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Abstract

Many popular modern image processing software packages implement a naïve form of
histogram equalization. This implementation is known to produce histograms that are not
truly uniform. While exact histogram equalization techniques exist, these may produce
undesirable artifacts in some scenarios. In this paper we consider the link between the
established continuous theory for global histogram equalization and its discrete imple-
mentation, and we formulate a novel histogram equalization technique that builds upon
and considerably improves the naïve approach. We show that we can linearly interpolate
the cumulative distribution of a low-bit image by approximately dequantizing its intens-
ities using a selective box filter. This helps to distribute the intensities more evenly. The
proposed algorithm is subsequently evaluated and compared with existing works in the
literature. We find that the method is capable of producing an equalized histogram that has
a high entropy, while distances between similar intensities are preserved. The described
approach has implications on several related image processing problems, for example,
edge detection.
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1 Introduction

Histogram modification techniques are commonly used to enhance visual aspects of an image, such as
contrast or continuity. In computer imaging systems, global histogram equalization may be applied to
perceptually amplify high-frequency spatial information (e.g., edges and corners), while reducing the presence
of low frequencies [21]. This is particularly useful in systems that require human-computer interaction where
a user must make a decision based on the observed data.

The goal of histogram equalization is to modify the pixel intensities of an image to produce a histogram
that is as uniform as possible. In information theory, this corresponds to the maximum achievable entropy.
Popular photo editing software, Adobe Photoshop and GIMP (see v2.10 gimpoperationequalize.c),
implement relatively naïve histogram equalization procedures that are similar to the techniques described
by [42] & [16]. These implementations are understood to potentially form sparse histograms [17, 24]. This
is illustrated in Figure 1, where the proposed method produces a histogram that closely resembles a fully-
equalized histogram.

Commonly, for global histogram matching the cumulative distribution function (CDF) is used as a transfer
function. The CDF of a digital image is piecewise constant (i.e., a step function). In this paper, we consider a
novel formulation for the CDF in the discrete setting that produces a piecewise linear function. We consider
the resulting CDF to be more faithful to the image before quantization, while increasing the problem com-
plexity negligibly. Alone, however, this does not help address the problem of sparsity as quantized intensities
map to the same value.

To redistribute intensities appropriately, we consider recovering upscaled intensities by slightly modifying
a given quantized pixel’s intensity by averaging neighbouring pixels that have a similar intensity. If the
neighbourhood and permitted dissimilarity is sufficiently small, this leads to only a subtle distortion of the
pixelwise intensities. Through our evaluation, we find that the described approach improves the quality of
the resulting histogram. Two parameters are used to control the effect of this technique on the histogram,
and enable the preservation of relations between pixels of the same quantized intensity. Applying the most
restrictive parameters causes the proposed method to achieve parity with commonly used approaches [42, 16].

In this paper, we suggest that through moderate local pixelwise modification of the original image artifacts,
caused by intensity quantization, in the histogram space may be reduced.

The technical contributions of this work may be summarized as follows:

• An adaptive kernel-based method that seeks to address the issue of histogram sparsity for down-stream
applications (e.g., histogram equalization and histogram matching).

• A thorough evaluation of the proposed technique, including practical parameter selection experiments
and comparisons with various pertinent approaches.
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Figure 1: An example of histogram equalization on (a) a 4-bit image using (b) a conventional histogram equalization
approach [42], and (c) the proposed method.

2 Related work

Many approaches to contrast enhancement have been proposed over the last half-century [26, 14, 36], leading
to a wide range of histogram equalization techniques [38]. This section provides an overview of the relevant
literature that addresses aspects of this problem.

2.1 Histogram equalization

Histogram equalization is a commonly used enhancement technique to increase the visual contrast of an
image in applications such as medical imaging, robotics, and astronomy. This is particularly useful in systems
that require human-computer interaction where a user must make a decision based on an image. In computer
vision systems, histogram equalization may be applied locally to enhance high-frequency spatial information
(e.g., edges and corners), while reducing the presence of low frequencies [21]. The technique may also be
used in image coding.

Given a greyscale image, the goal is to compute a transformation that, when applied to the gray values of
the original image, produces a uniform distribution of the intensity values.

The origins of the now pervasive global histogram equalization procedure [16] are obscure; however,
as with other image processing algorithms [1], the techniques used for histogram equalization are highly
associated with techniques from statistics [18]. In its simplest form, the method follows the description
by [42]. Ketcham et al. [27] propose a technique that uses a two-dimensional sliding window over an image’s
spatial domain. Histogram equalization is performed within the small window to compute the equalized
intensity value of either the central pixel (or a group of central pixels). Subsequently, variations of this
technique known as ‘adaptive histogram equalization’ have been considered [21, 40, 46]. Adaptive histogram
equalization techniques improve contrast locally but cause the contrast enhancement to no longer be
a global transformation. Notably, [29] introduce bi-histogram equalization. Unlike adaptive histogram
equalization, where multiple histograms are constructed based on the spatial relationship of pixels, bi-
histogram equalization constructs multiple histograms based on the similarity of intensities. An image is
partitioned by its mean intensity, then histogram equalization is independently applied to both parts. This
technique aims to preserve the mean brightness of an image, but may not obtain the maximum entropy
when the number of pixels assigned to each partition differs. Wang et al. [51] address this by partitioning the
probability mass function (PMF) of the image into equal areas (i.e., using the median intensity). Many works
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have sought to enhance the contrast in an image locally while imposing brightness preserving constraints [7,
22, 50]. The use of piecewise-linear representations for histogram modification are well-known [24]. This
representation has been applied to histogram equalization, where it serves as an approximation of the
CDF [28, 23]. However, current approaches in the literature do not address the problem of sparsity in the
resulting histogram.

Hall [17] identifies that digitized images do not produce a uniform histogram when using the naïve
histogram equalization technique. Rather than constructing a typical CDF, a family of techniques seek to
address this problem by determining a strict order for pixels based on their intensities. Given an ordering,
pixels are then divided into l evenly spaced bins that correspond to a pixel intensity. These techniques are
capable of maximizing the entropy of the resulting equalized histogram; however, the general approach is
not infallible. The principle challenge is deciding how to appropriately handle ties—where two pixels have
the same intensity—without this, a strict ordering is not possible. A series of works [10, 11, 12] apply a series
of low-pass (blurring) filters of varying neighbourhood sizes on an input image to establish an order for pixels
of the same intensity. While this approach does rely on spatial information, it can cause undesirable blurring
along edges and at corners. An additional problem is the enhancement of noise in an image. Nikolova
et al. [37] attempt to dequantize an image approximately by using a variational-based optimization approach
on the image’s graph structure that may help with some quantization noise. The intensity of pixels in the
dequantized image tends to be unique, so a strict ordering for histogram specification may be applied.
Similarly, the proposed method performs dequantization as an intermediary step, and can therefore be
incorporated into a similar pixel ordering framework.

While strict ordering methods produce perfectly flat histograms, such techniques degenerate in scenarios
where the original image contains sparse intensities.

2.2 Dequantization

Key to the proposed method is the conversion of integer-based pixelwise intensities into a floating-point
representation that approximates the original pixel’s intensity before quantization. The problem of dequant-
ization has been examined in works mostly related to bit-depth expansion [32, 8, 3, 49] and inverse tone
mapping—or high dynamic range (HDR) reconstruction—[41] both via optimization [2, 6, 44] and deep learn-
ing [15, 52, 34] techniques. Broadly, the goal of these methods is to—given a quantized image—recover the
original (dequantized) image while suppressing perceptual artifacts (e.g., noise, false contours, half-toning
& edge preservation). Many notable works have investigated these problems: false contours [25, 13, 32],
half-toning [30, 35], and preserving edges [9]. These solutions could theoretically help to address our dequant-
ization problem; however, they introduce unnecessary assumptions about the content of an image that may
increase the dequantization error to reduce visual artifacts, rather than necessarily ensuring the quality of
the histogram.

Other works consider the problem of recovering an HDR image from a low dynamic range source. Recent
techniques in this area often employ deep learning frameworks to address related problems, for example,
inverse half-toning [43, 20], removing false contour artifacts [4], and exposure correction of an image in
challenging lighting scenarios [33, 34]. In practice, these methods generally suffer from the problem of data
scarcity, which is not typically a problem for hand-engineered approaches.

The closest related work to the proposed kernel is that of [44]. The authors apply a sparse adaptive filtering
technique to remove artifacts caused by intensity quantization. To preserve edges, the smoothing filter is only
applied when the intensities of the neighbouring pixels are within a sufficient delta of the central pixel that is
determined using [6]—a technique for inverse tone mapping. A follow-up work formulated a procedure for
selecting optimal parameters [45]. We illustrate that this approach is very cautious about where filtering is
applied, greater locality could be achieved using smoothing filters that preserve edges (e.g., [48]).

Chen et al. [6] construct a continuous representation by fitting a polynomial equation to the intensity
transformation function. For greater accuracy, rather than using a high-order polynomial, the authors
propose to arbitrarily split the intensity space and approximate piecewise polynomials.

3 Background

Without loss of generalization, a monochrome image can be seen as a piecewise continuous bivariate function
f : Ω→ I that assigns to any point (x , y ) from the domain Ω= [0,1]× [0,1] an intensity f (x , y ) in the range
I = [0,1]. A digital image I is a discrete representation of f , with the domain partitioned into m ×n pixels
and the intensity quantized to the discrete range L = {0,1, . . . , l −1}. Usually, I is given in terms of a matrix
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Figure 2: Histograms of the typical (a) PMF, and (b) (discrete) CDF computed for histogram equalization. The corres-
ponding (c) PDF, (d) (continuous) CDF produced by the new method without upscaling the intensities.

of values Ii , j ∈ L , for i = 0, 1, . . . , m −1 and j = 0, 1, . . . , n −1, where Ii , j is the discrete intensity of the (i , j )-th
pixel.

To convert a given image f into a digital image I, the pixel intensities can be determined, for example, by
sampling f at the pixel centres,

fi , j = f
�

(i + 1
2 )∆x , ( j + 1

2 )∆y

�

,

where∆x = 1/m and∆y = 1/n , or by averaging f over each pixel,

fi , j =

∫ ( j+1)∆y

j∆y

∫ (i+1)∆x

i∆x

f (x , y )dx dy ,

and then quantizing fi , j by setting

Ii , j = round
�

(l −1) fi , j

�

. (1)

In this paper, we consider the rounding operator with the “round half up” tie-breaking rule and hence assume
that round(x ) =

�

x + 1
2

�

.
Vice versa, a digital image I can be seen as a bivariate image function f with constant intensity over the

rectangles covered by each pixel, that is,
f (x , y ) =∆l Ii , j ,

where∆l = 1/(l −1) and

i =

¨

⌊m x ⌋, x ∈ [0, 1),
m −1, x = 1,

j =

¨

⌊n y ⌋, y ∈ [0, 1),
n −1, y = 1.

3.1 Histogram equalization

Let us first consider the continuous setting. Denoting by pf : I → [0, 1] the probability density function (PDF)

of an image f , it is well known [16] that transforming the intensities of f with the CDF c f (t ) =
∫ t

0
pf (s )ds

gives an image f ′ = c f ◦ f with uniform PDF pf ′ ≡ 1.
In essence, discrete methods seek to emulate this process. For a digital image I, this histogram equalization

procedure is usually discretized as follows [42].

1. Construct a histogram of the pixelwise intensities of an image. We first determine the probability of a
pixel in I to have a specific intensity,

p (k ) =
h (k )
mn

, k ∈ L , (2)

where h (k ) = #{(i , j ) : Ii , j = k} is the number of pixels in I with discrete intensity k , forming the PMF
p : L→ [0, 1] (shown in Figure 2a).

2. Compute the cumulative distribution function. As illustrated in Figure 2b, we then accumulate and
quantize these probabilities to produce the discrete CDF c : L→ L ,

c (k ) = round

�

(l −1)
k
∑

i=0

p (i )

�

, k ∈ L . (3)

By construction, c (l −1) = l −1. When, c (0)> 0, c may be scaled such that c (0) = 0 [16].
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3. Back project intensities using the cumulative distribution function. Finally the pixel intensities of the
processed image I∗ are set to I ∗i , j = c (Ii , j ), for i = 0, 1, . . . , m−1 and j = 0, 1, . . . , n−1. The resulting image
has an intensity histogram where the bins are approximately equalized.

We consider this as a baseline approach to histogram equalization. It may be noted that other descrip-
tions [26, 31, 16] scale the output of the CDF to ensure that the output value range (e.g., for an 8-bit image)
populates the first and last histogram bins, at 0 and 255. The fundamental problem with such approaches
is that, after transformation, the resulting PMF of the equalized image is often sparse [17] (see Figure 1b).
This means that the available discrete intensity values are not fully utilized. With the proposed method, this
problem is assuaged.

4 The new method

In order to improve the classical approach to histogram equalization of digital images, we propose to adopt
the continuous setting more carefully. To this end, we assume that the given digital image I is the discrete
representation of some image f . According to (1), each discrete intensity k ∈ L represents some continuous
intensity t ∈ I with

(k − 1
2 )∆l ≤ t < (k + 1

2 )∆l . (4)

Under the assumption that the PDF of f is uniform for all intensities that get quantized to the same discrete
intensity, we conclude that pf : I → I is a piecewise constant function with

pf (t ) =
p (k )
∆l
·
¨

1, k ∈ {1, 2, . . . , l −2},
2, k ∈ {0, l −1},

where k = round((l −1)t ) and p (k ) as in (2), illustrated in Fig 2c. Note that the factor 2 owes to the fact that the
intervals
�

0, 1
2∆l

�

and
�

1− 1
2∆l , 1
�

of intensities that are quantized to the discrete intensities k = 0 and k = l −1,
respectively, are half as big as the other intervals. Consequently, the CDF of f , c f : I → I , is a piecewise linear

function over the partition
�

0, 1
2∆l , 3

2∆l , . . . , 2l−3
2 ∆l , 1
�

of I with c f (0) = 0, c f (1) = 1, and

c f

�

(k + 1
2 )∆l

�

=
k
∑

i=0

p (i ), k = 0, 1, . . . , l −2,

as shown in Figure 2d.
Using this model, any discrete intensity k ∈ L is first converted to a continuous value, then transformed

by c f , and finally quantized back to L , that is,

c̃ (k ) = round
�

(l −1)c f (∆l k )
�

. (5)

Since

c f (∆l k ) =
c f

�

(k − 1
2 )∆l

�

+ c f

�

(k + 1
2 )∆l

�

2

=
k−1
∑

i=0

p (i ) +
1

2
p (k ),

for k ∈ {1,2, . . . , l − 2}, this turns out to be very similar to the classical approach (cf. (3)), yielding almost
identical processed images.

4.1 Intensity upscaling

The crucial next step is to further reason about the intensity t ∈ I that is represented by the discrete intensity
k = Ii , j ∈ L of the (i , j )-th pixel of I. So far, we assumed t to be the midpoint t =∆l k of the interval in (4),
which is a reasonable guess in the absence of further information, but we can do better, if we take the
intensities of neighbouring pixels into account. To this end, recall that I is the discrete representation of
some image f , which is assumed to be piecewise continuous. In a first step, we therefore identify all those
neighbouring pixels with an intensity similar to Ii , j by defining the binary similarity mask

σi , j (u , v ) =

¨

1, if |Ii+u , j+v − Ii , j | ≤δ,

0, otherwise,
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Figure 3: Given a portion of the image in Figure 6a, we show the effect of applying our proposed filtering without
performing any upscaling or equalization. In each row, the parameter w is varied, while in each column δ is varied.
Looking at δ in isolation, we notice that key noise gradually disappears, while strong edges are preserved.

for some similarity threshold δ and a square neighbourhood window W of radius w , that is, for (u , v ) ∈
W = {(x , y ) ∈Z2 : |x |, |y | ≤w }. Nearby pixels withσi , j (u , v ) = 1 are now assumed to correspond to the same
continuous piece of f and their intensities can be used to reconstruct this piece locally. In the simplest
setting, we may fit a constant function to these intensities in the least-squares sense and take its value as a
better estimate of t . A straightforward calculation reveals that this amounts to applying a selective box filter,
which simply averages neighbouring similar intensities,

Îi , j =
1

#W ′
∑

(u ,v )∈W ′
Ii+u , j+v ,

where W ′ = {(x , y ) ∈W :σ(x , y ) = 1}, and provides the continuous intensity estimate t =∆l Îi , j . It remains
to transform this value by c f and to quantize the result to L , so as to get the discrete intensity of the (i , j )-th
pixel in I∗, that is, to set I ∗i , j = c̃ (Îi , j ) for i = 0,1, . . . , m −1 and j = 0,1, . . . , n −1, with c̃ defined as in (5), but
more generally for any real-valued argument in [0, l −1].

The influence of the parameters w and δ used just to filter an image is illustrated in Figure 3.

IW

σi j

Îi j

(a)

Î ∗i , j = (l − 1)cf (Δl Îi , j )

Îi j

Î ∗i j

(b) (c)

Figure 4: An illustration of the key steps of the proposed algorithm. (a) Given an image I, at each pixel location (i , j ) a
neighbourhood of discrete pixel intensities in a window IW are sampled. Neighbouring pixels of significantly dissimilar
intensity are filtered byσi , j , and the average of the remaining pixels is used to compute the dequantized pixel intensity Îi , j .
(b) an augmented cumulative distribution c f is used as a continuous look-up table for equalization. (c) A discrete equalized

image is recovered, where I∗i , j = round
�

Î ∗i , j

�

.
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Algorithm 1 Pseudocode for intensity dequantization.

Output: A – Dequantized image
1: function DEQUANTIZE(I, w , δ, i , j )
2: A := 0
3: z := 0
4: for i ′ :=max{0, i −w } . . . min{i +w , m −1} do
5: for j ′ :=max{0, j −w } . . . min{ j +w , n −1} do
6: d :=

�

�I(i ′, j ′)− I(i , j )
�

�

7: if d ≤δ then
8: A := A+ I(i ′, j ′)
9: z := z +1

10: end if
11: end for
12: end for
13: A := A/z ▷ A = Îi , j
14: end function

Algorithm 2 Algorithm for histogram equalization based on the description in Section 4.

Input: I, l , w ,δ – Digital image, no. of intensity levels, neighbourhood radius, similarity threshold
Output: I∗ – Adjusted image
1: m , n := size (I) ▷ image dimensions
2: for k := 0 . . . l −1 do
3: h (k ) := 0
4: end for
5: for i := 0 . . . m −1 do
6: for j := 0 . . . n −1 do
7: h (I(i , j )) := h (I(i , j ))+1 ▷ intensity histogram
8: end for
9: end for

10: for k := 0 . . . l −1 do
11: p (k ) := h (k )/(mn ) ▷ intensity probabilities as per (2)
12: end for
13: P (0) := 0
14: for i := 0 . . . l −1 do
15: P (i +1) := P (i ) +p (i ) ▷ P (i +1) = c f ((i +

1
2 )∆l )

16: end for
17: P (0) :=−p (0) ▷ P (0) = c f (− 1

2∆l )
18: P (l ) := 1+p (l −1) ▷ P (l ) = c f (1+

1
2∆l )

19: for i := 0 . . . m −1 do
20: for j := 0 . . . n −1 do
21: A :=DEQUANTIZE(I, w , δ, i , j ) ▷ A = Îi , j
22: k := round(A)
23: λ := A+0.5−k
24: A′ := (1−λ)P (k ) +λP (k +1)
25: I∗(i , j ) := round

�

(l −1)A′
�

26: end for
27: end for

4.2 Implementation

Figure 4 gives a visual overview of the proposed method, which comprises of two key parts: 1) a dequantization
procedure; and 2) a piecewise linear CDF.

Algorithm 1 describes how a pixel is dequantized with respect to its neighbours programmatically. As we
demonstrate empirically, the proposed technique performs particularly well on images that have smooth
intensity gradients; however, this may be replaced with an application-specific technique.

The pseudocode for histogram equalization is given in Algorithm 2. By constructing the CDF using the
original discretized intensities, the proposed approach avoids increasing the space complexity of the CDF,
which a perturbed real-value image would require. N.B.: lines 17 & 18 are a necessary modification for the
linear interpolation used on line 24.

The proposed method has a complexity of O(w 2mn ). In practice, we find that the optimal value for w is
likely to be small; therefore, w only has a small influence on the algorithm’s speed.
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(a) (b)

Figure 5: An example of (a) a synthetic 31-by-31 pixel 4-bit image and (b) after exact histogram equalization by a
specification method [11]. Due to the assumption that there exists an appropriate order, the method produces undesirable
results when intensities are sparse. The other approaches, evaluated later, produce the same results as naïve histogram
equalization, which looks like (a).

5 Evaluation

Qualitative results of experiments involving the methods described in the following section are discussed.
Further quantitative evaluation of the proposed method is included in Appendix A.

5.1 Benchmark methods

For the evaluation, a range of representative techniques that may be used for histogram equalization were
selected. Each method was implemented in MATLAB. While execution times are reported, it is expected that
the runtime of each method could be greatly reduced in a low-level language.

5.1.1 Naïve equalization (baseline)

Implements the discrete histogram equalization procedure as described in Section 3.1.

5.1.2 Naïve scaling (baseline)

For intensity upscaling tasks, intensities are uniformly scaled and then rounded.

5.1.3 Bi-linear interpolation

The spatial resolution of the image is increased by doubling its dimensions using bi-linear interpolation.
Naïve histogram equalization is then applied to the interpolated image before re-scaling the image back to
its original dimensions.

5.1.4 Coltuc et al. [11]

Given an image, pixels are assigned an order based on their intensity value. To determine an order between
pixels with the same intensity, the tied pixels are blurred with respect to their neighbours. The ties are then
sub-ordered by their new intensity. This tiebreaker process may be repeated using successively larger blur
windows, until all ties are resolved. While uncommon in real-world images, when intensities in the quantized
image are particularly sparse, this can lead to significant artifacts. A synthetic example of this problem is
shown in Figure 5.

5.1.5 Song et al. [44]

The method is designed for image dequantization. A sparse kernel is used for efficiently smoothing false
contours. For histogram equalization tasks, we still follow Algorithm 2, replacing the proposed dequantization
method (Algorithm 1) with the authors’ described algorithm [44].
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(a) 8-bit input (b) naïve (entropy: 6.3601) (c) bilinear (entropy: 7.9754)

(d) Coltuc et al. [11] (entropy: 7.9921) (e) Song et al. [44] (entropy: 7.8047) (f) our method (entropy: 7.9704)

Figure 6: Qualitative results of the benchmarked histogram equalization methods on a real 8-bit image. The intensity
histograms given all share the same limits. (b) retains natural image noise, while the equalization is sub-optimal. (c)
applies a slight blur to the entire image. (d) perfectly equalizes the histogram, while enhancing noise. (e) the performance
of [44] is the same as the naïve method in high contrast areas. (f) softens noise in the image, while preserving details such
as the text and star on the side of the plane (w = 1 & δ= 4).

5.2 Benchmark datasets

Two sets of images were collected, one of noiseless synthetic images, as well as a set of images captured by
typical digital cameras that contain natural noise. For quantitative experiments (Appendix A), the original
images were treated as ground truths, while a quantized version of each image was used as input.

5.2.1 Synthetic dataset

Synthetic 3D objects were rendered such that no noise was captured by a virtual camera. The shapes were
textureless and conform to the assumption that an image comprises of piecewise-linear patches. These were
primarily used for intensity upscaling experiments, described in Appendix A.3.

5.2.2 Real dataset

Illustrative images presented in this section were obtained from the USC-SIPI Image Database.
For histogram equalization experiments, presented in Appendix A.4, a moderately sized database of 1449

real images was collected using the Flickr API. The following keywords were used to collect a range of real
images: car, Cuba, pedestrian, tiles, and windmill.

5.3 Histogram equalization

Exemplar results that are representative of each method are shown in Figures 6 & 7. For each processed
image, the entropy is reported. Entropy can be viewed as a measure of uniformity of the distribution of a PDF.
An appropriate measure is Shannon’s entropy, which is defined as

H (I∗) =
l
∑

i=1

�

p (i ) log2

1

p (i )

�

.
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(a) 6-bit input (b) naïve (entropy: 4.5374) (c) bilinear (entropy: 5.2563)

(d) Coltuc et al. [11] (entropy: 7.9922) (e) Song et al. [44] (entropy: 5.6542) (f) our method (entropy: 5.5950)

Figure 7: Qualitative results of the benchmarked histogram equalization methods on a synthetic 6-bit image upscaled to
8 bits. [11] enhances artifacts present in the image.

(a) target input (b) naïve (MSE: 3.3679) (c) bilinear (MSE: 0.1567)

(d) Coltuc et al. [11] (MSE: 0.0000) (e) Song et al. [44] (MSE: 0.5981) (f) our method (MSE: 0.3615)

Figure 8: An example of histogram matching of the overexposed image in Figure 6a and the histogram of (a). The MSE
between the adjusted and target histogram is given below each image (note that the MSE has been scaled by ×105). As in
Figure 6, similar perceptual artifacts are observed.

The bounds are 0 ≤H (I∗) ≤ log2 l , where log2 l is the maximum entropy, which represents a uniform PDF.
Further results are included in Appendix A.4.
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(a) input/quantized (b) Song et al. [44] (c) our method

(a) quantized (b) Song et al. [44] (c) our method

Figure 9: An example of edge preservation. (a) is the 4-bit image used as input. Columns (d–f) show the result of applying
the Canny edge detector. The result of performing edge detection on the quantized image is shown in (d). (b–c) show the
result of dequantizing the image using Song et al. [44] and our method before performing edge detection. (d–e) contain
undesirable noise caused by artifacts from the initial quantization of (a), which are suppressed in (f) by the proposed
method.

In Figures 6 & 7, we find that [11] obtains the greatest entropy. However, in Figure 7, [11] enhances the
presence of false contours. The bilinear interpolation method achieves comparable results to the proposed
technique; however, due to the lack of edge-preservation, it smooths the entire image slightly. We emphasize
that the selectivity of the proposed smoothing filter allows it to controllably preserve edges.

The extension to histogram matching for each method is relatively trivial and therefore omitted. Qualitat-
ive results are presented in Figure 8.

5.4 Edge preservation

Consider a surface that exhibits a piecewise linear signal x with sharp discontinuities where edges are present
(e.g., a step function). Simply applying an averaging filter to a quantized signal can smooth out quantization
errors with intervals, but this will also smooth the boundaries between separate intervals in x . This is
undesirable. A simple yet effective way to preserve the piecewise quality of x when filtering is to exclude
highly dissimilar neighbouring values, as these are more likely to be part of a separate interval.

We demonstrate the ability of our method to correctly preserve edges by applying Canny edge detection [5]
to an image that we dequantize in Figure 9. While, to the naked eye, the dequantized image (on the top row)
of our method (where w = 2 & δ= 1) appears to contain false contours, the results demonstrate that these
are sufficiently smoothed for the purposes of edge detection. The proposed method produces a binarized
image with less noise than Song et al. [44], which preserves false contours near edges, because the method
strictly does not apply dequantization in locations where the intensity of one or more neighbouring pixels is
greater than a determined threshold.

6 Discussion

While the focus of this paper has been histogram equalization, the applications of the proposed technique
extend beyond this scope. Our method can be easily applied to histogram matching and adaptive histogram
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equalization. Also, similar to [11], using the proposed upsampling procedure to determine an order of the
intensities could enhance the results for exact histogram equalization.

The preceding discussion in Section 4 can also be adapted for the problem of bi-histogram equalization.
Many previous works (e.g., [29, 51, 7, 39, 47]) select an intensity to partition an image into two or more parts,
let us call this boundary value b . In the finite setting, image quantization introduces errors that cause pixels
to be assigned to the incorrect partition with respect to b . Therefore, the dequantized image should be used
to accurately determine the partitioning. An upper PMF and lower PMF can then be constructed as previously
described.

A key limitation of this work is the procedure used for image upscaling. In our experiments, Algorithm 1
helped to accurately dequantize synthetic images. However, for real images, it was only shown to improve the
histogram quality. It is possible that Algorithm 1 may be further improved by applying a Gaussian weighting
to the contribution of neighbouring pixels, or by replacing this part entirely with a data-driven technique.

A further consideration is that it is possible that a pixel that is darker than another pixel in the original
image could be switched—such that the darker pixel is brighter than the other pixel in the adjusted image.
The occurrence of these are bounded by δ, as δ becomes smaller, the impact of this reduces.

7 Conclusions

In this paper, we consider the problem of recovering high-quality histograms from low bit-depth images.
Through fundamental reasoning about what a pixel and its neighbours represent, a simple yet effective
technique is proposed to transform discrete pixel intensities into continuous values. Consequentially, the
data better reflects the continuous theory for histogram equalization that is commonly followed in the discrete
setting.

Only two parameters (w & δ) are used to finely balance the level of intensity error and entropy, while [11]
offers no parameters, and [44] requires many that are complex to tune. Parameter selection experiments
conducted on our method revealed that, for real images, the optimal parameters tend to be small values. In
specific applications replacing the technique used for dequantization with a bespoke algorithm may further
enhance the results.

Implementations for GIMP (in Python) and Paint.NET (in C#) are available.
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A Additional experiments

A.1 Quantitative measures

Both root mean square error (RMSE) and peak signal to noise ratio (PSNR) are used to quantify the difference
between each up-sampled image I∗ and the corresponding ground truth image Igt. As [19] conclude, typical
measures like PSNR and structural similarity (SSIM) are—relatively—insensitive to Gaussian blur.

Additional measures used to help determine the quality of the histogram are detailed here.

A.1.1 Mean square error of p

The mean sum of squared errors between the PDF of the original 8-bit image p gt and the PDF of the dequant-
ized (e.g., upscaled from 6-bit to 8-bit) image p ∗, that is,

MSEp(I
gt; I∗) =
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lgt

lgt
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where p gt and p ∗ are calculated as in (2).

A.1.2 Dequantization error

The mean sum of squared errors of the gradient between the CDF of Igt and I∗, that is,

DE(Igt; I∗) =
1

lgt

lgt
∑

i=1

�

�

c gt(i )− c ∗(i )
�′�2

,

where c gt and c ∗ are computed using (3) for all methods. This error measure produces a larger error for
methods that fail to dequantize the input image—causing a jagged appearance in the resulting CDF. Compared
with the MSEp error, this measure exhibits greater invariance to shifts in illumination, provided the rate of
change in illumination matches.

A.1.3 Histogram deviation

Ideally, an equalized histogram should be dense and flat. Additionally, in the transformed image, one expects
pixels of the same intensity to be mapped to share the same new intensity—deviations may be considered to
be errors. Histogram deviation quantifies these deviations.

For each intensity k = 0, . . . , lgt−1, we find pixels of the same intensity in the original image

Sk =
�

(i , j ) ∈M : Igt
i , j = k
	

,

where M= {0, . . . , m −1}× {0, . . . , n −1}, compute the mean after equalization

M (k ) =
1

|Sk |
|Sk |
∑

(i , j )∈Sk

I∗i , j ,

and then the variance is

var(k ) =
1

|Sk |
|Sk |
∑

(i , j )∈Sk

�

I∗i , j −M (k )
�2

.

Once computed for each 0≤ k < lgt, the mean intensity error can be measured as

1

lgt

lgt−1
∑

k=0

var(k ),

and the maximum intensity error is maxk var(k ).

A.2 Parameter selection for upscaling

The proposed method introduces two parameters that require tuning, the window size w and the intensity
threshold δ. These parameters are used for the estimation of the original intensity value of a given pixel
before quantization was applied. To determine the optimal values, a range of parameters were exhaustively
tested. For this experiment, the set of real images collected from Flickr was used.

Given an 8-bit image, a 6-bit version was produced. The low bit-depth image was then dequantized by
the proposed method using the given parameters. The proposed dequantization procedure (Algorithm 1) is
applied to each pixel, then the intensity is requantized at the new scale, that is, I∗(i , j ) := A/z · (l2−1)/(l1−1).
Finally, the error was measured between the dequantized image and the original 8-bit image in the form of
the RMSE of I∗ and the histogram error of p ∗.

Figure 10 shows the RMSE between Igt and I∗. For this database the optimal parameters were obtained
when the w was small (i.e., w = 1, meaning the window spanned 3×3 pixels). The optimal value of δ varies
depending on what is considered to be the priority for a given dataset—histogram error or pixelwise error.
Setting δ= 0 causes the method to be almost equivalent to the naïve scaling method; therefore, the optimal
value is likely to be small (i.e., δ≤ 5).

Figure 11 shows the histogram error between p gt and p ∗. The accuracy was found to improve greatly
when w > 1; however, as Figure 10 shows, this increases the RMSE score by subtly blurring the image. As δ is
increased the prominence of this undesirable blur effect is also increased.
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Figure 10: The average pixelwise RMSE of a parameter
selection experiment in which w & δ were varied, for the
task of image upscaling, to determine the optimal para-
meters w = 1 & δ= 0. When δ= 0, varying w has no effect,
the resulting error was 701.8471.

1 4 7 10
1

4

7

10

w

δ

upscaling MSEp 6- to 8-bit

0.21

0.33

0.46

error

Figure 11: The average histogram error (MSEp) of a para-
meter selection experiment in which w & δ were varied,
for the task of image upscaling. When δ = 0, varying w
has no effect, the resulting error was 1.5090.

A.3 Intensity upscaling

For dense histogram equalization, the proposed method relies upon recovering a floating point intensity
value. Ideally, the image is correctly dequantized, leading to a histogram that accurately represents that of
the original (continuous) image.

Results on synthetic images are given in Table 1. Understandably, the proposed method has a slower
execution time than simpler methods. However, in terms of the reported accuracy measures, it was found
to out-perform the other examined methods at intensity upscaling over a range of parameters. The error
manifests in the form of a slight blurring over areas with similar intensity, while the sharpness of edges is
sufficiently preserved when δ remains small.

A.4 Histogram equalization

The results of our histogram equalization experiments on the Flickr dataset are given in Table 2. Both the
histogram deviation and entropy are reported in this experiment.

Table 1: Experiments on a small set of synthetic images in which number of intensities was increased from 14-bit to
16-bit.

method RMSE PSNR (dB) MSEp

(average error × 103)
dequantization

(average error × 104)
time (s)

naïve scaling (baseline) 0.9646 48.8424 1.0430 2.6360 0.0328
bi-linear interpolation 1.4906 44.8040 1.0078 2.5320 0.1760
Coltuc et al. [11] 94.0358 9.1643 1.3176 6.5920 5.2415
Song et al. [44] 0.8871 49.8583 1.2555 3.1425 37.6417
our method (w = 1, δ= 0) 0.9646 48.8424 1.0430 2.6360 19.2229
our method (w = 1, δ= 1) 0.9008 49.6043 1.0122 2.5440 18.9384
our method (w = 1, δ= 2) 0.9693 48.9541 1.0092 2.5320 18.9429
our method (w = 1, δ= 5) 1.1889 47.0812 1.0078 2.5280 19.1186
our method (w = 2, δ= 1) 0.8849 49.7869 1.0094 2.5360 19.1533
our method (w = 2, δ= 2) 0.9842 48.8386 1.0046 2.5260 19.2021
our method (w = 2, δ= 5) 1.3387 46.0500 0.9992 2.5060 19.4689

Bold indicates the best performance in each column.
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Table 2: Results of experiments measuring deviation of intensities when performing histogram equalization and the
average entropy of the equalized histogram.

method histogram deviation ×103 entropy

average mean average max

naïve equalization (baseline) 0.0000 0.0000 7.0045
bi-linear interpolation 1.5134 9.5209 7.8493
Coltuc et al. [11] 0.0051 0.2930 7.9922
Song et al. [44] 0.4465 2.9281 7.7882
our method (w = 1, δ= 0) 0.0000 0.0000 7.0117
our method (w = 1, δ= 1) 0.0052 0.2160 7.8326
our method (w = 1, δ= 2) 0.0120 0.3550 7.8465
our method (w = 1, δ= 5) 0.0408 0.6525 7.8734
our method (w = 2, δ= 1) 0.0060 0.2326 7.8996
our method (w = 2, δ= 2) 0.0143 0.4110 7.9094
our method (w = 2, δ= 5) 0.0482 0.7735 7.9147

Bold indicates the best performance in each column.
The images evaluated were all 8-bit; therefore, the maximum achievable entropy is 8.

For this experiment, we measured the histogram deviation of the equalized image. We shall first provide
the intuition behind this measure. Considering the goal of histogram equalization, using the naïve histogram
equalization technique, the histogram deviation will measure zero error; however, the produced histogram is
undesirably sparse. Conversely, [11] is capable of guaranteeing a near-perfectly flat histogram; however, the
equalized intensity of pixels that originally shared the same value may now differ greatly. It is therefore logical
to consider the problem of histogram equalization to be finding a suitable balance between these properties.

The method in [11] achieves the greatest entropy and demonstrates that it is possible to achieve a low
mean intensity error while achieving maximal entropy on real images. The trade-off between entropy and
intensity error is highlighted by the method’s maximum histogram deviation. The proposed method achieves
a similar mean intensity error, while having a lower maximum deviation error.
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