
Convergence rates of a Hermite generalization
of Floater–Hormann interpolants
Emiliano Cirillo · Kai Hormann · Jean Sidon

Abstract

Cirillo and Hormann [2] introduce an iterative approach to the Hermite interpolation
problem, which, starting from the Lagrange interpolant, successively adds m corrections
terms to interpolate the data up to the m-th derivative. The method is general enough
to be applied to any interpolant in linear form with a sufficiently continuous set of basis
functions, but Cirillo and Hormann focus their attention on Floater–Hormann interpolants,
a family of barycentric rational interpolants that are based on a particular blend of local
polynomial interpolants of degree d . They show that the resulting iterative rational Hermite
interpolants converge at the rate of O (h (m+1)(d+1)) as the mesh size h converges to zero for
m = 1,2, and their numerical results suggest that the same rate holds for m > 2. In this
paper we prove this convergence rate for any m ≥ 1.
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1 Introduction

Let m ≥ 1 and f ∈ C m [a , b ] be an m times continuously differentiable, real-valued function over the
interval [a , b ], and consider the n +1 distinct interpolation nodes

a = x0 < x1 < · · ·< xn = b .

The Hermite interpolation problem then consists in finding a function rm ∈C m [a , b ], such that

r (k )m (xi ) = f (k )i = f (k )(xi ), i = 0, . . . , n , k = 0, . . . , m . (1)

Cirillo and Hormann [2] recently proposed a general method for defining such Hermite interpolants in an
iterative way. Given a set of n +1 basis functions b0, b1 . . . , bn ∈C m [a , b ] that satisfy the Lagrange property
bi (x j ) =δi , j , they suggest to start with the associated Lagrange interpolant

r0(x ) =
n
∑

i=0

bi (x ) f
(0)

i

and to iteratively define

rk (x ) = rk−1(x ) +
n
∑

i=0

(x − xi )
k bi (x )

k+1g i ,k

=
n
∑

i=0

k
∑

j=0

(x − xi )
j bi (x )

j+1g i , j

for k = 1, . . . , m , where

g i ,0 = f (0)i , g i , j =
f ( j )i − r ( j )j−1(xi )

j !
. (2)

They show that the resulting function rm satisfies (1) and that this approach reproduces the classical polyno-
mial Hermite interpolant if the Lagrange basis polynomials are taken as basis functions bi . Moreover, they
apply this construction to the basis functions

bi (x ) =
wi

x − xi

Á

W (x ), i = 0, . . . , n ,
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of the barycentric rational Floater–Hormann interpolants [5] for d ≤ n with barycentric weights

wi = (−1)i+d
min(i ,n−d )
∑

j=max(0,i−d )

j+d
∏

k= j ,k 6=i

1

|xi − xk |
, i = 0, . . . , n , (3)

and common denominator

W (x ) =
n
∑

i=0

wi

x − xi
. (4)

The corresponding iterative rational Hermite interpolant can be expressed as

rm (x ) =
1

W (x )m+1

n
∑

i=0

m
∑

j=0

wi
j+1

x − xi
W (x )m− j g i , j , (5)

with g i , j as in (2).
Cirillo and Hormann [2] show that the interpolant rm has no poles inR and can be evaluated with O (m 2n )

operations, based on the barycentric form [14]. The advantages of this family of interpolants over classical
approaches, such as polynomials and splines, are twofold. On the one hand, the barycentric rational
interpolants in (5) compare favourably to polynomials when the nodes x0, . . . , xn are equidistant, as they
do not exhibit the Runge phenomenon in this setting. Moreover, in the special case m = 1, the Lebesgue
constant is bounded from above by a constant [3], compared to the exponential growth of interpolating
Hermite polynomials [13]. On the other hand, the interpolant rm is infinitely often differentiable, while
splines only have a finite number of continuous derivatives. Nevertheless, splines come with the advantage
of constant-time evaluation [4], and polynomials are probably the best choice in the case of Chebyshev
nodes or similar non-uniform node distributions [16].

Apart from polynomials and splines, also rational functions have been considered for solving the Hermite
interpolation problem. The most relevant related construction is described by Schneider and Werner [14],
who were the first to study rational Hermite interpolants with the barycentric approach. They provide
an algorithm for computing the weights of the barycentric form of such interpolants and derive formulas
for determining their derivatives. Despite the advantages of their approach, the main difficulty remains
to find sets of weights that guarantee the absence of poles. Schneider and Werner suggest to prescribe a
positive denominator for the rational Hermite interpolant and to use their algorithm to get the corresponding
barycentric weights. However, the denominator suggested in [14] can lead to huge approximation errors
near the centre of the interpolation interval. A different approach is to determine the barycentric weights by
solving a nonlinear optimization problem, as proposed by Zhao et al. [17], but the resulting weights are then
not independent of f .

In order to get barycentric rational Hermite interpolants with no real poles and favourable approximation
rates, Floater–Hormann interpolants have been generalized in two ways. Jing, Kang, and Zhu [11] focus on
the interpolation of f and its first derivative and propose to define r1 as a blend of local polynomial Hermite
interpolants of degree 2d +1. The resulting rational functions have the same degrees as the interpolants
in (5) but lower convergence rates. Instead, Floater and Schulz [6] derive a Hermite version of the Floater–
Hormann interpolant by considering multiple interpolation nodes, giving interpolants with the same degree
and approximation order as rm , but larger maximum approximation errors [2].

Regarding the approximation order of the interpolants in (5), Cirillo and Hormann [2] observe that rm

converges to the function f at the rate of O (h (m+1)(d+1)), where

h = max
i=1,...,n

(xi − xi−1), (6)

is the global mesh size of the nodes, but they prove this behaviour only for m = 1,2. The key argument in
their proof is the identity

wi
m g i ,m =

n
∑

i1=0

wi1

n
∑

i2=0

wi2
· · ·

n
∑

im=0

wim
f [xi , xi1

, . . . , xim
], i = 0, . . . , n , (7)

which they show for m = 1, 2, but only conjecture to be true for m > 2.
The main goal of this work is to prove this convergence rate for m > 2, but instead of proving (7) for m > 2

and then concluding the convergence rate, we pursue a different strategy in this paper. We first show that
the iterative rational Hermite interpolant in (5) can be expressed in an alternative way, which in turn allows
us to write the error in a more convenient form (Section 2). We then use this result to derive the expected
convergence rate (Theorem 5) and to confirm the conjecture that (7) holds for any m ≥ 1 (Section 3).
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2 A new formula for the iterative rational Hermite interpolant

Let

qm (x ) =
1

W (x )m+1

n
∑

i0=0

wi0

n
∑

i1=0

wi1
· · ·

n
∑

im=0

wim

m
∑

j=0

f [xi0
, . . . , xi j

]
∏m

k= j (x − xik
)
. (8)

The main goal of this section is to prove that qm coincides with the interpolant rm in (5). We first show
that qm interpolates the function f and its first m derivatives at the interpolation nodes. To this end, we
consider the error

em (x ) = f (x )−qm (x ) (9)

and start by expressing it in terms of

Am (x ) =
n
∑

i0=0

wi0

n
∑

i1=0

wi1
· · ·

n
∑

im=0

wim
f [x , xi0

, . . . , xim
]. (10)

Lemma 1. The error in (9) can be written as

em (x ) =
Am (x )

W (x )m+1 .

Proof. By Newton’s error formula [8] for the polynomial interpolant of the values fi0
, . . . , fim

at the nodes
xi0

, . . . , xim
,

f (x )−
m
∑

j=0

f [xi0
, . . . , xi j

]
j−1
∏

k=0

(x − xik
) = f [x , xi0

, . . . , xim
]

m
∏

k=0

(x − xik
),

we get
m
∑

j=0

f [xi0
, . . . , xi j

]
∏m

k= j (x − xik
)
=

f (x )
∏m

k=0(x − xik
)
− f [x , xi0

, . . . , xim
],

and the statement then follows, because

em (x ) = f (x )−
1

W (x )m+1

n
∑

i0=0

wi0

n
∑

i1=0

wi1
· · ·

n
∑

im=0

wim

�

f (x )
∏m

k=0(x − xik
)
− f [x , xi0

, . . . , xim
]

�

= f (x )−
1

W (x )m+1

�

W (x )m+1 f (x )−Am (x )
�

=
Am (x )

W (x )m+1 .

Before we proceed to prove that qm is indeed a Hermite interpolant of f , we need an auxiliary result.

Lemma 2. Let
ωi (x ) = (x − xi )W (x ), i = 0, . . . , n ,

and
Ωi , j (x ) =ωi (x )

j+1, j ≥ 0. (11)

Then,

|Ω(k )i , j (xi )| ≤
(k + j )!

j !
max

l=0,...,k
|ϑi ,l | j+1,

for any k ≥ 0, where

ϑi ,0 =−wi , ϑi , j =
n
∑

l=0
l 6=i

wl

(xi − xl )
j

, j ≥ 1.
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Proof. By the general Leibniz rule for higher order derivatives of a product of several functions,

Ω(k )i , j (x ) =
∑

|γ|=k

�

k

γ0, . . . ,γ j

� j
∏

l=0

ω
(γl )
i (x ),

where the sum ranges over all ( j +1)-dimensional multi-indices γ= (γ0, . . . ,γ j )whose non-negative integer
components sum up to k . Since

ωi (x ) =wi + (x − xi )
n
∑

l=0
l 6=i

wl

x − xl
(12)

and therefore
ω
(p )
i (xi ) = (−1)p+1p !ϑi ,p , p ≥ 0,

and since there are exactly
�k+ j

j

�

possible γ’s whose components sum up to k , we conclude that

|Ω(k )i , j (xi )|= k !

�

�

�

�

∑

|γ|=k

j
∏

l=0

ϑi ,γl

�

�

�

�

≤ k !

�

k + j

j

�

max
l=0,...,k

|ϑi ,l | j+1.

We are now ready to show that qm is a Hermite interpolant of order m .

Proposition 3. If f ∈C 2m+1[a , b ], then

e (k )m (xi ) = 0, i = 0, . . . , n , k = 0, . . . , m .

Proof. We start by fixing the index i and, using Lemma 1, rewriting the error em as

em (x ) =φm (x )Am (x )Bm (x ), (13)

with Am (x ) as in (10) and

φm (x ) = (x − xi )
m+1, Bm (x ) =

1

Ωi ,m (x )
.

Applying the Leibniz rule twice, we have

e (k )m (xi ) =
k
∑

j=0

�

k

j

�

φ(k− j )
m (xi )(Am Bm )

( j )(xi )

=
k
∑

j=0

�

k

j

�

φ(k− j )
m (xi )

j
∑

l=0

�

j

l

�

A( j−l )
m (xi )B

(l )
m (xi ),

and since φ( j )m (xi ) = 0 for j = 0, . . . , m , it remains to show that A( j )m (xi ) and B ( j )m (xi ) are both bounded for
j = 0, . . . , m .

On the one hand, using the derivative formula for divided differences [1, 10], we have

A( j )m (xi ) = j !
n
∑

i0=0

wi0

n
∑

i1=0

wi1
· · ·

n
∑

im=0

wim
f [(xi )

j+1, xi0
, . . . , xim

],

where (·)k indicates a k -fold argument, and hence,

|A( j )m (xi )| ≤ j !(n +1)m+1 max
l=0,...,n

|wl |m+1‖ f (m+ j+1)‖,

with ‖·‖ denoting the maximum norm. This upper bound is finite under the assumption that f ∈C 2m+1[a , b ].
On the other hand, it follows from Hoppe’s formula [9, 12] and the relation

Ωi ,m (x )
q =

¨

1, if q = 0,

Ωi ,q (m+1)−1(x ), if q > 0.
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that

B ( j )m (xi ) =
j
∑

p=0

(−1)p

Ωi ,m (xi )
p+1

p
∑

q=0

�

p

q

�

(−1)p−qΩi ,m (xi )
p−q

�

(Ωi ,m )
q
�( j )
(xi )

=
j
∑

p=0

�

δ j ,0

Ωi ,m (xi )
+

p
∑

q=1

�

p

q

�

(−1)q
Ω
( j )
i ,q (m+1)−1(xi )

Ωi ,(q+1)(m+1)−1(xi )

�

.

Recalling from (11) and (12) that
Ωi ,m (xi ) =wi

m+1,

we then have

|B ( j )m (xi )| ≤
j +1

|wi |m+1 +
j
∑

p=0

p
∑

q=1

�

p

q

� |Ω( j )i ,q (m+1)−1(xi )|

|wi |(q+1)(m+1) ,

and it follows from Lemma 2 that this upper bound is finite.

The main result of this section now follows after rewriting qm and rm in rational form.

Theorem 4. The interpolants qm and rm coincide for any f ∈C 2m+1[a , b ].

Proof. We first recall from [5] that W (x ) in (4) can be expressed as

W (x ) =
n−d
∑

i=0

(−1)i

(x − xi ) · · · (x − xi+d )
.

Therefore, after multiplying numerator and denominator of rm in (5) by µ(x )m+1, where

µ(x ) =
n
∏

j=0

(x − x j ),

we can rewrite the interpolant in rational form as

rm (x ) =
n
∑

i=0

m
∑

j=0

µ(x ) j wi
j+1Q (x )m− j g i , j

n
∏

l=0
l 6=i

(x − xl )
Á

Q (x )m+1,

where

Q (x ) =µ(x )W (x ) =
n−d
∑

i=0

� i−1
∏

j=0

(x j − x )
n
∏

j=i+d+1

(x − x j )

�

is a polynomial of degree at most (n −d ).
Likewise, multiplying numerator and denominator of qm in (8) by µ(x )m+1 gives

qm (x ) =
n
∑

i0=0

wi0

n
∑

i1=0

wi1
· · ·

n
∑

im=0

wim

m
∑

j=0

µ(x ) j f [xi0
, . . . , xi j

]
m
∏

k= j

n
∏

l=0
l 6=ik

(x − xl )
Á

Q (x )m+1.

We observe that rm and qm share the same denominator and both numerators are of degree at most
(m + 1)(n + 1) − 1. As the coefficients of both numerator polynomials are uniquely determined by the
(m +1)(n +1) conditions required to solve the Hermite interpolation problem, they must coincide.

3 Approximation error

Let us now bound the approximation error of the iterative rational Hermite interpolant rm in (5). To this end,
as in [5], we need to assume that in the case d = 0 the local mesh ratio

β = max
1≤i≤n−2

min
§

xi+1− xi

xi − xi−1
,

xi+1− xi

xi+2− xi+1

ª

remains bounded as h→ 0.
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Theorem 5. Suppose that m ≥ 1, d ≥ 0, and f ∈C (m+1)(d+2)[a , b ], and let h be as in (6). Then,

‖ f − rm‖ ≤C h (m+1)(d+1), (14)

where the constant C depends only on m, d , the derivatives of f , the interval length b −a , and, only in the
case d = 0, on the local mesh ratio β .

Proof. In order to prove this result, we follow the arguments used in the proof of Theorem 3 in [2]. By
Lemma 1 and Theorem 4, we have

f (x )− rm (x ) =
Am (x )

W (x )m+1 ,

and, since rm interpolates f at the interpolation nodes, it is sufficient to consider x ∈ [a , b ] \ {x0, . . . , xn}. As
in the proof of Theorem 2 in [5], we now derive an upper bound for the numerator Am (x ) and a lower bound
for the denominator W (x )m+1.

Regarding the numerator, we recall Lemma 2 in [2], which states that the barycentric weights in (3) satisfy

n
∑

i=0

wi f [x , xi ] =
n−d
∑

i=0

(−1)i f [x , xi , . . . , xi+d ]

for any x ∈R, and apply this fact (m +1) times to Am in (10) to obtain

Am (x ) =
n−d
∑

i0=0

(−1)i0

n−d
∑

i1=0

(−1)i1 · · ·
n−d
∑

im=0

(−1)im f [x , xi0
, . . . , xi0+d , . . . , xim

, . . . , xim+d ].

Let us first assume that n −d is odd, so that the number of terms in all sums is even. Focussing on the last
sum with index im , we combine the first and second terms, the third and fourth, and so on, to get

n−d
∑

im=0

(−1)im f [x , xi0
, . . . , xi0+d , . . . , xim−1

, . . . , xim−1+d , xim
, . . . , xim+d ] =

−
n−d−1
∑

im=0
im even

(xim+d+1− xim
) f [x , xi0

, . . . , xi0+d , . . . , xim−1
, . . . , xim−1+d , xim

, . . . , xim+d+1]

and, after applying the same strategy to all remaining sums, we have

Am (x ) = (−1)m+1
n−d−1
∑

i0=0
i0 even

(xi0+d+1− xi0
)

n−d−1
∑

i1=0
i1 even

(xi1+d+1− xi1
) · · ·

· · ·
n−d−1
∑

im=0
im even

(xim+d+1− xim
) f [x , xi0

, . . . , xi0+d+1, . . . , xim
, . . . , xim+d+1].

Recalling from the proof of Theorem 2 in [5] that

n−d−1
∑

i=0

(xi+d+1− xi )≤ (d +1)(b −a ),

we conclude

|Am (x )| ≤ (d +1)m+1(b −a )m+1 ‖ f ((m+1)(d+2))‖
((m +1)(d +2))!

. (15)

If n −d is even, then the terms in the sums do not come in pairs anymore, and we need to be a bit more
careful. Splitting off the last term from the sum with index im and combining the other terms as in the
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previous case we get

n−d
∑

im=0

(−1)im f [x , xi0
, . . . , xi0+d , . . . , xim−1

, . . . , xim−1+d , xim
, . . . , xim+d ] =

−
n−d−2
∑

im=0
im even

(xim+d+1− xim
) f [x , xi0

, . . . , xi0+d , . . . , xim−1
, . . . , xim−1+d , xim

, . . . , xim+d+1]

+ f [x , xi0
, . . . , xi0+d , . . . , xim−1

, . . . , xim−1+d , xn−d , . . . , xn ].

Repeating this procedure for all remaining sums, we find that

Am (x ) =
m+1
∑

k=0

(−1)m+1−k

�

m +1

k

�n−d−2
∑

i0=0
i0 even

(xi0+d+1− xi0
)

n−d−2
∑

i1=0
i1 even

(xi1+d+1− xi1
) · · ·

· · ·
n−d−2
∑

im−k=0
im−k even

(xim−k+d+1− xim−k
) f [x , xi0

, . . . , xi0+d+1, . . . , xim−k
, . . . , xim−k+d+1, (xn−d , . . . , xn )

k ],

and therefore

|Am (x )| ≤
m+1
∑

k=0

(d +1)m+1−k (b −a )m+1−k

�

m +1

k

�

‖ f ((m+1)(d+2)−k )‖
((m +1)(d +2)−k )!

. (16)

For the denominator, we remember from [5] that

|W (x )| ≥
1

d ! h d+1

if d ≥ 1 and

|W (x )| ≥
1

(1+β )h

if d = 0. The statement then follows by combining these bounds.

As in [2], Equations (15) and (16) allow us to deduce the degree of polynomial reproduction of rm .

Corollary 6. The iterative rational Hermite interpolant rm reproduces polynomials of degree (m +1)(d +1)−1
and even of degree (m +1)(d +2)−1, if n −d is odd.

We conclude this paper by confirming the conjecture of Cirillo and Hormann [2] regarding the validity of (7)
for any m ≥ 1.

Corollary 7. If m ≥ 1 and f ∈C 2m+1[a , b ], then

wi
m g i ,m =

n
∑

i1=0

wi1

n
∑

i2=0

wi2
· · ·

n
∑

im=0

wim
f [xi , xi1

, . . . , xim
], i = 0, . . . , n .

Proof. Using (2), Theorem 4, and (13), we can express g i ,m as

g i ,m =
1

m !

�

f (m )(xi )− r (m )m−1(xi )
�

=
1

m !
e (m )m−1(xi ) =

1

m !
(φm−1Am−1Bm−1)

(m )(xi ),

and applying the Leibniz rule twice gives

g i ,m =
1

m !

m
∑

j=0

�

m

j

�

A(m− j )
m−1 (xi )(φm−1Bm−1)

( j )(xi )

=
1

m !

m
∑

j=0

�

m

j

�

A(m− j )
m−1 (xi )

j
∑

l=0

�

j

l

�

φ
( j−l )
m−1 (xi )B

(l )
m−1(xi ).
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Figure 1: Log-log plot of the error with respect to h for Experiment 1, 2, and 3 (from left to right).

Experiment m d f xi

1 3 3 exp(−(18x −9)2/64)/3 i/n

2 4 2
p

256−81(2x −1)2/18−1/2 (1− cos(iπ/n ))/2

3 3 1 |2x −1|(2x −1)3 i/n

Table 1: Parameters m and d , functions f , and interpolation nodes xi used in our numerical experiments.

Since

φ
( j )
m−1(xi ) =

¨

m !, if j =m ,

0, otherwise,

and we can show, using the same arguments as in the proof of Proposition 3, that A( j )m−1(xi ) and B ( j )m−1(xi ) are
bounded for j = 0, . . . , m , as long as f ∈C 2m [a , b ], we conclude

wi
m g i ,m =

wi
m

m !
Am−1(xi )m ! Bm−1(xi ) = Am−1(xi ),

which proves the statement.

4 Numerical results

We implemented the iterative rational Hermite interpolants rm and carried out various experiments to
numerically verify the approximation order stated in Theorem 5. Table 1 lists the individual settings of
three exemplary experiments that we decided to report in detail. The plots in Figure 1 show the expected
convergence rate O (h (m+1)(d+1)) as a thin straight line and the behaviour of the approximation error ‖em‖
for different values of n , obtained by sampling em = f − rm at 100 equidistant points in each of the n
subintervals [xi−1, xi ], i = 1, . . . , n and determining the maximum of these samples. Since the error behaves
differently for even and odd values of n , we separate both cases and show two graphs, one for n = 2k and
one for n = 2k + 1, with k = 5, . . . ,320 in both cases. All computations were performed in C++ using the
multiple-precision library MPFR [7].

The first two experiments support the statement of Theorem 5, and Experiment 3 confirms that the
order of continuity of f is crucial for the approximation order. Since m = 3 and d = 1, we would expect an
approximation order of O (h 8), but this order is guaranteed by Theorem 5 only if f ∈C 12, while the function
considered in this experiment is just three times continuously differentiable, and the approximation order
is indeed merely O (h 4). More generally, we observed that the approximation order appears to be O (h k+1)
if f ∈ C k for some k < (m + 1)(d + 1), so it might be possible to relax the condition on f in Theorem 5
to f ∈C (m+1)(d+1)−1, but so far we do not know how to prove it.

Overall, the experiments show that the error is smaller for n −d even, and we observed this pattern in
other experiments, too. This is contrary to the upper bounds derived in the proof of Theorem 5, since the
upper bound for n −d odd in (15) is clearly smaller than the upper bound in (16) for n −d even. However,
we do not claim that these bounds are sharp, and it remains interesting future work to further investigate
this phenomenon.
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