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Abstract

Subdivision schemes are used to generate smooth curves or surfaces by iteratively refining
an initial control polygon or mesh. We focus on univariate, linear, binary subdivision
schemes, where the vertices of the refined polygon are computed as linear combinations of
the current neighbouring vertices. In the classical stationary setting, there are just two such
subdivision rules, which are used throughout all subdivision steps to construct the new
vertices with even and odd indices, respectively. These schemes are well understood and
many tools have been developed for deriving their properties, including the smoothness
of the limit curves. For non-stationary schemes, the subdivision rules are not fixed and
can be different in each subdivision step. Non-uniform schemes are even more general, as
they allow the subdivision rules to be different for every new vertex that is generated by the
scheme. The properties of non-stationary and non-uniform schemes are usually derived
by relating the scheme to a corresponding stationary scheme and then exploiting the fact
that the properties of the stationary scheme carry over under certain proximity conditions.
In particular, this approach can be used to show that the limit curves of a non-stationary
or non-uniform scheme are as smooth as those of a corresponding stationary scheme. In
this paper we show that non-uniform subdivision schemes have the potential to generate
limit curves that are smoother than those of stationary schemes with the same support
size of the subdivision rule. For that, we derive interpolatory 2-point and 4-point schemes
that generate C 1 and C 2 limit curves, respectively. These values of smoothness exceed the
smoothness of classical interpolating schemes with the same support size by one.
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1 Introduction

Given some initial data f 0 = ( f 0
i )i∈Z at level zero with f 0

i ∈R, a linear, uniform, stationary, binary subdivision

scheme S generates refined data f k+1 = ( f k+1
i )i∈Z at level k+1 for any k ∈N0 according to the two subdivision

rules
f k+1

2i =
∑

j∈Z
f k

i− j a j and f k+1
2i+1 =

∑

j∈Z
f k

i− j b j , (1)

with certain weights a j , b j ∈R for j ∈Z. These rules are often referred to as the even and the odd subdivision
rule, because they determine the refined data with even and odd indices, respectively. In most applications,
only a finite number of these weights are non-zero, and we shall adhere to this assumption. The scheme S is
called convergent, if the sequence (Fk )k∈N0

of functions F k : R→R that are piecewise linear over Z/2k and
interpolate f k

i at the parameter values t k
i = i/2k for i ∈Z converges uniformly for any initial data f 0 and if

the limit function is non-trivial for at least one choice of f 0 [15]. The function S∞ f 0 = limk→∞ F k , which is
necessarily continuous, is then called the limit function of S for f 0. The scheme S can also be applied to
initial data consisting of points rather than scalar values, by simply applying the subdivision rules to each
coordinate, thus resulting in limit curves, and the piecewise linear interpolant F 0 is then called the control
polygon of the limit curve.

Apart from early work by de Rham [10], the first subdivision schemes were designed to generate uniform
B-spline curves of arbitrary degree [23]. For these B-spline schemes, the weights a j and b j of the subdivision
rules in (1) can be derived from the two-scale relations of the uniform B-spline basis functions, and the
properties of the limit functions or curves are evident. Later research studied subdivision independently
of B-splines, and simple tools are now available for checking the necessary and sufficient conditions for
the convergence of S and the smoothness of the limit functions or curves [5, 15], as well as for deriving the
degrees of polynomial generation and reproduction [13], which are intimately related to the approximation
order of the scheme S .
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In order to generate more general classes of limit curves, several modifications of the rules in (1) have been
considered. In the non-stationary setting, the weights of the rules are allowed to depend on the subdivision
level k , and this flexibility can be used to reproduce circles [21] or exponential polynomials [17]. Circles can
as well be generated by non-linear subdivision schemes [28], where the subdivision rules may depend on the
data f k

i and hence vary not only for each subdivision level k , but also for each index i . Besides generating
circles and Gaussian functions [31], non-linear schemes are capable of eliminating shape artefacts [12, 24]
and creating smooth curves on manifolds and curved surfaces [25]. A third modification are non-uniform
subdivision schemes [8, 35], which can be used, for example, to generate non-uniform B-splines [4, 19, 30].
For these schemes, the parameter values t k

i corresponding to the data f k
i are usually no longer assumed to

be uniformly spaced, and consequently the subdivision rules depend on k and i , but they remain linear.
Several tools have been developed for proving the convergence and smoothness of a non-linear, non-

stationary, or non-uniform scheme S , including divided differences [8], asymptotic equivalence [14, 18],
asymptotic similarity [7], and proximity conditions [32, 34]. In a nutshell, the common aim of these tech-
niques is to establish a relation to a corresponding linear, uniform, stationary scheme S ′ and to show that
convergence and smoothness properties of S ′ are inherited by S . For example, non-uniform corner cutting
gives limit curves that are as smooth as Chaikin’s quadratic B-spline scheme [6, 27], namely C 1, under
certain constraints of the cut proportions [20], and several variants of the classical interpolatory 4-point
scheme [11, 16] are known to also give C 1 limit functions or curves [2, 3, 8, 24].

In this paper, we show that it is possible to go beyond these results and to increase the smoothness of a
linear scheme, if we allow the weights a j and b j of the subdivision rules in (1) to depend on k and i . That
is, we consider non-uniform schemes, but in contrast to most other non-uniform schemes, we stick to the
uniform, dyadic parameter values t k

i = i/2k . In particular, we focus on schemes that are interpolatory, that
is, with weights a k

i ,0 = 1 and a k
i , j = 0 for j 6= 0, independently of k and i , as well as periodic, in the sense that

the weights b k
i , j repeat at a frequency of 2k in i , so that the same refinement strategy is applied over each of

the initial intervals [t 0
m , t 0

m+1] = [m , m +1], m ∈Z.
Overall, this means that we consider subdivision schemes that generate the refined data f k = ( f k+1

i )i∈Z
at level k +1 for any k ∈N0 according to the even, interpolatory subdivision rule

f k+1
2i = f k

i (2)

and the 2k odd subdivision rules
f k+1

2i+1 =
∑

j∈J k
l

f k
i− j b k

l , j , (3)

where l = i mod 2k , with certain finite sets J k
i ⊂ Z and weights b k

i , j ∈R for i ∈ {0,1, . . . ,2k −1}, j ∈ J k
i , and

k ∈N0. We further call the subdivision scheme an n-point scheme, if the cardinality of all sets J k
i is at most n .

Within this setting, we first derive two novel interpolatory 2-point schemes with C 1 limit functions,
as opposed to the stationary, interpolatory 2-point scheme that simply reproduces the piecewise linear
interpolant F 0 of the initial data and hence is only C 0 (Section 2). The main idea behind our construction is
inspired by the B-spline schemes, which were designed to converge to uniform B-spline curves, in that we
also start with a certain function that we would like the non-uniform subdivision scheme to generate in the
limit and then derive the appropriate weights b k

i , j that achieve this. We then use this approach to derive two

interpolatory 4-point schemes with C 2 limit functions (Section 3), and finally discuss how these schemes
can be used for generating interpolating curves on surfaces (Section 4).

2 Non-uniform C 1 interpolatory 2-point schemes

Let us start by considering interpolatory 2-point schemes, where J k
i = {−1,0} for any k ∈ N0 and i ∈

{0, 1, . . . , 2k −1} in (3), so that each new data value f k+1
2i+1 is some linear combination of the neighbouring data

values f k
i and f k

i+1. It follows by induction over k ∈N0 that f k
i for any i ∈ {2k m , . . . , 2k (m +1)} is some linear

combination of f 0
m and f 0

m+1, which implies that the whole limit function over the interval [m , m+1] depends
only on these two values and is independent of the limit function over the neighbouring intervals [m −1, m ]
and [m +1, m +2]. Therefore, the only chance to generate a limit function that is C 1 at m ∈Z is to force the
limit function to match a prescribed derivative at m over both adjacent intervals. The simplest unbiased
choice is to set the derivative of the limit function to zero at all m ∈Z. Hence, we would like to construct a
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subdivision scheme that generates, over each interval [m , m +1], a limit function that interpolates the initial
data and has vanishing first derivative at the endpoints of this interval.

Without loss of generality, let us focus on the unit interval [0,1]. Our goal now is to determine the
weights of the odd subdivision rules in (3), such that the subdivision scheme generates a certain C 1 function
p : [0, 1]→R satisfying

p (0) = f 0
0 , p ′(0) = 0,

p (1) = f 0
1 , p ′(1) = 0

(4)

as the limit function over [0, 1].

Theorem 1. Let S be the non-uniform, periodic, interpolatory 2-point scheme with the odd subdivision rules
in (3) and weights

b k
i = (b

k
i ,0, b k

i ,−1) = (α
k
i ,β k

i ), k ∈N0, i ∈ {0, 1, . . . , 2k −1}, (5)

which satisfy
p (t k+1

2i+1) = p (t k
i )α

k
i +p (t k

i+1)β
k
i . (6)

Then the scheme S generates data

f k
i = p (t k

i ), k ∈N0, i ∈ {0, 1, . . . , 2k }, (7)

is convergent, and the limit functions f = S∞ f 0 are C 1 functions with f (m ) = f 0
m and f ′(m ) = 0 for m ∈Z.

Proof. We first prove (7) by induction over k and note that the base case (k = 0) follows from (4). For the
inductive step, we distinguish the even and the odd case. On the one hand, by (2), the induction hypothesis,
and the fact that t k

i = i/2k = t k+1
2i , we have

f k+1
2i = f k

i = p (t k
i ) = p (t k+1

2i ).

On the other hand, by (3) with the weights in (5), the induction hypothesis, and (6), we have

f k+1
2i+1 = f k

i α
k
i + f k

i+1β
k
i = p (t k

i )α
k
i +p (t k

i+1)β
k
i = p (t k+1

2i+1).

It then follows from (7) that the functions F k are piecewise linear interpolants of the function p at the dyadic
points t k

i and as such converge uniformly to p over [0, 1] as k →∞ [9]. By the periodicity of the scheme, the
same applies to all intervals [m , m +1] for m ∈Z, thus proving the rest of the statement.

It remains to understand under which conditions the weights in (5) can always be chosen such that they
satisfy condition (6). To this end, let us express p in terms of the initial data f 0

0 and f 0
1 as

p (x ) = r0(x ) f
0

0 + r1(x ) f
0

1

for two basis functions r0, r1 : [0, 1]→Rwith

r0(0) = 1, r1(0) = 0, r ′0(0) = r ′1(0) = 0,

r0(1) = 0, r1(1) = 1, r ′0(1) = r ′1(1) = 0.

Comparing the coefficients of f 0
0 and f 0

1 on both sides of (6) then yields the linear system

�

r0(t k
i ) r0(t k

i+1)

r1(t k
i ) r1(t k

i+1)

�

︸ ︷︷ ︸

=Ak
i

�

αk
i

β k
i

�

=

�

r0(t k+1
2i+1)

r1(t k+1
2i+1)

�

. (8)

Lemma 2. If r0 and r1 form a partition of unity and r1 is strictly increasing, then the linear system in (8) has a
unique solution for any k ∈N0 and i ∈ {0, 1, . . . , 2k −1}, which is given by

αk
i =

r1(t k
i+1)− r1(t k+1

2i+1)

r1(t k
i+1)− r1(t k

i )
, β k

i =
r1(t k+1

2i+1)− r1(t k
i )

r1(t k
i+1)− r1(t k

i )
. (9)

These weights αk
i and β k

i are both positive and sum to one.
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Proof. Using the partition of unity property, we find that det(Ak
i ) = r1(t k

i+1)− r1(t k
i ). Moreover, det(Ak

i )> 0,
because r1 is strictly increasing and t k

i < t k
i+1. This implies the invertibility of Ak

i for any k ∈ N0 and i ∈
{0, 1, . . . , 2k −1}. The formulas in (9) can be derived from (8) after inverting Ak

i explicitly, and αk
i and β k

i are
positive, because r1 is strictly increasing and t k

i < t k+1
2i+1 < t k

i+1. They obviously sum to one.

Under the assumptions of Lemma 2, it follows that the odd subdivision rules (3) of the corresponding 2-
point scheme generate the new data f k+1

2i+1 as a convex combination of the previous data f k
i and f k

i+1 and
consequently f (x ) ∈ [ f 0

m , f 0
m+1] for x ∈ [m , m +1] and any m ∈Z. We shall now discuss two particular choices

of basis functions r0 and r1 that lead to rather simple expressions of the weights αk
i and β k

i in (9).

Example 1. One possibility to satisfy the conditions in (4) is to choose as p the cubic Hermite interpolant,
which is given by the basis functions

r0(x ) = (1− x )2(1+2x ), r1(x ) = x 2(3−2x ).

These functions form a partition of unity and r1 is strictly increasing, because r ′1(x ) = 6x (1− x ) > 0 for
x ∈ (0, 1). A straightforward calculation reveals that the formulas in (9) can be simplified to

(αk
i ,β k

i ) =
�

1
2 +

3
2∆

k
i , 1

2 −
3
2∆

k
i

�

, ∆k
i =

2i +1−2k

3(2i +1)2−6(2i +1)2k +1

in this case. At the endpoints of each interval [m , m +1], these weights converge to

lim
k→∞

(αk
0 ,β k

0 ) =
�

3
4 , 1

4

�

and lim
k→∞

(αk
2k−1,β k

2k−1) =
�

1
4 , 3

4

�

,

and they converge to
lim

k→∞
(αk

2k−1−1,β k
2k−1−1) = lim

k→∞
(αk

2k−1 ,β k
2k−1 ) =

�

1
2 , 1

2

�

next to the centre of the interval.
Because of this limit behaviour, the known tools for analysing the smoothness of non-uniform schemes

are not applicable in this case, but it is evident from the construction that the limit functions of this non-
uniform, periodic, interpolating 2-point scheme are the cubic C 1 B-splines with duplicated control points
(. . . , f 0

−1, f 0
−1, f 0

0 , f 0
0 , f 0

1 , f 0
1 , . . .) and uniform double knots (. . . ,−1,−1, 0, 0, 1, 1, . . .).

Example 2. Even simpler weights can be found if we take as p the piecewise quadratic C 1 function given by
the basis functions

r0(x ) =

¨

1−2x 2, x ∈
�

0, 1
2

�

,

2(1− x )2, x ∈
�

1
2 , 1

�

,
r1(x ) =

¨

2x 2, x ∈
�

0, 1
2

�

,

1−2(1− x )2, x ∈
�

1
2 , 1

�

,

for which the weights in (9) turn out to be (α0
0,β 0

0 ) =
�

1
2 , 1

2

�

and

(αk
i ,β k

i ) =
�

1
2 +

1
4∆

k
i , 1

2 −
1
4∆

k
i

�

, ∆k
i =











1

2i +1
, i < 2k−1,

1

2i +1−2k+1
, i ≥ 2k−1,

for k > 0. As in Example 1, these weights converge to
�

1
2 , 1

2

�

for i = 2k−1 −1 and i = 2k−1, but here we have

(αk
0 ,β k

0 ) =
�

3
4 , 1

4

�

not only in the limit, but for any k > 0, and likewise (αk
2k−1,β k

2k−1) =
�

1
4 , 3

4

�

.
As in Example 1, the known tools are not able to prove the smoothness of the limit functions generated by

this non-uniform, periodic, interpolating 2-point scheme, but it follows from the construction that they are
the quadratic C 1 B-splines with duplicated control points (. . . , f 0

−1, f 0
−1, f 0

0 , f 0
0 , f 0

1 , f 0
1 , . . .) and uniform knots

�

. . . ,− 3
2 ,−1,− 1

2 , 0, 1
2 , 1, 3

2 , . . .
�

=Z/2.

In the geometric setting, the fact that each new point f k+1
2i+1 is generated as a convex combination of the

old points f k
i and f k

i+1 implies that the limit curve has the same shape as the initial control polygon, with
apparent C 1 discontinuities at the initial control points. The explanation for this behaviour is that the new
points generated by the non-uniform scheme are non-uniformly distributed along the edges of the initial
control polygon and clustered towards the endpoints, which differs from the uniform distribution of points
given by the classical interpolatory 2-point scheme with the stationary weights

�

1
2 , 1

2

�

(see Figure 1). Hence,
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f 0 f 1 f 2 f 3 f 4 f

Figure 1: Initial points, points generated by the first four subdivision steps, and limit curve (from left to right) for the
stationary (top) and the non-uniform interpolatory 2-point schemes from Example 1 (middle) and Example 2 (bottom).

f 0 f 1 f 2 f 3 f f ′

Figure 2: Initial data, data generated by the first three subdivision steps, limit function, and first derivative of the limit
function (from left to right) for the stationary (top) and the non-uniform interpolatory 2-point schemes from Example 1
(middle) and Example 2 (bottom).

the limit curve of the non-uniform scheme has a continuous rather than a piecewise constant derivative with
respect to the dyadic parameterization, with vanishing first derivative at m ∈Z. This fact is more evident in
the functional setting, where it leads to flat spots at the integers (see Figure 2).

We should stress that we do not believe these non-uniform 2-point schemes to be of any practical use, but
rather consider them as “academic examples”, which showcase that non-uniform schemes have the potential
to generate limit functions and curves with higher smoothness than those generated by the corresponding
stationary scheme. And it turns out that this potential is not restricted to 2-point schemes.

3 Non-uniform C 2 interpolatory 4-point schemes

For the non-uniform interpolatory 2-point schemes above, we can guarantee the limit functions to be C 1

only by forcing the first derivative to vanish at the integers. The reason for this arguably arbitrary choice is
the locality of the subdivision rule, but we can overcome this problem if we enlarge the support of the rules.

Hence, let us now consider the interpolatory 4-point schemes with J k
i = {−2,−1, 0, 1} and weights

b k
i = (b

k
i ,1, b k

i ,0, b k
i ,−1, b k

i ,−2) = (α
k
i ,β k

i ,γk
i ,δk

i ), (10)
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for the odd subdivision rules in (3), so that the new data value

f k+1
2i+1 = f k

i−1α
k
i + f k

i β
k
i + f k

i+1γ
k
i + f k

i+2δ
k
i

is a linear combination of the neighbouring data values f k
i−1, f k

i , f k
i+1, and f k

i+2, just as for the classical

interpolatory 4-point scheme [11], which uses the stationary weights
�

− 1
16 , 9

16 , 9
16 ,− 1

16

�

.
As before, we first focus on the unit interval [0,1], and this time we aim at reproducing in the limit a

certain C 2 function p : [0, 1]→R that satisfies

p (0) = f 0
0 , p ′(0) = 1

2 ( f
0

1 − f 0
−1), p ′′(0) = f 0

1 −2 f 0
0 + f 0

−1

p (1) = f 0
1 , p ′(1) = 1

2 ( f
0

2 − f 0
0 ), p ′′(1) = f 0

2 −2 f 0
1 + f 0

0 .
(11)

Again, the key trick is to choose the weights in (10) such that

p (t k+1
2i+1) = p (t k

i−1)α
k
i +p (t k

i )β
k
i +p (t k

i+1)γ
k
i +p (t k

i+2)δ
k
i . (12)

Expressing p in terms of the initial data f 0
−1, f 0

0 , f 0
1 , and f 0

2 as

p (x ) = r−1(x ) f
0
−1+ r0(x ) f

0
0 + r1(x ) f

0
1 + r2(x ) f

0
2

for four basis functions r−1, r0, r1, r2 : [0, 1]→Rwith

r−1(0) = 0, r ′−1(0) =−
1
2 , r ′′−1(0) = 1, r−1(1) = 0, r ′−1(1) = 0, r ′′−1(1) = 0,

r0(0) = 1, r ′0(0) = 0, r ′′0 (0) =−2, r0(1) = 0, r ′0(1) =−
1
2 , r ′′0 (1) = 1,

r1(0) = 0, r ′1(0) =
1
2 , r ′′1 (0) = 1, r1(1) = 1, r ′1(1) = 0, r ′′1 (1) =−2,

r2(0) = 0, r ′2(0) = 0, r ′′2 (0) = 0, r2(1) = 0, r ′2(1) =
1
2 , r ′′2 (1) = 1,

and comparing the coefficients of f 0
−1, . . . , f 0

2 in (12) leads to the linear system











r−1(t k
i−1) r−1(t k

i ) r−1(t k
i+1) r−1(t k

i+2)

r0(t k
i−1) r0(t k

i ) r0(t k
i+1) r0(t k

i+2)

r1(t k
i−1) r1(t k

i ) r1(t k
i+1) r1(t k

i+2)

r2(t k
i−1) r2(t k

i ) r2(t k
i+1) r2(t k

i+2)











︸ ︷︷ ︸

=B k
i











αk
i

β k
i

γk
i

δk
i











=











r−1(t k+1
2i+1)

r0(t k+1
2i+1)

r1(t k+1
2i+1)

r2(t k+1
2i+1)











. (13)

Lemma 3. If r−1, r0, r1, r2 reproduce quadratic polynomials in the sense that

2
∑

j=−1

r j (x ) = 1,
2
∑

j=−1

r j (x ) j = x ,
2
∑

j=−1

r j (x ) j
2 = x 2, (14)

and the third-order divided difference of r2 satisfies

r2[t
k
i−1, t k

i , t k
i+1, t k

i+2] 6= 0, (15)

for some k ≥ 2 and i ∈ {1, 2, . . . , 2k −2}, then the corresponding linear system in (13) has a unique solution.

Proof. Using (14), we first transform B k
i into







1 1 1 1
−1 0 1 2

1 0 1 4
0 0 0 1







︸ ︷︷ ︸

=L

·B k
i =









1 1 1 1
t k

i−1 t k
i t k

i+1 t k
i+2

(t k
i−1)

2 (t k
i )

2 (t k
i+1)

2 (t k
i+2)

2

r2(t k
i−1) r2(t k

i ) r2(t k
i+1) r2(t k

i+2)









.
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We then exploit the fact that the parameter values t k
i−1, . . . , t k

i+2 are uniformly spaced with distance 2−k , so
that replacing the second, third, and fourth column of this matrix with the first, second, and third order
differences of its columns gives the lower triangular matrix

B̃ k
i = L ·B k

i ·







1 −1 1 −1
0 1 −2 3
0 0 1 −3
0 0 0 1







︸ ︷︷ ︸

=R

=









1 0 0 0
t k

i−1 2−k 0 0

(t k
i−1)

2 ∗ 2 ·4−k 0

r2(t k
i−1) ∗ ∗ ρ









,

where
ρ = r2(t

k
i+2)−3r2(t

k
i+1) +3r2(t

k
i )− r2(t

k
i−1) = 6r2[t

k
i−1, t k

i , t k
i+1, t k

i+2] ·8
−k .

Since det(L ) = 2 and det(R ) = 1, we have

det(B k
i ) =

1
2 det(B̃ k

i ) = 8−kρ,

hence B k
i is non-singular, because of (15).

As in the proof of Theorem 1, we would now like to conclude by induction that the scheme generates data

f k
i = p (t k

i ), k ∈N0, i ∈ {0, 1, . . . , 2k }, (16)

which in turn implies that p is the limit curve over [0, 1], and for the even case the arguments are the same.
Alas, the inductive step for showing that f k+1

1 = p (t k+1
1 ) relies on the identity f k

−1 = p (t k
−1), which is not

supported by the induction hypothesis for k > 0, and likewise for f k+1
2k+1−1. To fix this problem, let us take a

look at the first subdivision step. It is not hard to verify that for k = 0 and i = 0, the correct weights, which
guarantee f 1

1 = p ( 12 ), are

b 0
0 = (b

0
0,1, b 0

0,0, b 0
0,−1, b 0

0,−2) = (α
0
0,β 0

0 ,γ0
0,δ0

0) =
�

r−1(
1
2 ), r0(

1
2 ), r1(

1
2 ), r2(

1
2 )
�

, (17)

generating the data

f 1
−2 = f 0

−1,

f 1
−1 = f 0

−2α
0
0+ f 0

−1β
0
0 + f 0

0 γ
0
0+ f 0

1 δ
0
0,

f 1
0 = f 0

0 ,

f 1
1 = f 0

−1α
0
0+ f 0

0 β
0
0 + f 0

1 γ
0
0+ f 0

2 δ
0
0,

f 1
2 = f 0

1 .

Therefore, computing f 2
1 in the standard fashion as

f 2
1 = f 1

−1α
1
0+ f 1

0 β
1
0 + f 1

1 γ
1
0+ f 1

2 δ
1
0

results in a value that depends on the initial data f 0
−2, . . . , f 0

2 , but in order to have f 2
1 = p (t 2

1 ), it must not
depend on f 0

−2. The trick now is to replace the index set J 1
0 = {−2,−1, 0, 1} by the set J 1

0 = {−2,−1, 0, 2}, so that
the subdivision rule (3) for f 2

1 becomes

f 2
1 = f 1

−2α
1
0+ f 1

0 β
1
0 + f 1

1 γ
1
0+ f 1

2 δ
1
0

= f 0
−1(α

1
0+α

0
0γ

1
0) + f 0

0 (β
1
0 +β

0
0 γ

1
0) + f 0

1 (γ
0
0γ

1
0+δ

1
0) + f 0

2 (δ
0
0γ

1
0).

Comparing the coefficients of f 0
−1, . . . , f 0

2 with those on the right hand side of

p (t 2
1 ) = r−1(

1
4 ) f

0
−1+ r0(

1
4 ) f

0
0 + r1(

1
4 ) f

0
1 + r2(

1
4 ) f

0
2

then reveals that for k = 1 and i = 0 the correct choice of weights

b 1
0 = (b

1
0,2, b 1

0,1, b 1
0,0, b 1

0,−1, b 1
0,−2) = (α

1
0, 0,β 1

0 ,γ1
0,δ1

0) (18a)

7



is

α1
0 = r−1(

1
4 )−

r−1(
1
2 )r2(

1
4 )

r2(
1
2 )

, β 1
0 = r0(

1
4 )−

r0(
1
2 )r2(

1
4 )

r2(
1
2 )

, γ1
0 =

r2(
1
4 )

r2(
1
2 )

, δ1
0 = r1(

1
4 )−

r1(
1
2 )r2(

1
4 )

r2(
1
2 )

. (18b)

To compute f 2
3 , we proceed analogously, using the index set J 1

1 = {−3,−1,0,1}, and it turns out that the
correct weights

b 1
1 = (b

1
1,1, b 1

1,0, b 1
1,−1, b 1

1,−2, b 1
1,−3) = (α

1
1,β 1

1 ,γ1
1, 0,δ1

1) (19a)

are

α1
1 = r0(

3
4 )−

r0(
1
2 )r−1(

3
4 )

r−1(
1
2 )

, β 1
1 =

r−1(
3
4 )

r−1(
1
2 )

, γ1
1 = r1(

3
4 )−

r1(
1
2 )r−1(

3
4 )

r−1(
1
2 )

, δ1
1 = r2(

3
4 )−

r2(
1
2 )r−1(

3
4 )

r−1(
1
2 )

. (19b)

So far, this ensures the interpolation property in (16) to hold for k = 0,1,2, but for k > 2, we need yet
another approach. If we replace again the index set J k

0 for k ≥ 2 with {−2,−1, 0, 2}, then we run into the same
problem as before, because f k

−2 = f k−1
−1 depends on f 0

−2. To resolve this, we replace J k
0 with {−3,−2,−1,0}

instead, so that the subdivision rule for f k+1
1 becomes

f k+1
1 = f k

0 α
k
0 + f k

1 β
k
0 + f k

2 γ
k
0 + f k

3 δ
k
0 .

Note that this choice would not work for k = 1, because f 1
3 depends on f 0

3 . Using the induction hypothesis
that f k

j = p (t k
j ) for j = 0,1,2,3, the weights (αk

0 ,β k
0 ,γk

0 ,δk
0 ) that guarantee f k+1

1 = p (t k+1
1 ) are then given by

the linear system in (13) for i = 0, with B k
0 replaced by B k

1 , which still leads to a unique solution under the
assumptions of Lemma 3. Similarly, we replace the index set J k

2k−1 with {−1, 0, 1, 2} for k ≥ 2, and the weights
(αk

2k−1,β k
2k−1,γk

2k−1,δk
2k−1) for computing

f k+1
2k+1−1 = f k

2k−3α
k
2k−1+ f k

2k−2β
k
2k−1+ f k

2k−1γ
k
2k−1+ f k

2kδ
k
2k−1,

such that f k+1
2k+1−1 = p (t k+1

2k+1−1), are given by (13) for i = 2k −1, with B k
2k−1 replaced by B k

2k−2.
Based on the discussion above, we are now ready to summarize our construction.

Theorem 4. Let r−1, r0, r1, r2 be four basis functions that satisfy

r−1(
1
2 ) 6= 0, r2(

1
2 ) 6= 0 (20)

as well as the assumptions of Lemma 3 for any k ≥ 2 and i ∈ {1, 2, . . . , 2k −2}. Further let S be the non-uniform,
periodic, interpolatory 4-point scheme with the odd subdivision rules in (3) and the weights in (17), (18),
and (19) for k = 0 and k = 1, as well as

b k
0 = (b

k
0,0, b k

0,−1, b k
0,−2, b k

0,−3) = (α
k
0 ,β k

0 ,γk
0 ,δk

0 )

=
�

r−1(t
k+1
1 ), r0(t

k+1
1 ), r1(t

k+1
1 ), r2(t

k+1
1 )

�

·
�

B k
1

�−T
,

b k
i = (b

k
i ,1, b k

i ,0, b k
i ,−1, b k

i ,−2) = (α
k
i ,β k

i ,γk
i ,δk

i )

=
�

r−1(t
k+1
2i+1), r0(t

k+1
2i+1), r1(t

k+1
2i+1), r2(t

k+1
2i+1)

�

·
�

B k
i

�−T
, i ∈ {1, 2 . . . , 2k −2},

b k
2k−1 = (b

k
2k−1,2, b k

2k−1,1, b k
2k−1,0, b k

2k−1,−1) = (α
k
2k−1,β k

2k−1,γk
2k−1,δk

2k−1)

=
�

r−1(t
k+1
2k+1−1), r0(t

k+1
2k+1−1), r1(t

k+1
2k+1−1), r2(t

k+1
2k+1−1)

�

·
�

B k
2k−2

�−T

for k ≥ 2. Then the scheme S generates the data in (16), is convergent, and the limit functions are C 2 functions
with f (m ) = f 0

m , f ′(m ) = ( f 0
m+1− f 0

m−1)/2, and f ′′(m ) = f 0
m+1−2 f 0

m + f 0
m−1 for m ∈Z.

As in the previous section, we shall now discuss two particular choices of basis functions r−1, r0, r1, r2, for
which rather simple expressions of all weights αk

i , β k
i , γk

i , δk
i can be derived.

Example 3. One possibility to satisfy the conditions in (11) is to choose as p the quintic Hermite interpolant,
which is given by the basis functions

r−1(x ) = x (1− x )3(− 1
2 − x ), r0(x ) = (1− x )(1+ x − 9

2 x 3+3x 4),

r1(x ) = x ( 12 +
1
2 x + 9

2 x 2− 15
2 x 3+3x 4), r2(x ) = x 3(1− x )(− 3

2 + x ).
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It is not hard to verify that these functions satisfy the conditions in (14) and (20) and that

r2[t
k
i−1, t k

i , t k
i+1, t k

i+2] =−4−k
�

10i 2−10i (2k −1)−5(2k −1) + 3
2 ·4

k
�

,

which is equal to zero if and only if

i = 1
2

�

2k −1±
q

2
5 ·4k −1

�

.

For k = 0, these values are imaginary, and if k > 0, then 2k −1 is odd and the root would have to be odd, too,
in order for i to be an integer, that is,

q

2
5 ·4k −1= 2m −1 ⇐⇒ 2

5 ·4
k −1= 4m 2−4m +1 ⇐⇒ 4k = 5(2m 2−2m +1)

for some m ∈Z, but this is impossible, because 4k does not divide by 5.
This asserts that these basis functions satisfy the assumptions of Theorem 4, and the weights of the

resulting subdivision scheme turn out to be

b 0
0 =

�

− 1
16 , 9

16 , 9
16 ,− 1

16

�

, b 1
0 =

�

− 33
512 , 0, 390

512 , 120
512 , 35

512

�

, b 1
1 =

�

35
512 , 120

512 , 390
512 , 0,− 33

512

�

for k = 0 and k = 1, as well as

b k
0 =

�

5

16
·

113−65 ·2k +6 ·4k

100−60 ·2k +6 ·4k
,

15

16
·

87−55 ·2k +6 ·4k

100−60 ·2k +6 ·4k
,

−
5

16
·

61−45 ·2k +6 ·4k

100−60 ·2k +6 ·4k
,

1

16
·

35−35 ·2k +6 ·4k

100−60 ·2k +6 ·4k

�

,

b k
i =

�

−
1

16
·

5(7+8i )(7+8i −2k+3) +35+3 ·4k+2

5(4+8i )(4+8i −2k+3) +80+3 ·4k+2
,

9

16
·

5(5+8i )(5+8i −2k+3) +75+3 ·4k+2

5(4+8i )(4+8i −2k+3) +80+3 ·4k+2
,

9

16
·

5(3+8i )(3+8i −2k+3) +75+3 ·4k+2

5(4+8i )(4+8i −2k+3) +80+3 ·4k+2
,−

1

16
·

5(1+8i )(1+8i −2k+3) +35+3 ·4k+2

5(4+8i )(4+8i −2k+3) +80+3 ·4k+2

�

for i ∈ {1, 2, . . . , 2k −2}, and
b k

2k−1 = (b
k
0,−3, b k

0,−2, b k
0,−1, b k

0,0)

for k ≥ 2. These weights converge to

lim
k→∞

b k
0 =

�

5
16 , 15

16 ,− 5
16 , 1

16

�

and lim
k→∞

b k
2k−1 =

�

1
16 ,− 5

16 , 15
16 , 5

16

�

(21)

at the endpoints and to the weights of the classical interpolatory 4-point scheme,

lim
k→∞

b k
i =

�

− 1
16 , 9

16 , 9
16 ,− 1

16

�

,

at all interior points with i ∈ {1, 2, . . . , 2k −2}.
As the limit weights in (21) are the non-symmetric variants of the stationary 4-point weights, in the sense

that they can also be derived from locally fitting and evaluating a cubic polynomial, it might be possible to
extend one of the known tools to show that the limit functions of this non-uniform, periodic, interpolating
4-point scheme are as smooth as those of the stationary 4-point scheme, namely C 1, but not that they are
C 2. In fact, it is not hard to see that the limit functions are the quintic C 2 B-splines with control points

�

. . . , −3 f−2+18 f−1+5 f0
20 , 5 f−1+18 f0−3 f1

20 , − f−1+22 f0− f1
20 , −3 f−1+18 f0+5 f1

20 , 5 f0+18 f1−3 f2
20 , . . .

�

and uniform triple knots (. . . ,−1,−1,−1, 0, 0, 0, 1, 1, 1, . . .).

Example 4. Much simpler weights can be found by taking as p the piecewise cubic C 2 function given by the
basis functions

r−1(x ) =











x (− 1
2 +

1
2 x + 13

18 x 2), x ∈
�

0, 1
4

�

,
1

36 −
5
6 x + 11

6 x 2− 19
18 x 3, x ∈

�

1
4 , 3

4

�

,

− 13
18 (1− x )3, x ∈

�

3
4 , 1

�

,

r0(x ) =











1− x 2(1+ 13
6 x ), x ∈

�

0, 1
4

�

,
11
12 + x −5x 2+ 19

6 x 3, x ∈
�

1
4 , 3

4

�

,

(1− x )( 19
6 −

29
6 x + 13

6 x 2), x ∈
�

3
4 , 1

�

,

r1(x ) =











x ( 12 +
1
2 x + 13

6 x 2), x ∈
�

0, 1
4

�

,
1

12 −
1
2 x + 9

2 x 2− 19
6 x 3, x ∈

�

1
4 , 3

4

�

,

1− (1− x )2( 19
6 −

13
6 x ), x ∈

�

3
4 , 1

�

,

r2(x ) =











− 13
18 x 3, x ∈

�

0, 1
4

�

,

− 1
36 +

1
3 x − 4

3 x 2+ 19
18 x 3, x ∈

�

1
4 , 3

4

�

,

(1− x )( 13
18 −

35
18 x + 13

18 x 2), x ∈
�

3
4 , 1

�

,
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A simple calculation reveals that these functions satisfy the conditions in (14) and (20) and that

r2[t
k
i−1, t k

i , t k
i+1, t k

i+2] =
1

54











































−39, i = 1, 2, . . . , 2k−2−2,

−23, i = 2k−2−1,

41, i = 2k−2,

57, i = 2k−2+1, 2k−2+2, . . . , 3 ·2k−2−2,

41, i = 3 ·2k−2−1,

−23, i = 3 ·2k−2,

−39, i = 3 ·2k−2+1, 3 ·2k−2+2, . . . , 2k −2

for any k ≥ 2. Hence, the assumptions of Theorem 4 are satisfied, and straightforward calculations show that
the weights of the resulting subdivision scheme are

b 0
0 =

�

− 1
16 , 9

16 , 9
16 ,− 1

16

�

, b 1
0 =

�

− 41
576 , 0, 462

576 , 104
576 , 51

576

�

, b 1
1 =

�

51
576 , 104

576 , 462
576 , 0,− 41

576

�

for k = 0 and k = 1, as well as

b 2
0 =

�

253
656 , 471

656 ,− 61
656 ,− 7

656

�

, b 3
0 =

�

99
368 , 393

368 ,− 163
368 , 39

368

�

, b k
0 =

�

5
16 , 15

16 ,− 5
16 , 1

16

�

, k ≥ 4

and, by symmetry,
b k

2k−1 = (b
k
0,−3, b k

0,−2, b k
0,−1, b k

0,0), k ≥ 2,

for the new points corresponding to the parameter values t =m ±2−k−1 for m ∈Z. Moreover,

b k
2k−2 =

�

− 57
656 , 417

656 , 321
656 ,− 25

656

�

, b k
3·2k−2−1 = (b

k
2k−2,−2, b k

2k−2,−1, b k
2k−2,0, b k

2k−2,1), k ≥ 2, (22a)

for the new points at m + 1
4 +2−k−1 and m + 3

4 −2−k−1, and

b k
2k−2−1 =

�

− 7
368 , 159

368 , 255
368 ,− 39

368

�

, b k
3·2k−2 = (b

k
2k−2−1,−2, b k

2k−2−1,−1, b k
2k−2−1,0, b k

2k−2−1,1), k ≥ 3, (22b)

for the new points at m + 1
4 −2−k−1 and m + 3

4 +2−k−1. All other b k
i are just the classical stationary weights

�

− 1
16 , 9

16 , 9
16 ,− 1

16

�

, because they are used to compute a new point from four old points that lie on a common
cubic piece of the limit function.

Because of the special weights in (22), the usual tools for analysing the smoothness of non-uniform
schemes cannot be applied to this scheme, but it is clear by construction that the limit functions of this
non-uniform, periodic, interpolating 4-point scheme are the cubic C 2 B-splines with control points

�

. . . , −13 f−2+109 f−1+109 f0−13 f1
192 , 7 f−1+46 f0−5 f1

48 , − f−1+98 f0− f1
96 , −5 f−1+46 f0+7 f1

48 , −13 f−1+109 f0+109 f1−13 f2
192 , . . .

�

and uniform knots
�

. . . ,−1,− 3
4 ,− 1

2 ,− 1
4 , 0, 1

4 , 1
2 , 3

4 , 1, . . .
�

=Z/4.

Figures 3 and 4 show a comparison between the classical interpolatory 4-point scheme and the two non-
uniform variants from Examples 3 and 4 in the geometric and the functional setting, respectively. While the
shapes of the limit functions for the non-uniform schemes are slightly negatively affected by the prescribed
first derivative at the integers, the limit curves look rather pleasing and smoother than the limit curve of the
classical scheme, as expected due to the improved smoothness. Note that the limit functions and curves
generated by the two non-uniform schemes are visually almost indistinguishable, but the differences are
evident for the second derivatives of the limit functions, which are piecewise cubic and piecewise linear,
respectively (see Figure 4).

4 Curves on surfaces

One may argue that the schemes derived above are questionable, because the exact limit curve is known a
priori and can thus be evaluated directly. However, the same argument would apply to the uniform B-spline
schemes [23], and the situation changes once we leave the non-Euclidean setting, for example, if we consider
subdivision on a manifold surface M. In this case, the usual definition of the affine average of n points
p1, p2, . . . , pn for certain weights wi that sum to one,

p̄ =
n
∑

i=1

wi pi ,

10



f 0 f 1 f 2 f 3 f 4 f

Figure 3: Initial points, points generated by the first four subdivision steps, and limit curve (from left to right) for the
stationary (top) and the non-uniform interpolatory 4-point schemes from Example 3 (middle) and Example 4 (bottom).

f 0 f 1 f 2 f f ′ f ′′

Figure 4: Initial data, data generated by the first two subdivision steps, limit function, first and second derivative of the
limit function (from left to right) for the stationary (top) and the two non-uniform interpolatory 4-point schemes from
Example 3 (middle) and Example 4 (bottom).

is not well-defined anymore, because the points on M do not form a vector space. Instead, one can define
the affine average using the weighted Fréchet mean,

p̄ = arg min
p∈M

n
∑

i=1

wi d (p , pi )
2, (23)

where d : M×M→R is the distance function, which measures the length of the geodesic, that is, the shortest
path between two surface points. If d is the Euclidean distance, then both definitions are equivalent, but
in general, the minimizer p̄ in (23) may not be unique and may not depend continuously on the points
pi and the weights wi [22, 1]. Therefore, even though the limit curves of the non-uniform schemes in
Examples 1–4 are B-spline curves and every point on these curves is an affine combination of the initial
points f 0

i , evaluating them directly via the Fréchet mean can result in curves that are not even C 0.
If we generate the limit curve instead using a subdivision process, then we are guaranteed to have a

sequence of continuous, piecewise geodesic curves, which usually converge to a limit curve that is as smooth
as the one in the Euclidean setting [34, 33]. Moreover, in order to properly define the subdivision rules for
points on surfaces, it suffices to have a generalization of the affine average of two points. In the Euclidean
setting, the affine average

A(p , q , t ) = (1− t )p + t q (24)

of p and q with weights (1− t ) and t is simply the unique point r =A(p , q , t ) on the straight line through p

11



Figure 5: Initial data (black dots) and interpolating curves on a manifold surface after 8 subdivision steps with the
stationary (blue) and the non-uniform (red) 4-point scheme from Example 4.

and q with relative distances |t | and |1− t | to p and q , that is,

d (r, p ) = |t | ·d (p , q ), d (r, q ) = |1− t | ·d (p , q ).

Since the equivalent of a straight line on a surface M is a geodesic, it is then clear how to generalize the
average operator in (24) to two points p , q ∈M. Note that if t ∈ [0,1], then r =A(p , q , t ) is a point on the
geodesic between p and q , while this geodesic needs to be extrapolated beyond p for t < 0 and beyond q for
t > 1. A formal description of this procedure is given by Wallner [33] for smooth surfaces and by Polthier and
Schmies [26] for surface meshes. The ambiguity of this definition, which may arise whenever the geodesic
between p and q is not unique, can be resolved by making an arbitrary but deterministic choice.

With the average operator A in (24) defined on M, we now follow Schaefer and Goldman [29] and express
the odd subdivision rules (3) of our non-uniform 4-point schemes with J k

l = { j2, j1, j0, j−1} in terms of three
2-point-averages as

f k+1
2i+1 =A

�

A( f k
i− j0

, f k
i− j1

,µ1),A( f k
i− j−1

, f k
i− j2

,µ2),µ3

�

, µ1 =
γk

i

β k
i +γ

k
i

, µ2 =
δk

i

αk
i +δ

k
i

, µ3 =α
k
i +δ

k
i .

For this order of averages, the first two averages are usually geodesic interpolations with µ1,µ2 ∈ (0,1) and
only the last average requires geodesic extrapolation with a rather small extrapolation factor −µ3 > 0. For
example, this is the case (with −µ3 =

1
8 ) for almost all subdivision rules of the non-uniform schemes in

Examples 3 and 4. Only at the endpoints of each interval, for k > 1 and i ∈ {0,2k − 1}, this order applies
extrapolation for the first or the second (or both) averages and interpolation for the third average.

When implementing the scheme from Example 4, we observed that the rather large extrapolations
that may occur during the first three subdivision steps (e.g., with factor −µ2 =

41
10 for k = 1 and i = 1 and

−µ1 =
163
230 for k = 3 and i = 0) can lead to some unexpected artefacts of the limit curve. We therefore

propose to circumvent these subdivision steps and to compute instead the data f 4 = ( f 4
i )i∈Z directly as affine

combinations of the initial data, using the fact that

f 4
16i = f 0

i , f 4
16i+m = r−1(

m
16 ) f

0
i−1+ r0(

m
16 ) f

0
i + r1(

m
16 ) f

0
i+1+ r2(

m
16 ) f

0
i+2, m ∈ {1, 2, . . . , 15}

for any i ∈Z. This avoids extrapolation with factors greater than 1
8 and generally results in artefact-free and

presumably smooth curves (see Figure 5). Proving that these limit curves are C 2 is beyond the scope of this
paper and left to future work.
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5 Conclusions

The main goal of this paper is to show that non-uniform subdivision schemes can give limit functions and
curves that are smoother than those of corresponding stationary subdivision schemes, and the non-uniform
schemes described in Examples 1–4 clearly serve as a “proof of concept”. However, the theory that leads to
these examples is actually more general.

Regarding 2-point schemes, our construction in Section 2 works for any strictly increasing C 1 function
r1 : [0,1]→R with r1(0) = r ′1(0) = 0, r1(1) = 1, and r ′1(1) = 0. Letting r0(x ) = 1− r1(x ), we then have two basis
functions that satisfy the assumptions of Lemma 2, and the limit functions of the non-uniform scheme with
the weights in (9) are C 1 by Theorem 1. The support size of the basic limit function of any such scheme is 2,
just like for the stationary, interpolatory 2-point scheme, but while the latter reproduces linear functions,
our non-linear 2-point schemes reproduce only constant functions, because of the vanishing first derivative
at the integers. Consequently, the approximation order is only O (h ), compared to O (h 2) for the stationary
scheme.

Likewise, our “recipe” for designing non-uniform 4-point schemes in Section 3 works for any C 2 function
r2 : [0,1]→ R with r2(0) = r ′2(0) = r ′′2 (0) = 0, r2(

1
2 ) /∈ {−

1
8 ,0}, r2(1) = 0, r ′2(1) =

1
2 , and r ′′2 (1) = 1, as long as r2

satisfies (15) for any k ≥ 2 and i ∈ {1,2, . . . ,2k − 2}. In this case, we simply define the other three basis
functions as

r−1(x ) =− 1
2 x (1− x )− r2(x ), r0(x ) = 1− x 2+3r2(x ), r1(x ) =

1
2 x (1+ x )−3r2(x ),

which ensures that all assumptions of Lemma 3 and Theorem 4 are satisfied, so that the limit functions of
the corresponding scheme are guaranteed to be C 2. The support size of the basic limit function of any such
non-uniform scheme is only 4, compared to the support size 6 of the basic limit function of the stationary,
interpolatory 4-point scheme, which means that the influence of the initial control points on the shape of
the limit curve is more local. Moreover, in the case of an open control polygon with n +1 points f 0

0 , f 0
1 , . . . , f 0

n ,
the limit curves of these non-uniform schemes are defined for any t ∈ [1, n −1], while the limit curves of
the classical 4-point schemes are defined only for t ∈ [2, n −2]. However, just as for 2-point schemes, the
approximation order of the non-uniform 4-point schemes is only O (h 3), compared to O (h 4) for the stationary
4-point scheme, because they reproduce only quadratic functions.

It remains future work to find other non-uniform schemes that do not simply reproduce a known limit
function and where the subdivision rules do not depend on the latter, which will require developing new
tools for analysing the convergence and smoothness of non-uniform schemes.
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