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1. Introduction

Advanced applications of the finite element method in nano and bio technologies, vide Hornyak

et al. (2008); Mow and Huiskes (2005), demand high accuracy formulations with the best approx-

imations to expressing the basis functions. This need has rekindled interests on the Wachspress

(1975) formulations in constructing finite element shape functions in the physical x� y � z co-

ordinate system. These basis functions (with local supports) are also termed as test functions

and interpolants in the finite element literature.

Researchers demonstrated, vide Sukumar and Malsch (2006), considerable progress in im-

proving shape functions compared to the isoparametric formulation of Taig (1961), which should

be regarded to be one of the most ingenious steps in the finite element technology. Taig intro-

duced a mapping from a unit square, in the ⌘ � ⇠ computational domain for describing convex

quadrilaterals where the physical coordinates x, y are also interpolated from the nodal values.

The same bi-linear parameterization was employed in terms of ⌘ � ⇠ variables for functions and

coordinates, hence the name isoparametric. Due to the Cartesian product structure of the com-

putational domain the three-dimensional (or in any analogous higher dimension where an elliptic

boundary value problem problem of mathematical physics is to be solved within a convex region)

isoparametric counterparts can be easily constructed. In the interest of this paper, the focus is

on two-dimensional analysis with x� y and ⌘ � ⇠ idealization rather than the generalization in

<n. The four node triangles and polygons with interior nodes, vide Shontz and Vavasis (2010);

Malsch et al. (2005), have been employed in computer graphics applications quite substantially

and in some specific cases for high accuracy stress analysis. These problems are close to the one

that is addressed here, however, the use of the ‘bubble function,’ vide Ho and Yeh (2006), is

quite di↵erent from the branch cut employed here via the square root operator.

Recent applications in computer graphics have been enriched by employing finite element

shape functions as generalized splines, vide Sukumar (2007); Mousavi et al. (2010). These for-

mulations have blurred the boundaries between geometric modeling and the branch of finite

element that focuses on basis functions. Barycentric coordinates introduced by Möbius in 1827,

which are indeed homogeneous coordinates, vide Yiu (2000), encompass such classes of inter-

polants. In CAD applications spline-based solids and surfaces, which are constructed according
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to the formulation introduced by Hermite (1877), can be rendered very quickly when the equa-

tions are available in the physical x� y coordinates, vide Bernstein (1913). This is an advantage

compared to isoparametric-based interpolants since transformations to and form computational

domains are circumvented, vide Foley et al. (1996), de Boor (1978).

Triangular elements are important for a number of basic reasons starting with the Courant

(1943) paper that laid the foundation of the finite element method. This has widely been

recognized to be the framework for the finite element development with piecewise linear fields.

From the projective geometry point of view, vide Coxeter (2000), the triangular element contains

all characteristics of a convex polygon. Thus any embellishment to introduce a side node in a

triangle should also pave the way to compute the shape functions for a polygonal element with a

side node when the Wachspress formulation is employed (a short explanation of this is included

in the conclusion of this paper).

Procedural programming environments, e.g. Fortran and in some cases C, are predominantly

used in finite element formulations. Now the wide availability of symbolic computer mathematics

programs, especially those with the functional programming capabilities, permit easy formula-

tions of many ‘almost intractable problems.’ In this paper Mathematica is extensively used to

developing the concepts and constructing algebraic expressions including their graphical displays.

These symbolic algebraic expressions can be readily converted into C and C++ codes using Math-

Modelica, Fritzson (2004), and can be integrated into an engineering modeling environment with

OpenModelica, Fritzson (2011).

1.1. Di�culties with modeling slope discontinuity on an edge

Based on the Ritz (1908) formulation, piecewise functions should have n� order continuity

for 2n� order of ordinary and partial di↵erential equations. Following Courant’s ideas local test

functions are then constructed for approximating solutions of elliptic partial di↵erential equations

according to the weak energy-norm. Of course, global functions to improve accuracy of solutions

can also be employed following Mote (1971). Historically, the overwhelming number of the finite

element basis functions have been polynomial expressions in coordinate variables, even though

the Ritz formulation does not impose any such restrictions.

In order to capture the discontinuity in the slope, vide Figure 1, associated with the inter-

polant pertaining to a node that lies on a boundary edge the use of square root expressions
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Figure 1: A bar element with end nodes 1 and 3, and intermediate node 2
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Figure 2: Polynomial shape function for node-1 — negative region is shaded

within the numerator and denominator functions is elaborated in this paper.

The inadequacy of a polynomial basis function warrants a closer look within the context of

yielding approximate solutions for problems of mathematical physics. Consider a bar element

in Figure 1. To solve approximately a second order di↵erential equation, linear interpolants

should be adequate according to the pioneering work of Ritz (1908). Thus for the shape function

associated with node-1, one encounters the ‘non-smooth’ test function that cannot be reproduced

by any polynomial in the x�variable. This is due to the fact that the support of this test function

is the line segment between nodes 1 and 2. Even an Lagrangian interpolant, shown in Figure 2,

is unacceptable to model elliptic partial di↵erential equations since such a test function fails
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to comply with the ‘maximum/minimum’ theorem. To illustrate the consequences the thermo-

elastic deformation in a bar can be considered with the particular focus on a finite element model

for temperature distributions. Since the polynomial interpolant does not satisfy the Chebyshev

(positivity) condition, the negative values between nodes 2 and 3 could yield a negative absolute

temperature as the numerical result, which is by all means unacceptable from the point of view of

physics. The singularity introduced by the branch cut of the square root expression circumvents

this di�culty and faithfully captures the slope discontinuity shown in Figure 1.

2. Tessellation and basis functions
in the physical (x � y) domain

Needless to state that integration of the energy density function in the physical x�y domain,

to a large extent, hindered the popularity of the Wachspress basis functions for the last fifty years

or so. This problem with integration has been solved in Dasgupta (2003a). The Wachspress

formulation becomes essential in developing shape functions for finite elements with side nodes.

In the interest of keeping the focus on augmenting the rational polynomial interpolants with

‘square-root’ expressions, the issue of exact integration to generate the sti↵ness matrices, vide

Dasgupta (2008b), is not addressed here.

The following problem motivated the present formulation. In solving plane strain elasto-

plastic deformations, a convex quadrilateral element was continuously compressed. This demon-

stration problem is illustrated in Figure 3.

A pair of horizontal (equal and opposite) compressive forces were applied along the x� direction.

Zero force was prescribed at the other two nodes. The area of the element was kept constant com-

plying with the isochoric deformation constraint. Till the deformed element became a triangle,

convexity was maintained and the shape function calculation was straightforward, vide Dasgupta

(2003b). Figure 3 shows the successive deformed shapes as the node, where the compressive force

is applied, translates on the x-axis towards the origin. The deformations are schematically rep-

resented with outlines. The limiting triangular shape is shown as the solid element with the

shaded region.

It is desirable that the same high accuracy as in the Wachspress’ formulation be maintained
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Figure 3: Elasto-plastic deformation due to Compression along x

through out. But in such a rational polynomial form for a shape function s(x, y):

s(x, y) =
µ(x, y)

⌫(x, y)
(1)

the adjoint (denominator polynomial) ⌫(x, y) cannot be obtained for the triangular element

with a side node according to the projective geometry formulation, because the strict convexity

requirement is not met at the side node. The general case is shown in Figure 4.
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Original position of the element:
a triangle with a side node

Figure 4: Original orientation

In the formulation presented in this paper, first the shape function associated with the side node
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is constructed as a ratio of two functions that contain square root terms. Subsequently, the three

remaining shape functions are obtained as linear transformations on it. The key step of such

transformations guarantees exact interpolation of arbitrary linear functions in x� y.

2.1. Conventional isoparametric basis functions in the
(⌘ � ⇠) computational frame

The isoparametric formulation for quadrilateral finite elements is applicable for triangular el-

ements with a side node Dasgupta (2008a,b). In the isoparametric computational domain, where

the ⌘ � ⇠ coordinate system describe the canonical unit square, the shape functions are strictly

bilinear. However, when those shape functions are transformed into the physical x�y coordinate

system the expressions contain square root terms. This observation provides a conceptual link

to connect the intuitive isoparametric scheme with the Wachspress irrational shape functions,

vide Wachspress (1971); Dasgupta (2008a). Furthermore, these radical subexpressions indicate

that there cannot be a clear designation about the algebraic degree of interpolants since a Taylor

expansion will contain all higher power x and y terms. However, combinations of linear terms

and square roots of quadratics indicate a consistency of having the same dimensionality that is

amenable to first order representation.

The isoparametric formulation by Taig is brilliant, extremely versatile and undoubtedly the

most popular method to handle elements with arbitrary shapes. However, there is no geometrical

foundation for this intuitive conjecture that justifies the adequacy to interpolating functions and

coordinates with the same set of basis functions.

2.2. Computer Mathematics tools
related to rational polynomials

Since the shape functions produced in this paper are meant to be employed in high accuracy

finite element computations, it is important to recognize the richness of the rational form of

approximations depicted in equation (1).

It was in Wachspress (1971) we found for the first time the projective geometry, Coxeter

(2000), ideas in formulating finite element shape functions. The rational polynomial interpolants

in the form of equation (1) resulted from the projective geometry construction of the adjoint

(the denominator polynomial). Those interpolants, which have been widely applied in many

branches of Physics, are known as Padé approximants, Baker and Graves-Morris (1981), named
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after Henri Padé (1863 – 1953) who arranged the approximants, each of which was expressed in

its lowest term, into a table. Symbolic computational tools, which express an arbitrary function

f(x) in the form of equation (1):

f(x) =
µm(x)

⌫n(x)
; µm and ⌫n : polynomials of degrees m and n, respectively (2)

employ the Padé table. In general, a Padé rational polynomial representation corresponds to the

best approximation of a function to capture the asymptotic behaviors simultaneously near zero

and infinity. For this reason, the Padé form converges when the corresponding Taylor expansion

may diverge.

For a given f(x) the Mathematica built-in function PadeApproximant can generate the nu-

merator and denominator polynomials in the form of equation (2).

3. Formulation for shape functions:
‘in a four node element only one shape function is independent’

In displacement based formulations, the finite element shape functions are assumed to be

linear along the boundary sides. In addition, for linear elasticity problems, uniform stress and

strain fields are required to be reproduced exactly. This notion is germane to the patch test, Irons

and Razzaque (1972) that ensures convergence. Within the kinematic context, it is equivalent

to demanding that any arbitrary linear field be exactly represented by the shape functions. This

observation leads to a useful result: “in any four node plane finite element only one shape function

is independent.” The remaining three shape functions can be subsequently solved, provided the

corresponding nodes are not colinear, in terms of the independent shape function. We can utilize

three equations, i.e., summation of all shape functions to be unity and the two that enforce the

requirement of the exact reproduction of linear functions of x and y, in the x� y frame.

Let the four nodal coordinates for the four node plane element, shown in Figure 4, be sym-

bolically denoted by, ↵, which is given by:

↵ = {{x1, y1}, {x2, y2}, {x3, y3}, {x4, y4}} (3)

In order to be consistent with the designation of lists and list operations, elements of a list

will be encased within curly braces, {. . .}. Let us collect the shape functions, �i, i = 1, . . . 4, as:
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� = {�1, �2, �3, �4} (4)

Here, � is the list and its elements �i are encased within curly braces.

The requirement of exactly reproducing an arbitrary linear field dictates:

�1 + �2 + �3 + �4 = 1 (5)

x1 �1 + x2 �2 + x3 �3 + x4 �4 = x (6)

y1 �1 + y2 �2 + y3 �3 + y4 �4 = y (7)

Without any loss in generality, let us assume that �2 be given. Then we can obtain �1, �3, and �4

by solving equation (5) through equation (7). For example, �1 can be solved in the form:

�i =
numeratori

denominator
, i = 1, 3, 4; denominator = det

2
6664

1 x1 y1

1 x3 y3

1 x4 y4

3
7775 (8)

The nonvanishing determinant mandates that nodes 1, 3 and 4 cannot be colinear for �1, �3 and �4

to be solvable in terms of �2. The selection of the side node to be the second one meets such a

criterion. In the formulation, �1, �3 and �4 will be obtained in terms of �2.

As a clarification of the notations used here, it may be observed that a matrix is encased

within square brackets [. . .], vide equation (8).

3.1. Orientation of the element

In order to keep the algebraic expressions compact, the formulation is demonstrated with

a convenient orientation of the element as shown in Figure 5, the original orientation for the

generalized case is represented in Figure 4.

The following geometrical transformations are performed to obtain Figure 5 from Figure 4 :

(a) the element is so translated that the second node falls on the origin;

(b) the element is so rotated about the origin that the first and the third nodes fall on the

x�axis;

(c) the element is so oriented that the vertex, i.e., the fourth node, falls on the positive y�region.
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Figure 5: Canonical orientation: side node at the origin and three nodes on x�axis

3.2. Construction of the shape function associated with
the (intermediate) side node

In equation (8), in order to avoid the vanishing of the denominator determinant, �2, which

is the shape function associated with the side node, is to be determined first. Subsequently, the

other three shape functions are obtained using equations (5) through (7).

The first step is to construct a function, which will be linear between the nodes 1 and 2, and

nodes 2 and 3, with a unit value at node 2 as shown in Figure 6.

node!1 node!2 node!3
x!axis
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2

1

Φ 2
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Figure 6: The “hat” function on the x� axis
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3.2.1. The slope discontinuity for the “hat” function

The discontinuity in the slope at node 2 can be realized in terms of the Heaviside’s step

function:

H(x) =

8><
>:

= 0, x < 0,

= 1, x > 0;
(9)

or, equivalently, by selecting the positive branch of the square root function:

p
x2 =

8><
>:

= �x, x < 0,

= x, x > 0;
(10)

which is identical to the absolute value function:

kxk =

8><
>:

= �x, x < 0,

= x, x > 0;
(11)

Using equation (9):

p
x2 = kxk = x

⇣
H(x)� H(�x)

⌘
(12)

3.2.2. The “hat” function

Linear combination of x and
p

x2 are illustrated leading to the “hat” function shown in

Figure 6. The procedure is illustrated step by step starting with the graph of the
p

x2 function.

In order to clarify the discontinuities in slopes, an example, vide Figure 7(a), with a = 1, b = 2

is presented here.

Steps are included as the theoretical formulation is explained. The following numerical data

will be used for the element shown in Figure 7(a):

a = 1; b = 2; c =
3

2
; h =

9

5
; (13)

Hence the “hat” function becomes:

~(x) =
x�

p
x2

2a
�
p

x2 + x

2b
+ 1 (14)

hence for the numerical example, the right hand side becomes:

x�
p

x2

2
�
p

x2 + x

4
+ 1 = �3

p
x2

4
+

3x

4
+ 1 (15)
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3.2.3. From a “hat” function to an interpolant

In order to extend the function ~(x) into the triangular region, the equations of the sides

s41, s43, where sij is the side joining nodes i and j, are written in the following form:

s41 : 1� x

a1
� y

b1
= 0

s43 : 1� x

a3
� y

b3
= 0 (16)

Now equation (16) guarantees that the left hand sides are positive within the triangular finite

element and vanish along the sides s41, s43. Let the boundary pieces not containing the side node

be denoted by �:

�(x, y) =

⇢
1� x

a3
� y

b3
> 0, 1� x

a1
� y

b1
> 0

�
, (x, y) 2 element (17)

thus:

✓⇣
1� x

a3
� y

b3

⌘ ⇣
1� x

a1
� y

b1

⌘ ◆
> 0, (x, y) 2 element (18)

This leads to

q(x, y) = ~(x)
⇣
1� x

a3
� y

b3

⌘ ⇣
1� x

a1
� y

b1

⌘
> 0, (x, y) 2 element (19)

which vanishes along the sides not containing the intermediate node 2, and has the desired slope

discontinuity. In the next step, the unit value of the shape function at node 2 is guaranteed.

Now invoking the Padé form by introducing the appropriate denominator polynomial:

�2(x, y) =
q(x, y)⇣

1� x
a3

⌘ ⇣
1� x

a1

⌘ so that �2(x, y|y=0) = ~(x) and �2(0, 0) = 1 (20)

In equation (16), in the interception form, the inclined sides of the element can be represented

by:

a1 = �a; a3 = b; (21)

Hence from equation (20):

�2(x, y) =
q(x, y)⇣

1� x
b

⌘ ⇣
1 + x

a

⌘ (22)

Note that the shape function �2 has discontinuities only at those vertices that describe the edge

containing the intermediate node.

Using the data from equation (13), equation (22) becomes:

�2(x, y) = �(3
p

x2 � x� 4)(18x� 25y + 18)(18x + 5y � 36)

1296(x� 2)(x + 1)
(23)
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3.3. Evaluation of all shape functions

Solutions of equations (5), (6) and (7), using �2 from equation (23) yield:

�1 =
(18x + 5y � 36)

⇣
3
p

x2(18x� 25y + 18)� 54x2 + x(25y � 54) + 100y
⌘

1944(x� 2)(x + 1)
(24)

�3 =
(18x� 25y + 18)

⇣
3
p

x2(18x + 5y � 36) + 54x2 � x(5y + 108)� 20y
⌘

3888(x� 2)(x + 1)
(25)

�4 =
5y

9
(26)

The square root expressions,
p

x2, in equations 24 and 25 could be replaced with the absolute

value of x i.e., kxk.
It should be noted that the denominators of equations 24 and 25 refer to the ‘same’ adjoint,

those polynomials di↵er only by a multiplicative (scaling) constant. Their singularities are at

the end nodes of the base of the triangle (and not at the intermediate node). Thus to obtain

unit values of �1, and �3 the at nodes 1 and 3 respectively, limiting operation according to the

L’Hospital rule must be used. The contour plots of the shape functions are showed in Figure 8.

Of course, �4 in equation (26), which expresses the shape function for the apex (not connected

to the side containing the intermediate node) yields the same answer had there been no side node.

This is an important observation to construct shape functions for polygons with an intermediate

side node, which is briefly described in this paper with Figure 12.

In equations 24 and 25, the denominator polynomials do not involve y because the orientation

in Figure 5 aligns the intermediate node on the x�axis. For the original problem, in Figure 4,

the appropriate linear transformation for x and y in equations (24) through (26) will yield the

shape functions for an arbitrary orientation of the element.

16



0

0

0

0

000

0

0.055

0.11

0.165

0.22

0.275

0.33

0.385

0.44

0.495

0.55

0.605

0.66

0.715

0.77

0.825

0.88

0.9350.99
!1.0 !0.5 0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

Shape Function ! 1

,

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
0

0

0

0

0

0

0

0.1

0.2

0.3

0.4

0.5

0.6 0.7

0.8

0.9
!1.0 !0.5 0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

Shape Function ! 2

(a) Discontinuities are pronounced

0

0

0
0

0

0

0

0

00

0

0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
!1.0 !0.5 0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

Shape Function ! 3

,

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

!1.0 !0.5 0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

Shape Function ! 4

(b) Discontinuities die out away from the side node

Figure 8: Contour plots of shape functions
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4. Analysis in the light of Wachspress’
External Intersection Points —EIPs

Figure 9: Limiting values of EIPs create singularity at base vertices

The external intersection points (EIPs) are those where the non-adjacent sides intersect out-

side the convex polygonal region. An important conceptual step in the projective geometric

construction of the basis functions is to identify the EIPs, vide Wachspress (1971). All shape

functions must tend to infinity at the EIPs. The adjoint, the denominator ⌫(x, y) in equation (1),

is the algebraic curve through all EIPs.

Figure 9 shows the two EIPs necessarily lying on the two sides when the intermediate node

on the base is slightly pushed outwards, by a small amount ✏ > 0 to create a convexity. As

lim ✏ ! 0, the EIPs approach the base vertices. Hence it is natural to expect singularities in

shape functions associated with the base vertices. This can be verified from equations (24) and

(25).
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5. Comparison with the isoparametric formulation

Using the treatment presented in Dasgupta (2008a), the isoparametric shape functions are

obtained as:

�(i)
1 =

1

36

p
324x2 � 180xy + y(25y + 1440)� x

2
� 5y

12
(27)

�(i)
2 = � 1

24

p
324x2 � 180xy + y(25y + 1440) +

x

4
+

35y

72
+ 1 (28)

�(i)
3 =

1

72

p
324x2 � 180xy + y(25y + 1440) +

x

4
� 5y

8
(29)

�(i)
4 =

5y

9
(30)

In the interest of avoiding confusion, a superscript (i) is tagged with the isoparametric shape

functions.

The shape function �(i)
2 , which is associated with the side node exactly reproduces the “hat”

function:

�(i)
2 = � 1

24

p
324x2 � 180xy + y(25y + 1440) +

x

4
+

35y

72
+ 1
���
y=0

= 1 +
x

4
� 3

p
x2

4
(31)

which is identical to equation (15).

A distinguishing feature for the isoparametric shape functions, equations (27) through (29), is

that the branch cut of the square root function does not go through the element. This condition

was explicitly imposed in the proposed formulation of this paper while solving for the shape

functions in the physical (x, y) coordinates.

These isoparametric shape functions, vide equations (27) through (29), fail to capture the

singularities at nodes 1 and 3, which originate from the projective geometry concepts, shown in

equations (27) and (29), compare these with the basis functions of the proposed formulation,

vide equations (24) and (25).
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Figure 10: A Convex four node Element

6. Square root expressions
in the light of concave finite elements

Wachspress established that a two-dimensional concave finite element can be formulated from

a three-dimensional projection. Dasgupta and Wachspress (2008b) demonstrated the closed-form

construction of shape functions in terms of the x, y, z variables, where, z was equated to
p

x2 + y2

when the concavity was set at the origin as shown in Figure 10.

It was not possible to take the limit of the shape functions when the nodes 1, 2 and 3 in

Figure 10 become colinear because numerical values of the coordinates were needed to generate

the shape functions in x� y variables.
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7. Conclusions

The square root singularity introduced at the side node causes slope discontinuity in the

calculated shape functions. This is demonstrated in Figure 11. Due to the substitution for y = 0

in equation (20), the slope discontinuity runs through all along x = 0.

!1.0 !0.5 0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

Shape Function ! 1

!1.0 !0.5 0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

Shape Function ! 2

Figure 11: Exaggerated depiction of slope discontinuities of shape functions

Use of computer algebra, specially Mathematica in this paper, made it possible to implement

the Wachspress method that is based on projective geometry. The ease of formulation for the

high accuracy (not contaminated by isoparametric conjecture) finite element is demonstrated in

this paper.
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7.1. Extension to a convex polygonal element with a side node

In this paper, the singularity in the shape function associated with the side node is captured

using the square root function. In particular, the shape functions for the triangular element

with a side node are computed to examine the procedure to extend the one-dimensional “hat”

function into the element region. The same general idea can be applied to convex polygons

with a side node, vide Figure 12 where an arbitrary convex septagon is shown to contain a side

node that lies on the arbitrarily selected side s34, which joins nodes 3 and 4, the notation is the

same as in equation (16). This extension should be possible because the formulation adheres to

the protective geometry concepts, the number of sides is immaterial so long as the geometrical

convexity of the element is maintained. This ‘generalization concept’ was first observed in the

ground breaking monograph of Wachspress (1975).

1

2

3

4
5

6

7

8

Polygon with node numbers

Figure 12: A (seven sided) polygon with a side node

�(x, y), as in equation (17), be the set of all sides not containing the intermediate node. For

the shape functions, �i(x, y), i = 1 . . . 8, �8(x, y) is to be calculated using �(x, y). The shape
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functions: �1(x, y), �2(x, y), �5(x, y), �6(x, y) and �7(x, y) will remain the same as those for the

septagon without the side node. These five shape functions can be calculated according to

Dasgupta (2003b). Using �8(x, y), the two remaining �3(x, y) and �4(x, y) can be determined

using linearity conditions described in equation (8).

7.2. Comments on symbolic formulation
using the computer algebra software Mathematica

Excellent research materials and text books, e.g. Bhatti (2005, 2006), laid out foundation

for finite element formulations in terms of closed-form algebraic expressions. These publications

have encouraged researchers to carry out ‘experiments’ with formulations that posed challenges

when Fortran was the only available tool.

!!a,0" !b,0"

!c,h"

!0,0"
x

y
nodes:!!a,0",!0,0",!b,0",!c,h"

Figure 13: Nodes in terms of algebraic variables

For the triangle with a side node the following closed form shape functions were obtained
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from Mathematica TEX, where
⇣
x ⇤ sgn(x)

⌘
is identical to

p
x2 or kxk:

nodes: (�a, 0), (0, 0), (b, 0), (c, h) (32)

yielded:

�1(x, y) =

✓
(b(h� y) + cy � hx)

2ah2(a + b)(a + x)(b� x)

◆
⇤

 ✓⇣
x sgn(x)

⌘
(a + b)(h(a + x)� y(a + c)

◆
+ y(a + c)(2ab� ax + bx)+

hx(�(a + b))(a + x))

!
(33)

�2(x, y) =

✓⇣
x sgn(x)

⌘
(a + b) + a(x� 2b)� bx

◆
(h(a + x)� y(a + c))(b(y � h)� cy + hx)

2abh2(a + x)(b� x)

(34)

�3(x, y) =

✓
h(a + x)� y(a + c)

2bh2(a + b)(a + x)(b� x)

◆
⇤

 ⇣
x sgn(x)

⌘
(a + b)(b(h� y) + cy � hx)+

y(b� c)(2ab� ax + bx) + hx(a + b)(b� x)

!
(35)

�4(x, y) =
y

h
(36)

These expressions can be easily translated into Fortran, C and C++ codes.
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