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Abstract

We present a new four-point subdivision scheme that generates C2 curves. It reproduces cubic
polynomials, has a basic limit function with support [−4, 3], and is close to being interpolatory.
The refinement rule is based on local cubic interpolation, followed by evaluation at 1/4 and 3/4
of the refined interval. We investigate the approximation properties of this four-point scheme and
extend it to a new family of 2n-point schemes. The performance of the new schemes is demonstrated
by several examples.

1 Introduction

Subdivision schemes are efficient methods for generating curves and surfaces from discrete sets of control
points. The important schemes for applications are schemes for surfaces, yet schemes generating curves
constitute a basic tool for the design, study, and understanding of schemes generating surfaces. In this
paper we present a new idea for the design of good subdivision schemes for curves.

In Sections 2 and 3 we construct and analyse a new four-point scheme, which generates C2 curves,
reproduces cubic polynomials and has a basic limit function supported on [−4, 3]. The size of the
support measures the locality of the scheme, and the degree of polynomials reproduced determines the
approximation order of the subdivision operator. For our new four-point scheme the approximation
order is 4. The refinement rule of this scheme is obtained by constructing, for each interval (or edge)
in the coarser level, a cubic polynomial that interpolates the four points closest to the interval, and
then evaluating this polynomial at 1/4 and 3/4 of the interval. The collection of the pairs of points,
corresponding to each edge in the coarser level, constitute the refined set of points.

In comparison, the well known interpolatory four-point scheme of [4] and [6] (with tension parameter
w = 1/16), has smoothness C1, the same approximation order 4, and [−3, 3] as support of its basic
limit function. The refinement rule for this “classical” scheme is obtained by adding to the points at the
coarser level the points of the above local cubic interpolating polynomials, evaluated at the mid points
of the corresponding intervals.

In the spirit of [6], we construct a family of four-point schemes with a tension parameter in Section 4.
Each scheme in this family is a convex combination of the new four-point scheme and the Chaikin
scheme [1], which can be obtained by our construction, if the local cubic interpolating polynomials are
replaced by local linear polynomials that interpolate the two end points of the intervals. Among these
four-point schemes with tension parameter, we choose the one that is closest to being interpolatory, and
demonstrate its superior performance by several examples given in Section 6.

As in [3], we extend the new four-point scheme to 2n-point schemes, for any integer n, by replacing
the local cubic polynomials in our construction by local interpolating polynomials of degree 2n−1, each
based on the 2n points that are closest to the corresponding interval. Our analysis of a few of these
schemes for small values of n indicates that the schemes converge, and that their smoothness increases
with n. This observation is yet to be proved for general n.

Section 6 concludes the paper with some numerical examples. The graphs of the basic limit functions
corresponding to several of the new schemes introduced in the paper, as well as their derivatives are
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displayed. We also give two examples of curves generated by these schemes, and compare them with
the curves generated by the Chaikin scheme and the “classical” four-point scheme from the same set of
control points.

2 The Scheme

Suppose we are given the data fi for i ∈ Z. We set f0
i = fi, for i ∈ Z, and define for each k = 0, 1, 2, . . .,

and i ∈ Z,
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(1)

This scheme comes from interpolating the data (2−k(i + j), fk
i+j), j = −1, 0, 1, 2, by a cubic polynomial

and evaluating it at 2−k(i+1/4) and 2−k(i+3/4) for the values fk
2i and fk

2i+1 respectively. It is sufficient
to consider p3, the cubic polynomial such that p3(j) = fj , for j = −1, 0, 1, 2. Since
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2∑
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k 6=j
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,

we find

p3(1/4) = − 7
128

f−1 +
105
128

f0 +
35
128

f1 −
5

128
f2,

p3(3/4) = − 5
128

f−1 +
35
128

f0 +
105
128

f1 −
7

128
f2.

(2)

3 Analysis

Following the framework of [7], the scheme converges if there is a function f : R→ R with the property
that for any compact set K ⊂ R,

lim
k→∞

max
i∈Z∩2kK

|fk
i − f(2−ki)| = 0. (3)

Theorem 1. The scheme (1) converges and has smoothness C2.

Proof. Following the notation of [7], we can write the scheme (1) as

fk+1
i =

∑
j∈Z

ai−2jf
k
j ,

or simply as
fk+1 = Safk.

The symbol of Sa is the Laurent polynomial

a(z) =
∑

i

aiz
i =

1
128

(−5z4 − 7z3 + 35z2 + 105z + 105 + 35z−1 − 7z−2 − 5z−3).

This can be written as

a(z) =
(1 + z)3

4
b(z),
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where
b(z) =

1
32

(−5z + 8 + 26z−1 + 8z−2 − 5z−3).

By Corollary 4.11 of [7], if Sb is contractive, then Sa is C2. Defining

‖S[`]
b ‖∞ := max

{ ∑
j∈Z

|b[`]

i−2`j
| : 0 ≤ i < 2`

}
,

where
b[`](z) := b(z)b(z2) · · · b(z2`−1

),

we find that
‖S[1]

b ‖∞ =
1
32

max {5 + 26 + 5, 8 + 8} =
9
8
≥ 1,

which does not show that Sb is contractive. However, since

b[2](z) = b(z)b(z2)

=
1

1024
(−5z + 8 + 26z−1 + 8z−2 − 5z−3)

× (−5z2 + 8 + 26z−2 + 8z−4 − 5z−6)

=
1

1024
(25z3 − 40z2 − 170z + 24 + 103z−1 + 272z−2 − 596z−3

+ 272z−4 + 103z−5 + 24z−6 − 170z−7 − 40z−8 + 25z−9),

we find that

‖S[2]
b ‖∞ =

1
1024

max {25 + 103 + 103 + 25, 40 + 272 + 24, 170 + 596 + 170, 24 + 272 + 40} =
117
128

< 1,

which shows that Sb is contractive.

Using the method described in [5], we further find the Hölder regularity of the scheme to be at least
2.67.

Consider next the support of the scheme (1). This is simply the support of the limit function φ
generated by the data f0 = 1 and fi = 0 for i 6= 0. It is a simple matter to show that φ has support
[−4, 3]. This is only slightly larger than the support [−3, 3] of the “classical” four-point scheme of
Dubuc [4].

As regards the approximation order of the scheme, we begin by showing that if the data is sampled
from a cubic polynomial, then the limit function is simply a shifted version of that polynomial. We
denote by π3 the space of all cubic polynomials.

Lemma 2. If f0
i = g(i− 1/2), for some g ∈ π3, then the limit of the subdivision scheme (1) is g.

Proof. Let g[k](x) = g(x− 2−k−1), for k = 0, 1, 2, . . .. By (1) and (2),

f1
2i = g(i− 1/4) = g(2−12i− 1/4),

f1
2i+1 = g(i + 1/4) = g(2−1(2i + 1)− 1/4),

and thus for all i ∈ Z,
f1

i = g(2−1i− 1/4) = g[1](2−1i).

By a similar argument, if fk−1
i = g[k−1](2−k+1i) then fk

i = g[k](2−ki). Therefore we get

|fk
i − g(2−ki)| = |g(2−ki− 2−k−1)− g(2−ki)|,

and so by (3) and the continuity of g, the limit function is S∞f0 = g.
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Similarly, if the data for the scheme is f0
i = g((i − 1/2)h), for some g ∈ π3, then since g(h ·) is also

in π3, the limit is clearly g(h ·). Due to this “shifted” cubic precision, we can show that the scheme is
fourth order accurate.

Theorem 3. Suppose g : R→ R has four continuous derivatives on R. Then the limit f = S∞f0 of the
scheme (1) with initial data f0

i = g
(
(i− 1/2)h

)
satisfies

‖f − g‖∞,K1
≤ Ch4‖g(4)‖∞,K2

,

for any closed interval K1 = [a, b] and with K2 = [a− 7h/2, b + 7h/2].

Proof. Let RhZ denote the restriction operator to hZ, and let στ denote the translation operator
στg = g(· + τ). The operator Qh = S∞RhZ σ−h/2 is a quasi-interpolating operator [2] with the
properties

1. Qh is exact for π3 (by Lemma 2), namely Qhp = p for all p ∈ π3.

2. Qh is local (in the terminology of [2]). This property follows from the explicit form of Qh,

Qhg =
∑
i∈Z

g
(
(i− 1/2)h

)
φ(h−1 · −i), (4)

and from the fact that for a fixed x, the values of g((i− 1/2)h) involved in (Qhg)(x) correspond
to i satisfying

(i− 1/2)h ∈ (x− 7h/2, x + 7h/2). (5)

Thus
g −Qhg = (1−Qh)(g − p)

for any p ∈ π3, and by (4) and (5),

|(g −Qhg)(x)| ≤ (1 + ‖Qh‖∞)‖g − p‖∞,Ix,h
,

where Ix,h = [x− 7h/2, x + 7h/2]. To bound ‖Qh‖∞ we refer again to (4) and obtain

‖Qhg‖∞ ≤ 7‖g‖∞‖φ‖∞,

using the observation that at each point x at most seven terms in the sum (4) do not vanish. Thus

‖Qh‖∞ = sup
‖g‖∞=1

‖Qhg‖∞ ≤ 7‖φ‖∞.

Finally, taking p to be, for example, the Taylor expansion of g about x, we get

|(g −Qhg)(x)| ≤ (1 + 7‖φ‖∞)‖g(4)‖∞,Ix,h
(7/2)4h4/4!.

Thus for any interval K1 = [a, b],

‖g −Qhg‖∞,K1
≤ (1 + 7‖φ‖∞)‖g(4)‖∞,K2

(7/2)4h4/4!,

where K2 = ∪x∈K1Ix,h = [a − 7h/2, b + 7h/2], which proves the claim of the theorem with constant
C = (1 + 7‖φ‖∞)74/(244!).
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4 Tension Parameter

By viewing the scheme as a perturbation of Chaikin’s scheme [1], we can easily introduce a tension
parameter w, giving the extended scheme

fk+1
2i = −7wfk

i−1 +
(

3
4

+ 9w

)
fk

i +
(

1
4

+ 3w

)
fk

i+1 − 5wfk
i+2,

fk+1
2i+1 = −5wfk

i−1 +
(

1
4

+ 3w

)
fk

i +
(

3
4

+ 9w

)
fk

i+1 − 7wfk
i+2,

(6)

with w = 0 corresponding to the Chaikin scheme and w = 1/128 corresponding to the new four-point
scheme (1).

As regards the smoothness of this scheme, we know that it is C1 when w = 0 because Chaikin’s
scheme generates a C1 quadratic spline. On the other hand it is reasonable to expect there to be a
range of values of w around 1/128 for which the scheme has C2 continuity. In fact we would expect the
range to include (0, 1/128] because Chaikin’s scheme is “close” to C2. For the general scheme, we have
(as before),

aw(z) =
(1 + z)3

4
bw(z),

but now with
bw(z) = z−1 + 4w(−5z + 8− 6z−1 + 8z−2 − 5z−3).

Using the same approach as in the proof of Theorem 1 we find that

‖S[1]
bw
‖∞ = max {|40w|+ |1− 24w|, |64w|} ≥ 1

for all w, which does not show that Sbw is a contraction. But we further find

‖S[2]
bw
‖∞ = max { |40w + 320w2|+ |1− 48w − 704w2|,

1024w2 + |32w + 256w2|, 800w2 + |24w + 224w2| } < 1

for 0 < w <
√

6−1
80 , which shows the scheme to be C2 for an even larger range than the expected one.

In fact, by analysing S
[`]
bw

with a computer algebra system like Maple for ` up to 12, one can show that
the scheme has C2 continuity for w in the range of (0, 1/48]. For these schemes, the basic limit function
φw has support [−4, 3] for all positive w and support [−2, 1] for w = 0.

Among these C2 schemes we can search for the “tightest” one, i.e. for the scheme which is closest to
being interpolatory. In view of Theorem 2, we measure the tightness by how close the values φw(i−1/2)
are to the Kronecker delta,

T (w) :=
∑
i∈Z

(φw(i− 1/2)− δi,0)
2 = (φw(−1/2)− 1)2 + 2

3∑
i=1

φw(i− 1/2)2.

In order to find the values φw(i− 1/2), we need to analyse the 6× 6 subblock

Mw =


−7w 3/4 + 9w 1/4 + 3w −5w 0 0
−5w 1/4 + 3w 3/4 + 9w −7w 0 0

0 −7w 3/4 + 9w 1/4 + 3w −5w 0
0 −5w 1/4 + 3w 3/4 + 9w −7w 0
0 0 −7w 3/4 + 9w 1/4 + 3w −5w
0 0 −5w 1/4 + 3w 3/4 + 9w −7w


of the subdivision matrix. The size 6 comes from the fact that the scheme has an invariant neighbour-
hood of size 6. The right and left eigenvectors of Mw corresponding to the eigenvalue 1 are

x[1]
w = (1, 1, 1, 1, 1, 1)t and x̃[1]

w = (α, β, γ, γ, β, α)t
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with

α =
40w2

1− 8w
, β = −8w(7w + 1)

1− 8w
, γ =

32w2 + 8w + 1
2(1− 8w)

.

The values φw(i − 1/2) can now be obtained by taking the inner product between x̃
[1]
w and the vector

of the six values f1
k with 2i − 3 ≤ k ≤ 2i + 2, generated by one subdivision step from the initial data

f0
k = δk,0. Thus,

φw(−1/2) =
2432w3 − 80w2 − 44w − 3

4(8w − 1)
,

φw(1/2) =
448w3 − 576w2 + 56w − 1

8(8w − 1)
,

φw(3/2) =
−864w3 − 92w2 + 5w

2(8w − 1)
,

φw(5/2) =
200w3

8w − 1
.

The global minimum of T (w) is obtained for w∗ ≈ 0.013723, giving a C2 scheme that we call the tight
four-point scheme. Like the scheme (1), it has support size 7, but its accuracy is only O(h2) as for
Chaikin’s scheme.

The following table lists the values of the basic limit function at the half-integers and the tightness
for some values of w:

w φw(−1/2) φw(1/2) φw(3/2) φw(5/2) T (w)
0 0.750000 0.125000 0 0 0.093750

1/128 0.892660 0.071391 -0.017619 -0.000102 0.022336
w∗ 1.014525 0.020871 -0.027553 -0.000581 0.002601

5 Generalization to Arbitrary Degree

Another way to extend our construction is to locally fit a Lagrange interpolation polynomial of degree
2n− 1 to the 2n points that are closest to the interval to be refined, and to evaluate it at 1/4 and 3/4
of the interval. Here n can be any fixed integer. For example, n = 1 gives Chaikin’s scheme and n = 2
gives our new four-point scheme. Analogously to the analysis in Section 3, it can be shown that these
new 2n-point schemes reproduce polynomials up to degree 2n−1 and have approximation order O(h2n).
The support of the basic limit function is [−2n, 2n − 1], i.e. the support size is 4n − 1. We computed
lower bounds for the Hölder regularity of the functions generated by the new 2n-point schemes for few
small values of n. These values are presented in the following table:

n 1 2 3 4 5 6 7 8 9 10
RH 1 2.67 3.51 4.11 4.56 5.27 5.62 6.17 6.49 7.15

It is yet to be shown that these schemes converge for any n and that they have increasing smoothness
with increasing n.

6 Numerical Examples

Figures 1–3 show the basic limit functions for several of the new schemes as well as their first and
second derivatives, and Figures 4–7 show the results of the schemes in comparison with the Chaikin and
the classical four-point scheme. The examples confirm our theoretical results and show that the tight
four-point scheme generates curves that almost interpolate the control points. Thus, if one is interested
in a curve that closely follows the control polygon, then the tight four-point scheme offers an alternative
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Figure 1: The basic limit function and its first and second derivative of the new four-point (left) and
the tight four-point scheme (right).
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Figure 2: Basic limit function of the new six-point scheme, and its first and second derivative.
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Figure 3: Basic limit function of the new eight-point scheme, and its first and second derivative.

to the classical four-point scheme with the advantage of having C2 smoothness. On the other hand, if
an optimal approximation order is required, then the new family of 2n-point schemes is an alternative
to the classical family of interpolating 2n-point schemes [3]. Their support size is only slightly bigger
(4n− 1 as compared to 4n− 2) and they have a higher degree of smoothness, at least for small values
of n. The new schemes seem become more interpolatory for higher n, but proving this observation as
well as carefully analysing the smoothness is left to future work.
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Figure 4: Comparison of subdivision results.

tight four-point

new four-point

new six-point

new eight-point

Chaikin

Figure 5: Curvature plot of the curves in Figure 4. The dashed line indicates the curvature of the
interpolating circle.
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Figure 6: Comparison of subdivision results.
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Figure 7: Locality of the basis functions, visualized by moving the bottom left control point (full curve)
to the right (dashed curve).
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