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Abstract

Barycentric rational Floater–Hormann interpolants compare favourably to classical polyno-
mial interpolants in the case of equidistant nodes, because the Lebesgue constant associated
with these interpolants grows logarithmically in this setting, in contrast to the exponential
growth experienced by polynomials. In the Hermite setting, in which also the first derivatives
of the interpolant are prescribed at the nodes, the same exponential growth has been proven
for polynomial interpolants, and the main goal of this paper is to show that much better
results can be obtained with a recent generalization of Floater–Hormann interpolants. After
summarizing the construction of these barycentric rational Hermite interpolants, we study
the behaviour of the corresponding Lebesgue constant and prove that it is bounded from
above by a constant. Several numerical examples confirm this result.
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1 Introduction

Let n ∈N and Xn = {x0, x1, . . . , xn} be a set of n +1 nodes, such that 0= x0 < x1 < · · ·< xn = 1. Given two sets
of basis functions b0,i and b1,i , i = 0, . . . , n , satisfying

b0,i (x j ) =δi , j , b ′0,i (x j ) = 0,

b1,i (x j ) = 0, b ′1,i (x j ) =δi , j ,

for j = 0, . . . , n , and some f ∈C 1[0, 1], we are interested in the class of linear Hermite interpolants hn : [0, 1]→R
of f of the form

hn (x ) =
n
∑

i=0

b0,i (x ) fi +
n
∑

i=0

b1,i (x ) f
′

i , (1)

where
fi = f (xi ), f ′i = f ′(xi ).

An example is given by the classical polynomial Hermite interpolants [5, 9], where the basis functions are
defined as

b0,i (x ) =
�

1−2(x − xi )`
′
i (xi )

�

`i (x )
2, b1,i (x ) = (x − xi )`i (x )

2, (2)

with `i denoting the usual Lagrange basis polynomials

`i (x ) =
n
∏

j=0
j 6=i

x − x j

xi − x j
.

Extending the concept of the Lebesgue constant from Lagrange to Hermite interpolation, we call

Λn = sup
‖ f ‖1=1

‖hn‖

the Lebesgue constant of the Hermite interpolant (1), where ‖·‖ is the supremum norm in C [0, 1] and

‖ f ‖1 = ‖ f ‖+ ‖ f ′‖.

It is then easy to verify [6] that
Ω1,n ≤Λn ≤max{Ω0,n ,Ω1,n}, (3)
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where
Ω0,n = max

0≤x≤1
Ω0,n (x ), Ω1,n = max

0≤x≤1
Ω1,n (x ). (4)

and

Ω0,n (x ) =
n
∑

i=0

|b0,i (x )|, Ω1,n (x ) =
n
∑

i=0

|b1,i (x )|. (5)

Both Ω0,n and Ω1,n play a crucial role in measuring the approximation quality of hn , since [7]

‖ f −hn‖ ≤ (1+Ω0,n +Ω1,n )‖ f ′−p2n‖,

where p2n is the polynomial of degree at most 2n that approximates f ′ best on [0, 1], and have therefore been
investigated intensively. For example, it is known that

Ω0,n = 1, Ω1,n ≤
1

ρ
, (6)

for ρ-normal sets of nodes [7], which implies convergence of the Hermite interpolation process. Examples of

such sets are given by the roots of the Jacobi polynomials J (α,β )
n which are normal for α,β ≤ 0 and ρ-normal

for α,β < 0, with ρ =min{−α,−β} [7]. Chebyshev nodes are a special case of 1
2 -normal nodes, since they

are the zeros of the Chebyshev polynomials J
(− 1

2 ,− 1
2 )

n . For Chebyshev nodes, the upper bound in (6) can be
improved significantly [10] to

Ω1,n ≤
log n

n
C ,

where C is a constant independent of n . Other results about polynomial Hermite interpolation for normal
and ρ-normal sets of nodes can be found in [11] and references therein.

However, this favourable behaviour does not hold in another common interpolation setting, the equi-
distant case with nodes

xi =
i

n
,

for i = 0, . . . , n . Indeed, both Ω0,n and Ω1,n grow very fast as n→∞, namely [6]

Ω0,n ∼
22n+1

γ2
n n 2

C , Ω1,n ∼
22n+1

γ2
n n 2
p

n
C ,

where γn =
∑n

j=1 1/ j . This unfavourable growth also reflects the ill-conditioning of polynomial Hermite inter-
polation at equidistant nodes, which may lead to wild oscillations of hn , just as in the Lagrange interpolation
case.

In the Lagrange case, barycentric rational Floater–Hormann interpolants [4] have been shown to have a
much better conditioning than polynomial interpolants at equidistant nodes, since the related Lebesgue
constants grow only logarithmically with n and exponentially with d , a parameter related to the construction
and the approximation order of the Floater–Hormann interpolants [1, 2]. In this paper we show that this
favourable behaviour also holds for a generalization of these interpolants to the Hermite setting. After
reviewing Cirillo and Hormann’s [3] iterative construction of barycentric rational Hermite interpolants
(Section 2), we show that for the special case of Floater–Hormann Hermite interpolation both Ω0,n and Ω1,n

can be bounded from above by a constant that grows exponentially with d (Section 3). We conclude with
some numerical examples that confirm this result (Section 4).

2 Iterative barycentric rational Hermite interpolation

Schneider and Werner [8] show that the rational function

rn (x ) =
n
∑

i=0

bi (x ) fi , (7)

with basis functions

bi (x ) =
wi

x − xi

Á n
∑

k=0

wk

x − xk
(8)
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interpolates the data f j at x j for j = 0, . . . , n , as long as all the weights wi are non-zero. It is clear that these bi

satisfy the Lagrange property
bi (x j ) =δi , j (9)

and form a partition of unity,
n
∑

i=0

bi (x ) = 1, (10)

just like the Lagrange basis polynomials `i , and we recall from [8, Proposition 11] that

b ′i (xi ) =
n
∑

j=0
j 6=i

w j

wi (x j − xi )
, b ′i (x j ) =

wi

w j (x j − xi )
, j 6= i . (11)

Cirillo and Hormann [3] show that these interpolants can be extended to the Hermite setting by letting

hn (x ) = rn (x ) +qn (x ), (12)

where the correction term

qn (x ) =
n
∑

i=0

(x − xi )bi (x )
2
�

f ′i − r ′n (xi )
�

is chosen so as to fix the interpolation of the derivative data f ′i without altering the interpolation of the data fi .
For our purposes, it turns out to be useful to rewrite the barycentric rational Hermite interpolant hn in (12) in
the form (1) with b0,i and b1,i as in (2), but with `i replaced by bi in (8).

Proposition 2.1. The barycentric rational Hermite interpolant hn in (12) can be written as

hn (x ) =
n
∑

i=0

b0,i (x ) fi +
n
∑

i=0

b1,i (x ) f
′

i (13)

with
b0,i (x ) =

�

1−2(x − xi )b
′
i (xi )

�

bi (x )
2, b1,i (x ) = (x − xi )bi (x )

2.

Proof. By (12) and (7),

hn (x ) =
n
∑

i=0

bi (x ) fi +
n
∑

i=0

(x − xi )bi (x )
2 f ′i −

n
∑

i=0

(x − xi )bi (x )
2

n
∑

j=0

b ′j (xi ) f j .

It remains to show that

bi (x )−
n
∑

j=0

(x − x j )b j (x )
2b ′i (x j ) = bi (x )

2−2(x − xi )b
′
i (xi )bi (x )

2. (14)

Using (10) and (11) we have

bi (x )−
n
∑

j=0

(x − x j )b j (x )
2b ′i (x j ) = bi (x )

2+
n
∑

j=0
j 6=i

bi (x )b j (x )− (x − xi )bi (x )
2b ′i (xi )−

n
∑

j=0
j 6=i

(x − x j )b j (x )
2 wi

w j (x j − xi )

= bi (x )
2− (x − xi )bi (x )

2b ′i (xi ) +
n
∑

j=0
j 6=i

�

bi (x )−
x − x j

x j − xi
b j (x )

wi

w j

�

b j (x ).

Now, since

b j (x ) =
x − xi

x − x j
bi (x )

w j

wi

by (8), we find that
�

bi (x )−
x − x j

x j − xi
b j (x )

wi

w j

�

b j (x ) =
�

1−
x − xi

x j − xi

�

bi (x )b j (x ) =−(x − xi )bi (x )
2 w j

wi (x j − xi )
,

and (14) then follows by using again (11).
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3 Floater–Hormann Hermite interpolation

Floater and Hormann [4] show that for any d with 0≤ d ≤ n , the special choice of barycentric weights

wi = (−1)i vi

with

vi =
min{i ,n−d }
∑

j=max{0,i−d }

j+d
∏

k= j
k 6=i

1

|xi − xk |
> 0 (15)

in (8) gives barycentric rational interpolants without any real poles and approximation order O (h d+1) for
sufficiently smooth functions. As shown in [2], in the special case of equidistant nodes, the corresponding
Lebesgue constant grows logarithmically in the number of nodes. For n ≥ 2d equidistant nodes, the values vi

in (15) can be simplified to (cf. [2])

vi =
n
∑

j=d

�

d

j − i

�

≤ 2d , (16)

and we shall now derive an upper bound of the Lebesgue constant associated with the barycentric rational
Hermite interpolant hn in (13) for this choice of vi .

More precisely, we derive upper bounds for Ω0,n and Ω1,n in (4) and then use (3). Inspired by the proof of
Theorem 1 in [2], we first focus on the case where xk < x < xk+1 for some k with 0 ≤ k ≤ n − 1 and rewrite
Ω0,n (x ) and Ω1,n (x ) as

Ω0,n (x ) =
N0,k (x )
Dk (x )

, Ω1,n (x ) =
N1,k (x )
Dk (x )

,

where

N0,k (x ) = (x − xk )
2(xk+1− x )2

n
∑

i=0

�

�1−2(x − xi )b
′
i (xi )

�

�

v 2
i

(x − xi )
2 , (17)

N1,k (x ) = (x − xk )
2(xk+1− x )2

n
∑

i=0

v 2
i

|x − xi |
, (18)

and

Dk (x ) = (x − xk )
2(xk+1− x )2

� n
∑

i=0

wi

x − xi

�2

.

As proved in [2], the denominator satisfies

Dk (x )≥
1

n 2
, (19)

and it remains to establish appropriate upper bounds for the numerators N0,k (x ) and N1,k (x ).

Lemma 3.1. Let n ≥ 2d and xk < x < xk+1 for some k with 0≤ k ≤ n −1. Then,

N1,k (x )≤
4d

n 2
C ,

for some constant C that does not depend on k , d , and n.

Proof. Since
n
∑

i=0

v 2
i

|x − xi |
=

k
∑

i=0

v 2
i

x − xi
+

n
∑

i=k+1

v 2
i

xi − x
≤

k
∑

i=0

v 2
i

x − xk
+

n
∑

i=k+1

v 2
i

xk+1− x
.

and

(x − xk )(xk+1− x )2 ≤
4

27n 3
, (x − xk )

2(xk+1− x )≤
4

27n 3
, (20)

we have

N1,k (x )≤
4

27n 3

n
∑

i=0

v 2
i ,

and the statement then follows from (16).
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Lemma 3.2. Let n ≥ 2d and xk < x < xk+1 for some k with 0≤ k ≤ n −1. Then,

N0,k (x )≤
4d (d +1)

n 2
C ,

for some constant C that does not depend on k , d , and n.

Proof. Using (11) and (16), we first notice that

n
∑

i=0

|1−2(x − xi )b
′
i (xi )|

v 2
i

(x − xi )
2 ≤ 4d

n
∑

i=0

1

(x − xi )
2 +2d+1

n
∑

i=0

1

|x − xi |

�

�

�

�

n
∑

j=0
j 6=i

(−1) j v j

x j − xi

�

�

�

�

,

and we proceed to bound the two sums over i separately. For xk < x < xk+1, we have

n
∑

i=0

1

(x − xi )
2 =

k−1
∑

i=0

1

(x − xi )
2 +

1

(x − xk )
2 +

1

(xk+1− x )2
+

n
∑

i=k+2

1

(xi − x )2

≤
k−1
∑

i=0

1

(xk − xi )
2 +

(xk+1− xk )2

(x − xk )
2(xk+1− x )2

+
n
∑

i=k+2

1

(xi − xk+1)
2

=
k−1
∑

i=0

n 2

(k − i )2
+

1

n 2

1

(x − xk )
2(xk+1− x )2

+
n
∑

i=k+2

n 2

(i −k −1)2

= n 2
k
∑

i=1

1

i 2
+

1

n 2

1

(x − xk )
2(xk+1− x )2

+n 2
n−k−1
∑

i=1

1

i 2

≤ n 2π
2

6
+

1

n 2

1

(x − xk )
2(xk+1− x )2

+n 2π
2

6
,

and since

(x − xk )
2(xk+1− x )2 ≤

1

16n 4
, (21)

we conclude that

(x − xk )
2(xk+1− x )2

n
∑

i=0

1

(x − xi )
2 ≤

1

n 2
C .

To bound the second sum, we first use (16) to get
�

�

�

�

n
∑

j=0
j 6=i

(−1) j v j

j − i

�

�

�

�

=

�

�

�

�

n
∑

j=0
j 6=i

(−1) j

j − i

n
∑

l=d

�

d

l − j

��

�

�

�

=

�

�

�

�

d
∑

l=0

�

d

l

� n−l
∑

j=d−l
j 6=i

(−1) j

j − i

�

�

�

�

≤ 2d max
0≤l≤d

�

�

�

�

n−l
∑

j=d−l
j 6=i

(−1) j

j − i

�

�

�

�

,

and since

�

�

�

�

n−l
∑

j=d−l
j 6=i

(−1) j

j − i

�

�

�

�

=























































�

�

�

�

n−l
∑

j=d−l

(−1) j

j − i

�

�

�

�

≤
1

(d − l )− i
, 0≤ i < d − l ,

�

�

�

�

i−(d−l )
∑

j=1

(−1) j

j
−
(n−l )−i
∑

j=1

(−1) j

j

�

�

�

�

≤











1

i − (d − l ) +1
,

1

(n − l )− i +1
,

d − l ≤ i ≤
n +d

2
− l ,

n +d

2
− l ≤ i ≤ n − l ,

�

�

�

�

n−l
∑

j=d−l

(−1) j

i − j

�

�

�

�

≤
1

i − (n − l )
, n − l < i ≤ n ,

we further have

ci =

�

�

�

�

n
∑

j=0
j 6=i

(−1) j v j

j − i

�

�

�

�

≤ 2d































1, 0≤ i ≤ d ,

1

i −d +1
, d ≤ i ≤

n

2
,

1

(n −d )− i +1
,

n

2
≤ i ≤ n −d ,

1, n −d ≤ i ≤ n .

5



Let us now assume that d ≤ k < n/2−1 and xk < x < xk+1. Then,

k−1
∑

i=0

ci

k − i
≤ 2d

�d−1
∑

i=0

1

k − i
+

k−1
∑

i=d

1

(k − i )(i −d +1)

�

≤ 2d (d +1),

and
ck

x − xk
≤

2d

x − xk
,

ck+1

xk+1− x
≤

2d

xk+1− x
,

and

n
∑

i=k+2

ci

i −k −1
≤ 2d

� bn/2c
∑

i=k+2

1

i −k −1

�

1

i −d +1
−

1

n −d − i +1

�

+
n−d
∑

i=k+2

1

(i −k −1)(n −d − i +1)
+

n
∑

i=n−d+1

1

i −k −1

�

≤ 2d

� bn/2c
∑

i=k+2

1

(i −k −1)(i −d +1)
+

n−d−k−1
∑

i=1

1

i (n −d −k − i )
+

n−1
∑

i=n−d

1

i −k

�

≤ 2d
�

π2

6
+1+d

�

.

Therefore,

n
∑

i=0

1

|x − xi |

�

�

�

�

n
∑

j=0
j 6=i

(−1) j v j

x j − xi

�

�

�

�

≤ n 2
k−1
∑

i=0

ci

k − i
+n

ck

x − xk
+n

ck+1

xk+1− x
+n 2

n
∑

i=k+2

ci

i −k −1

≤ 2d
�

n 2(d +1) +
n

x − xk
+

n

xk+1− x
+n 2

�

π2

6
+1+d

��

.

Using (20) and (21), we finally obtain

(x − xk )
2(xk+1− x )2

n
∑

i=0

1

|x − xi |

�

�

�

�

n
∑

j=0
j 6=i

(−1) j v j

x j − xi

�

�

�

�

≤
2d (d +1)

n 2
C .

The other cases k < d and k ≥ n/2−1 can be treated similarly.

We are now ready to state our main result.

Theorem 3.3. Provided that n ≥ 2d , the Lebesgue constant associated with Floater–Hormann Hermite inter-
polation at equidistant nodes satisfies

Λn ≤ 4d (d +1)C ,

for some constant C that does not depend on d and n.

Proof. If x = xk for k = 0, . . . , n , then

b0,i (x ) =
�

1−2(xk − xi )b
′
i (xi )

�

bi (xk )
2 =δi ,k , b1,i (x ) = (xk − xi )bi (xk )

2 = 0

and consequently Ω0,n (x ) = 1 and Ω1,n (x ) = 0. Otherwise, it follows from (19), Lemma 3.1, and Lemma 3.2,
that there exists some constant C that does not depend on n and d , such that

Ω0,n (x )≤ 4d (d +1)C , Ω1,n (x )≤ 4d C .

The statement then follows from (3).

Note that while the constant C in Theorem 3.3 is independent of d , the upper bound grows exponentially
in d .
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Figure 1: Plot of Ω0,n (x ) (solid line) and Ω1,n (x ) (dashed line) for d = 0, 1, 2, 3 (from top to bottom) and n = 5, 10, 20 (from
left to right) and equidistant nodes in the interval [0, 1].

7



d =3
d =2

d =4

64002301 20 80 16040

3

2.6

3.4

1

2.2

1.8

1.4

100

102

101

5 6 7 8 9 100 1 42 3

103

Figure 2: Log-log plot of Ω0,n over n for different values of d (left) and semi-log plot of Ω0,n over d for n = 20 (right).

4 Numerical results

We performed several experiments to confirm numerically that the upper bounds derived above are correct.
Figure 1 shows Ω0,n (x ) and Ω1,n (x ) for Floater–Hormann Hermite interpolation at equidistant nodes in the
interval [0, 1] for several values of d and n . Note that Ω0,n (x ) dominates Ω1,n (x ) in all examples, a behaviour
that we consistently observed in our experiments. Also note that the maxima Ω0,n and Ω1,n of both functions
are obtained inside the first and the last sub-interval, except for d = 0, and that Ω0,n is basically independent
of n in all examples. This is confirmed by the plot in Figure 2 (left), which additionally shows thatΩ0,n , although
independent of n , seems to grow exponentially with d , as suggested by the upper bound in Lemma 3.2. This
trend can also be observed in Figure 2 (right), where the same quantity is plotted for a fixed value of n and d
between 0 and n/2.

A completely different result can be observed for non-equidistant nodes. For example, in the case of
Chebyshev nodes, Ω0,n grows quickly as n increases, except for d = 0, as shown in Figure 3. We therefore
recommend to use Floater–Hormann Hermite interpolation for equidistant nodes, but to stick to polynomial
Hermite interpolants for Chebyshev nodes. It remains future work to investigate other choices of interpolation
nodes.
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Figure 3: Plot of Ω0,n (x ) (solid line) and Ω1,n (x ) (dashed line) for d = 0, 1, 2, 3 (from top to bottom) and n = 5, 10, 20 (from
left to right) and Chebyshev nodes in the interval [0, 1].
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