) satisfy

λ̂i (x ) =λi (x )(1+θi ), i = 0, . . . , n −d .

Proof. Since computing λ̂i (x ) requires d +1 subtractions, d products, and one division, the result follows
directly from (10), (14), and (13).

Evaluating λi in this way clearly has a computational cost of O (d ) for d > 0 and O (1) for d = 0, so that
computing all λi (x ) requires O (d (n −d )) operations for 0< d < n and O (n ) operations for d = 0 and d = n .
However, for 0< d < n this can be improved by exploiting the fact that λi (x ) and λi+1(x ) have d common
factors in the denominator, which in turn suggests to first compute the “central” λm (x ) for m =

�

n−d
2

�

as
above and then the remaining λi (x ) iteratively as

λi−1(x ) =−λi (x )
(x − xi+d )
(x − xi−1)

, i =m , m −1, . . . , 1,

λi+1(x ) =−λi (x )
(x − xi )
(x − xi+1+d )

, i =m , m +1, . . . , n −d −1.

(31)

Computing all λi (x ) this way requires only O (n ) operations, but it comes at the price of a likely reduced
precision.
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Lemma 3. For any x ∈ F and x0, . . . , xn ∈ F, there exist ζ0, . . . ,ζn−d ∈R with |ζ0|, . . . , |ζn−d | ≤ C ε+O (ε2) for
C = 2n +4, such that the λi (x ) in (31) satisfy

λ̂i (x ) =λi (x )(1+ζi ), i = 0, . . . , n −d .

Proof. By Lemma 2, we know that λ̂m (x ) =λm (x )(1+ζm )with |ζm | ≤ (2d +2)ε+O (ε2). Each step in (31) in-
volves two subtractions, one division, and one product, and therefore introduces a perturbation of (1+δ)with
|δ| ≤ 4ε+O (ε2), and these perturbations accumulate during the iteration. Since the number of steps is at most
(n −d +1)/2, the overall perturbation for each λi (x ) is at most (1+ζi )with |ζi | ≤ [(2d +2)+4(n −d +1)/2]ε+
O (ε2).

5 Backward stability

Similar to how we established the forward stability of both barycentric forms in a unified way in Section 3,
we can prove the backward stability in general for the function r in (16) and then derive upper bounds on
the perturbation of the data for both forms as special cases.

Theorem 2. Suppose that there exist α0, . . . ,αn ∈Rwith

âi (x ) = ai (x )(1+αi ), |αi | ≤ Aε+O (ε2), i = 0, . . . , n

and β0, . . . ,βm ∈Rwith

b̂ j (x ) = b j (x )(1+β j ), |β j | ≤ Bε+O (ε2), j = 0, . . . , m

for some constants A and B . Then there exists for any f ∈Fn+1 some f̂ ∈Fn+1 with

‖ f̂ − f ‖∞
‖ f ‖∞

≤ (n +2+A)ε+ (m +B )max
x
β (x )ε+O (ε2),

for ε small enough, such that the numerical evaluation of r in (16) satisfies r̂ (x ; f ) = r (x ; f̂ ).

Proof. Starting from (21), with the ηi and µ j satisfying (20), we get, again with the help of (12),

r̂ (x ; x , f ) =

∑n
i=0 ai (x ) fi (1+ηi )

∑m
j=0 b j (x ) +

∑m
j=0 b j (x )µ j

=

∑n
i=0 ai (x ) fi (1+ηi )

∑m
j=0 b j (x )

�

1+
∑m

j=0 b j (x )µ j
∑m

j=0 b j (x )

�

=

∑n
i=0 ai (x ) fi (1+ηi )
∑m

j=0 b j (x )

�

1−

∑m
j=0 b j (x )µ j
∑m

j=0 b j (x )
+O (ε2)

�

=

∑n
i=0 ai (x ) f̂i

∑m
j=0 b j (x )

= r (x ; x , f̂ ),

where

f̂i = fi (1+ηi )

�

1−

∑m
j=0 b j (x )µ j
∑m

j=0 b j (x )
+O (ε2)

�

, i = 0, . . . , n .

By (23), this means that there exist some ξ0, . . . ,ξn ∈Rwith |ξ0|, . . . , |ξn | ≤ (m +B )maxx β (x )ε+O (ε2), such
that

f̂i = fi (1+ηi )(1+ξi ), i = 0, . . . , n ,

and by (14) and (20) we can further assume the existence of someϕ0, . . . ,ϕn with |ϕ0|, . . . , |ϕn | ≤ (n +2+A)ε+
(m +B )maxx β (x )ε+O (ε2), such that

f̂i = fi (1+ϕi ), i = 0, . . . , n .
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The statement then follows directly from

‖ f̂ − f ‖∞ = max
i=0,...,n

| f̂i − fi |= max
i=0,...,n

| fiϕi |

≤ max
i=0,...,n

| fi | max
i=0,...,n

|ϕi |= ‖ f ‖∞ max
i=0,...,n

|ϕi |.

The special cases of Theorem 2 for the two different forms of the barycentric rational interpolant then follow
with the same reasoning as in Section 3.

Corollary 3. Assume that the weights w0, . . . , wn can be computed as in (24). Then there exists for any f ∈Fn+1

some f̂ ∈Fn+1 with

‖ f̂ − f ‖∞
‖ f ‖∞

≤ (n +4+W )ε+ (n +2+W )max
x
Λn (x ; x )ε+O (ε2),

for ε small enough, such that the second barycentric form in (4) satisfies r̂ (x ; x , f ) = r (x ; x , f̂ ).

Corollary 4. Assume that the weights w0, . . . , wn can be computed as in (24) and the values λ0(x ), . . . ,λn−d (x )
as in (27). Then there exists for any f ∈Fn+1 some f̂ ∈Fn+1 with

‖ f̂ − f ‖∞
‖ f ‖∞

≤ (n +4+W )ε+ (n −d +C )max
x
Γd (x ; x )ε+O (ε2),

for ε small enough, such that the first barycentric form in (7) satisfies r̂ (x ; x , f ) = r (x ; x , f̂ ).

6 Upper bound for Γd

In case of the first barycentric form, the bounds for the forward and backward stability depend on the
function Γd in (26), and we still need to show that this function is bounded from above. Note that Γ0 =Λn ,
because wi = (−1)i and λi = (−1)i /(x − xi ) if d = 0, so that the bound for the Lebesgue constant of Berrut’s
interpolant [5] also holds for Γd in this case. In the following, we therefore assume d ≥ 1 and define

N (x ) =
n−d
∑

i=0

|λi (x )| and D (x ) =

�

�

�

�

n−d
∑

i=0

λi (x )

�

�

�

�

,

so that Γd (x ; x ) =N (x )/D (x ). We further assume that x ∈ (xk , xk+1) for some k ∈ {0, . . . , n −1}. It then follows
from the definition in (8) that all λi with index in

I3 = I ∩{k −d +1, . . . , k},

where I = {0, . . . , n −d }, have the same sign as (−1)k+d and that the sign alternates for decreasing indices “to
the left” and increasing indices “to the right” of I3. More precisely, the λi with index in

I2 = I ∩{k −d , k −d −2, . . .} or I4 = I ∩{k +1, k +3, . . .}

have the same sign as the ones with index in I3, while the sign is opposite, if the index is in

I1 = I ∩{k −d −1, k −d −3, . . .} or I5 = I ∩{k +2, k +4, . . .}.

Without loss of generality, we assume that the λi are positive for i ∈ I2, I3, I4 and negative for i ∈ I1, I5, since
multiplying all λi with a common constant does not change Γd . Letting

Sj =
∑

i∈I j

λi (x ), j = 1, . . . , 5,

we then find that

N (x ) =−S1+S2+S3+S4−S5 and D (x ) = S1+S2+S3+S4+S5. (32)

To bound Γd , we need to bound the sum of the negative λi with i ∈ I1, I5 as well as the λi with i ∈ I3, which in
turn requires to first bound the terms x − xi . To this end, let hi = xi+1− xi for i ∈ {0, . . . , n −1} and define

hmin =min{h0, . . . , hn−1} and hmax =max{h0, . . . , hn−1}.
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Proposition 1. For any i ∈ {0, . . . , n}, the distance between x ∈ (xk , xk+1) and xi is bounded as

hmin

2
(1+ t +2(k − i ))≤ x − xi ≤

hmax

2
(1+ t +2(k − i )), i ≤ k ,

hmin

2
(1− t +2(i −k −1))≤ xi − x ≤

hmax

2
(1− t +2(i −k −1)), i ≥ k +1,

where t = 2(x − xk )/hk −1 ∈ (−1, 1).

Proof. The statement follows directly by noting that

x = xk +
hk

2
(1+ t ) = xk+1+

hk

2
(1− t )

for the given t and because hmin ≤ hi ≤ hmax for any i ∈ {0, . . . , n −1}.

For bounding the negative λi from above, it turns out to be useful to consider them in pairs, with indices
from I1 and I5 at the same “distance” from I3.

Lemma 4. For any j ∈N and x ∈ (xk , xk+1),

−λk−d−2 j+1(x )−λk+2 j (x )≤
�

1

hmin

�d+1
�

1
∏d

m=0(2 j +m )
+

1
∏d

m=0(2 j −1+m )

�

,

where we set λi (x ) = 0 for any i /∈ I .

Proof. Since the denominator of λk−d−2 j+1(x ), for k −d −2 j +1≥ 0, contains the terms x − xk−2 j+1−m for
m = 0, . . . , d , it follows from Proposition 1 that

−1

λk−d−2 j+1(x )
≥
�

hmin

2

�d+1 d
∏

m=0

(4 j +2m −1+ t ),

with t ∈ (−1, 1) and likewise

−1

λk+2 j (x )
≥
�

hmin

2

�d+1 d
∏

m=0

(4 j +2m −1− t ),

for k +2 j ≤ n −d . Combining both bounds, we get

−λk−d−2 j+1(x )−λk+2 j (x )≤
�

2

hmin

�d+1

g (t ),

where

g (t ) =
1

∏d
m=0(4 j +2m −1+ t )

+
1

∏d
m=0(4 j +2m −1− t )

.

As g is clearly even and

g (1) =
1

2d+1

�

1
∏d

m=0(2 j +m )
+

1
∏d

m=0(2 j −1+m )

�

,

it remains to show that g (t )≤ g (1) for t ∈ [0, 1]. To this end, note that g (t ) = p (t )/q (t ) for

p (t ) =
d
∏

m=0

(4 j +2m −1+ t ) +
d
∏

m=0

(4 j +2m −1− t )

and

q (t ) =
d
∏

m=0

�

(4 j +2m −1)2− t 2
�

.
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By the product rule,

p ′(t ) =
d
∑

l=0

 

d
∏

m=0, m 6=l

(4 j +2m −1+ t )−
d
∏

m=0, m 6=l

(4 j +2m −1− t )

!

and

q ′(t ) =−2t
d
∑

l=0

d
∏

m=0, m 6=l

�

(4 j +2m −1)2− t 2
�

.

For t ∈ [0, 1], we observe that p (t )> 0, q (t )> 0, p ′(t )≥ 0, and q ′(t )≤ 0, hence

p ′(t )q (t )≥ 0≥ p (t )q ′(t ),

and it follows from the quotient rule that g is monotonically increasing over [0, 1].

Next, let us bound the λi with indices in I3 from below.

Lemma 5. For any i ∈ I3 and x ∈ (xk , xk+1),

λi (x )≥
�

1

hmax

�d+1 4

d !
. (33)

Proof. Since the denominator of λi (x ), for i ∈ I3, contains the factors x − xk−m for m = 0, . . . , k − i and the
factors xk+1+l − x for l = 0, . . . , i +d −k −1, we conclude from Proposition 1 that

1

λi (x )
≤
�

hmax

2

�d+1 k−i
∏

m=0

(1+ t +2m )
i+d−k−1
∏

l=0

(1− t +2l )

=
�

hmax

2

�d+1

(1− t 2)
k−i
∏

m=1

(1+ t +2m )
i+d−k−1
∏

l=1

(1− t +2l )

≤
�

hmax

2

�d+1 k−i
∏

m=1

(2+2m )
i+d−k−1
∏

l=1

(2+2l )

=
�

hmax

2

�d+1

2d−1(k − i +1)!(i +d −k )!,

and the statement then follows, because a !b !≤ (a + b −1)! for any a , b ∈N.

We are now ready to derive a general upper bound on the function Γd in (26), which turns out to depend
on d and the mesh ratio

µ=
hmax

hmin
.

Theorem 3. If d ≥ 1, then

Γd (x ; x )≤ 1+
µd+1

2d
(34)

for any set of ascending interpolation nodes x = (x0, . . . , xn ) ∈Rn+1 and any x ∈ [x0, xn ].

Proof. If x = xk for some k ∈ {0, . . . , n}, then, after multiplying both N (x ) and D (x ) by
∏n

i=0 |x − xi |, we
find that Γd (x ; x ) = 1, which is clearly smaller than the upper bound in (34). Otherwise, there exists some
k ∈ {0, . . . , n −1}, such that x ∈ (xk , xk+1), and it follows from Lemma 4 that

−S1−S5 ≤
∞
∑

j=1

�

1

hmin

�d+1
�

1
∏d

m=0(2 j +m )
+

1
∏d

m=0(2 j −1+m )

�

=
�

1

hmin

�d+1 ∞∑

j=1

d
∏

m=0

1

j +m

=
�

1

hmin

�d+1 1

d ·d !
,
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where the sum of the series can be found in [6, p. 464]. Together with Lemma 5, this implies

−2(S1+S5)
λi (x )

≤
µd+1

2d

for any i ∈ I3. As λi (x )≤ S3 ≤D (x ) and N (x )−D (x ) =−2(S1+S5), we conclude that

N (x )−D (x )≤
µd+1

2d
D (x ),

and the statement then follows immediately.

In the case of equidistant nodes, when the mesh ratio is µ= 1, the upper bound in (34) is simply 1+1/(2d ),
so it becomes smaller as d grows. For other nodes, µmay depend on n , which may result in very large upper
bounds. For example, in the case of Chebyshev nodes, one can show that µ grows asymptotically linear in n .
However, our numerical experiments suggest that the function Γd is always small, and we believe that the
upper bound in Theorem 3 can be improved significantly in future work.

7 Numerical experiments

We performed numerous experiments to verify the results proven in the previous sections numerically and
report some representative results below. In particular, we analyze the various algorithms that implement
the first barycentric form (7) both in terms of stability and computational cost (Section 7.1) and focus on the
comparison between the first and the second form for an example where Λn � Γd (Section 7.2).

Our experimental platform is a Windows 10 laptop with 1.8 GHz Intel Core i7-10510U processor and
16 GB RAM, and we implemented all algorithms in C++. In what follows, the ‘exact’ values were computed in
multiple-precision (1024 bit) floating point arithmetic using the MPFR library [9], while all other values were
computed in standard double precision. Moreover, we took care of providing all input data (interpolation
nodes, data values, and evaluation points) in double precision, so that they do not cause any additional
error.

7.1 Comparison of algorithms for the first barycentric form

For the first example, we consider the case of n + 1 interpolation nodes xi = fl(yi ) ∈ [−1,1] for i = 0, . . . , n ,
derived from the equidistant nodes yi = 2i/n − 1 by rounding them to double precision, and associated
(rounded) data fi = fl( f (yi )), sampled from the test function

f (x ) = 3
4 e −

(9x−2)2
4 + 3

4 e −
(9x+1)2

49 + 1
2 e −

(9x−7)2
4 + 1

5 e −(9x−4)2 ,

and we compare three ways of evaluating the first barycentric form in (7), which differ in the way the
denominator is computed.

The first algorithm simply evaluates the functions λi as in (8), leading to the error mentioned in Lemma 2
and then sums up these values to get the denominator. The second algorithm by Camargo [7, Section 4.1]
instead increases the stability of the summation by first computing sums of pairs of λi ’s such that all these
sums have the same sign. The third algorithm implements our iterative strategy in (31) before taking the sum,
which is more efficient than the first algorithm, but less precise (cf. Lemma 3). All three algorithms compute
the numerator of the first barycentric form in the same way, first dividing the weights wi by x − xi , then
multiplying the results by fi , and finally summing up these values. The wi themselves are precomputed with
the pyramid algorithm in (29) and (30). Note that, although the weights for equidistant nodes are integer
multiples of each other in theory [8], they do not have this property in this example, because the nodes xi

are not exactly equidistant, because of the rounding.
To compare these three algorithms, we used them to evaluate the barycentric rational interpolant with

weights in (6) for d ∈ {1,5,25}and an increasing number of interpolation nodes, n ∈ {39,79,159,319,639,1279},
at 50,000 random points from [−1+103ε, 1−103ε] \ {x0, . . . , xn}. Figure 1 shows the corresponding running
times and the distribution of the relative forward error of the computed values. For the latter, we chose a
box plot, where the bottom and top of each box represent the interquartile range, from the first to the third
quartile, and the line in the middle shows the median of the relative forward errors. The whiskers range from
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Figure 1: Distribution of the relative forward errors of the first barycentric form for equidistant nodes at 50,000 random
evaluation points (top) and overall running time in seconds (bottom), both on a logarithmic scale, for different n and
three choices of d (left, middle, right), using the standard algorithm (blue), Camargo’s algorithm (red), and our efficient
variant of the standard algorithm (green).
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Figure 2: Plots of κ(x ; x , f ) (top) and Γd (x ; x ) (bottom) for equidistant nodes and x ∈ [−1, 1], both on a logarithmic scale,
for n = 39 and three choices of d (left, middle, right).

the minimum to the maximum, excluding those values that are more than 1.5 times the interquartile range
greater than the third quartile, which are instead considered outliers and shown as isolated points.

On the one hand, we observe that Camargo’s algorithm beats the standard algorithm in terms of running
time, but that our efficient algorithm is the fastest, especially as d grows, because its time complexity does
not depend on d . On the other hand, our efficient algorithm is less precise than the standard algorithm, as
predicted by Lemma 3 and Camargo’s algorithm gives the smallest errors, except for d = 5 and n ∈ {639, 1279}.
Nevertheless, the computations confirm the forward stability for all three algorithms. For Camargo’s al-
gorithm, this follows from the backward stability, which is proven in [7], and for the other two algorithms it
is implied by Corollary 2 and Lemmas 1–3.
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Figure 3: Plots of Λn (x ; x ) (left) and Γd (x ; x ) (right) for a non-regular distribution of nodes and x ∈ [0,1], both on a
logarithmic scale.

The rather large errors of the outliers in the case d = 25 can be explained by the behaviour of the
componentwise relative condition number κ, shown in Figure 2. While κ is small for all x ∈ [−1,1] in the
case of d = 1, it starts to grow considerably close to the end points of the interval as d grows, up to 106

for n = 39 and 108 for n = 1279 in the case of d = 25, and so does the upper bound on the relative forward
error in (28). While this upper bound also depends on Γd , Figure 2 shows that this function is always small
and its maximum even decreases as d grows, independently of n . This is in agreement with Theorem 3,
because µ ≈ 1 in this example. The fact that the maximum error still seems to decrease for d = 25 as n
increases is simply due to the fact that the 50,000 sample points are not sufficiently many to “catch” the
worst case, because the region near the endpoints where κ grows rapidly actually shrinks as n grows.

Of course, it is also possible to evaluate the rational interpolant using the second barycentric form (4),
which is actually the best choice for this example, giving relative forward errors that are similar to the ones
of the standard algorithm for the first barycentric form, but being roughly twice as fast as the efficient
algorithm, both of which is not surprising. Regarding the efficiency, the second form is superior, because the
denominator can be computed “on-the-fly” at almost no extra cost during the evaluation of the numerator.
As for the error, we note that Λn is much smaller than κ for the nodes used in this example [13] and so the
upper bound in (25) is dominated by κ, exactly as the upper bound in (28). However, for non-uniform nodes,
the situation can be quite different, as the next example shows.

7.2 Worst-case comparison of first and second barycentric form

The aim of the second example is to compare the standard algorithm for the first barycentric form in (7), as
described in Section 7.1, with a straightforward implementation of the second barycentric form, following
the formula in (4). The weights wi are again precomputed with the pyramid algorithm.

We consider n = 29, d = 3, and interpolation nodes xi = fl(yi ) ∈ [0, 1] for i = 0, . . . , n , obtained by rounding
to double precision the values yi = F (ti ), where

F (t ) =

¨

0, t = 0,

e 1− 1
t , t ∈ (0, 1]

and ti = i/n . We choose these nodes, because the functions Λn and Γd behave completely differently in this
case, as shown in Figure 3. While Λn reaches huge values, up to 1017, Γd is small (even though the latter is not
guaranteed by Theorem 3). Hence, the upper bounds in Corollaries 1 and 2 suggest that we may see a big
difference in the forward stability of the first and the second barycentric form, if we choose the data such
that the condition number κ is small.

One such choice, which is also presented by Higham for the case d = n with equidistant nodes [12], is to
take the data

fi =

¨

0, i = 0, . . . , n −1,

1, i = n ,
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Figure 4: Plots of ln (x ) (black) and the barycentric rational interpolant r (x ) for d = 3 (red) for non-regularly distributed
interpolation nodes over the whole interval [0,1] (top left) and a close-up view over [0.21,0.31] (top right). Evaluating
r (x ) at 10, 000 equidistant evaluation points in [103ε, 1−103ε] with the standard implementations of the first (blue dots)
and the second (green dots) barycentric form shows that the first form is stable, while the second form is not (bottom).
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Figure 5: Plot of relative forward errors of the first (blue) and second (green) barycentric form for a non-regular
distribution of nodes at 100 equidistant evaluation points in [103ε, 1−103ε]with data sampled from the n-th Lagrange
basis polynomial (left) and the constant one function (right). Since both plots are on a logarithmic scale and the second
form is exact in the latter case, the corresponding errors are missing in the plot on the right.

which can be interpreted as having been sampled from the n-th Lagrange polynomial ln (x ) =
∏n−1

i=0
x−xi

xn−xi
,

that is, fi = fl(ln (yi )). For this data, we know that κ(x ; x , f ) = 1 for all x ∈ [0,1], so the upper bounds on the
relative forward errors in (25) and (28) are dominated by Λn and Γd , respectively. Consequently, as shown in
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Figure 6: Even though the barycentric rational interpolant of the constant one function for non-regularly distributed
interpolation nodes is simply r (x ) = 1, evaluating it at 10, 000 equidistant evaluation points in [103ε, 1−103ε] shows that
the second form (green dots) is stable, while the first form (blue dots) is not.

Figure 4, the barycentric rational interpolant is reproduced faithfully by the first form, but not by the second,
because the relative forward error for the first form is on the order of ε, while it can be on the order of 1 for
the second form; see Figure 5 (left).

However, the opposite may happen as well. If we consider the data

fi = 1, i = 0, . . . , n ,

sampled from the constant one function, then κ=Λn , and the upper bounds in (25) and (28) suggest that
both forms can be unstable, even though the barycentric rational interpolant is simply r (x ) = 1. Figure 5
(right) and Figure 6 confirm that this is indeed the case for the first barycentric form. However, the second
barycentric form is perfectly stable, because the numerator and the denominator in (4) are identical and
cancel out to always give the correct function value 1.

8 Conclusion

Barycentric interpolation offers a fast and stable means of evaluating the polynomial Lagrange interpolant
using either the first or the second barycentric form. While the first form is always numerically stable, the
second form is stable only for interpolation nodes with a small Lebesgue constant.

Evaluating a rational interpolant via the second barycentric form comes with the same limitation, but for
the special family of barycentric rational interpolants with weights in (6), a computationally more attractive
first barycentric form is available. Instead of depending on the Lebesgue constant, both the forward and
the backward stability of a straightforward implementation of this first barycentric form depend on the
function Γd in (26).

Unlike the Lebesgue constant, Theorem 3 shows that the maximum of Γd is independent of n . Moreover,
it is guaranteed to be very small for equidistant nodes, regardless of d , while the Lebesgue constant is known
to grow logarithmically in n and exponentially in d in this case. Based on our numerical experiments,
the maximum of Γd seems to be small for other distributions of interpolation nodes, too, even if the mesh
ratio µ is big, as in the example in Section 7.2, and we believe that the upper bound in (34) can be improved
considerably in future work. For example, if d = n , then Γd is just the constant one function, independent
of µ.

Overall, we conclude that the most efficient way of stably evaluating a barycentric rational interpolant with
weights in (6) is by determining the weights with the pyramid algorithm in (29) and (30) in a preprocessing
step, and, for every evaluation point x , first computing the values λi (x )with our iterative strategy in (31)
and then the value of the interpolant using a straightforward implementation of the first barycentric form
in (7). Alternatively computing the sum of the λi (x ) in the denominator with Camargo’s algorithm [7] results
in slightly smaller forward errors, but is significantly slower, especially for larger d .
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