Seminars at the Faculty of Informatics

The Faculty of Informatics is pleased to announce a seminar given by Giorgio Metta

DATE: Tuesday, October 21st 2014
PLACE: USI Lugano Campus, room 351, Main building (Via G. Buffi 13)
TIME: 14.00

I will present the iCub humanoid, a robotic platform designed for research in embodied cognition. At 104 cm tall, the iCub has the size of a three and half years old child. It can crawl on all fours and sit up to manipulate objects. Its hands have been designed to support sophisticate manipulation skills. The iCub is distributed as Open Source following the GPL/FDL licenses and can now count on a worldwide community of enthusiastic developers. The entire design is available for download from the project homepage and repository ( About 25 robots have been built so far which are available in laboratories in Europe, US, and soon in Japan. It is one of the few platforms in the world with a sensitive full-body skin to deal with the physical interaction with the environment including possible people.

Scientific approach:
The iCub stance on cognition posits that manipulation plays a fundamental role in the development of cognitive capability [1-4]. As many of these basic skills are not ready-made at birth, but developed during ontogenesis [5], we aim at testing and developing this paradigm through the creation of a child-like humanoid robot: i.e. the iCub. This "baby" robot is meant to act in cognitive scenarios, performing tasks useful for learning while interacting with the environment and humans. The small (104cm tall), compact size (approximately 22kg and fitting within the volume of a child) and high number (53) of degrees of freedom combined with the Open Source approach distinguish RobotCub from other humanoid robotics projects developed worldwide.

[1] L. Fadiga, L. Craighero, and E. Olivier, "Human motor cortex excitability during the perception of others' action," Current Biology, vol. 14 pp. 331-333, 2005.
[2] L. Fadiga, L. Craighero, G. Buccino, and G. Rizzolatti, "Speech listening specifically modulates the excitability of tongue muscles: a TMS study," European Journal of Neuroscience, vol. 15, pp. 399-402, 2002.
[3] G. Rizzolatti and L. Fadiga, "Grasping objects and grasping action meanings: the dual role of monkey rostroventral premotor cortex (area F5)," in Sensory Guidance of Movement, Novartis Foundation Symposium, G. R. Bock and J. A. Goode, Eds. Chichester: John Wiley and Sons, 1998, pp. 81-103.
[4] D. Vernon, G. Metta, and G. Sandini, "A Survey of Cognition and Cognitive Architectures: Implications for the Autonomous Development of Mental Capabilities in Computational Systems," IEEE Transactions on Evolutionary Computation, special issue on AMD, vol. 11, 2007.
[5] C. von Hofsten, "On the development of perception and action," in Handbook of Developmental Psychology, J. Valsiner and K. J. Connolly, Eds. London: Sage, 2003, pp. 114-140.

Giorgio Metta is director of the iCub Facility department at the Istituto Italiano di Tecnologia (IIT) where he coordinates the development of the iCub robotic platform/project. He holds a MSc cum laude (1994) and PhD (2000) in electronic engineering both from the University of Genoa. From 2001 to 2002 he was postdoctoral associate at the MIT AI-Lab. He was previously with the University of Genoa and since 2012 Professor of Cognitive Robotics at the University of Plymouth (UK). He is deputy director of IIT delegate to the international relations and external funding. In this role he is member of the board of directors of euRobotics aisbl, the European reference organization for robotics research. Giorgio Metta research activities are in the fields of biologically motivated and humanoid robotics and, in particular, in developing humanoid robots that can adapt and learn from experience. Giorgio Metta is author of approximately 200 scientific publications. He has been working as principal investigator and research scientist in about a dozen international as well as national funded projects.

HOST: Dr. Alexander F÷rster