Voronoi diagrams
generalizations and applications
in VLSI manufacturing

Evanthia Papadopoulou
IBM T.J. Watson Research Center
Overview

- **Voronoi diagram** – powerful mathematical object
 - Encountered in various application areas
 - Our contributions to the theory and application of Voronoi diagrams

- **VLSI Critical Area Extraction**
 - Important problem in VLSI yield prediction
 - Sensitivity of VLSI design to random defects during manufacturing – essential for IC manufacturing
 - Model and solve using generalizations of Voronoi diagrams

- **Hausdorff** Voronoi diagram
- **Higher order** Voronoi diagrams of segments

- IBM-Cadence **Voronoi CAA** tool for VLSI yield prediction
Voronoi diagram for n point-sites in the plane

- **Voronoi diagram**: partitioning into Voronoi regions
- **Voronoi region** of a site s is locus of points closer to s than to any other site
 - Planar graph: Voronoi edges, Voronoi vertices, Size $O(n)$, n = # sites
 - Interesting properties
 - Encodes nearest neighbor information

Delauney Triangulation
Voronoi diagram of segments

- Same concept, planar graph, linear size
 - Voronoi edges (bisectors) consist of line segments and parabolic arcs
 - Parabolic arcs – robustness issues – harder to use in practice
Voronoi diagram of disks / weighted points

- Apollonius graph

[http://www.cgal.org]
Voronoi diagram in the interior of a polygon is known as **medial axis**
- Sites: edges and vertices of the polygon
- Medial axis: skeleton of the polygon
Higher order Voronoi diagrams

- **kth order Voronoi region**: locus of points closest to a k-tuple of sites
 - Planar graph of size: $O(k(n-k))$, $n = \#$ sites
 - Encodes k nearest neighbor information
 - Studied mostly for points
 - [Lee 82, Chazelle & Edelsbrunner 87, Aurenhammer 90]
 - Segments [Papadopoulou ISAAC07]
Farthest Voronoi region of s: locus of points farther from s than any other site
- Unbounded regions only – size $O(n)$, $n = \#$ sites
- Studied mostly for points

[survey Aurenhammer & Klein 00]
Segments [Aurenhammer, Drysdale & Krasser 06]
Generalizations of Voronoi diagrams
[survey: Aurenhammer & Klein 00]

- Higher order and farthest Voronoi diagrams
- Different metric (non-euclidean) Voronoi diagrams
- Different types of sites
- Abstract Voronoi diagrams
 - Defined in terms of bisecting curves – not sites
- Voronoi diagrams in higher dimensions
 - Limited work
- Research in combinatorial/algorithmic aspects but also in implementation, application, and robustness issues
Voronoi Software

- Robust implementation efforts are relatively recent

- Basics available in **CGAL** -- Computational Geometry Algorithms Library -- open source project

- Site http://www.cgal.org
VLSI Critical Area Analysis

- **VLSI Yield**: Percentage of working chips over all chips manufactured
 - Very important consideration/limitation in today’s chip manufacturing
 - Factors of Yield loss: Random defects and Systematic defects

- **Random defects**: dust/contaminants on materials and equipment
 - Can result in considerable yield loss

- Prediction of yield loss due to random defects: **Critical Area Analysis**

- **Critical Area**: Measure reflecting the sensitivity of a VLSI design to random defects during manufacturing
 - Essential for IC manufacturing – DFM (design for manufacturing) initiatives under consideration
Examples of faults due to random defects

- Shorted Metal
- Open Metal
- Foreign Material Short
- Open Metal
Critical Area

- Critical Area:
 \[A_c = \int_0^\infty A(r)D(r)dr \]

 \(A(r) \): area where if a defect of radius \(r \) is centered causes a circuit failure

 \(D(r) \): density function of the defect size

\[D(r) = \frac{r_0^2}{r^3} \]

 Defect of size \(r \) = disk of radius \(r \)
A(r) -- **shorts** for **one** defect size r

Critical Area \(A_c = \int_0^\infty A(r)D(r)dr \) where \(D(r) = \frac{r_0^2}{r^3} \)
A(r) – open faults for one defect size r
(assuming no interconnect loops)
(broken shape = open fault)

Critical Area \[A_c = \int_0^\infty A(r)D(r) \, dr \]
where \[D(r) = \frac{r_0^2}{r^3} \]
Methods to compute Critical Area

- **Monte Carlo simulation**
 - [Initial work at IBM (see e.g. Stapper & Rosner Trans. Semic. Manuf. 95) also Walker & Director CMU 86 (VLASIC)]
 - Randomly draw large number of defects following $D(r)$
 - Check for faults
 - Oldest most widely implemented technique
 - Computationally intensive

- **Shape shifting** methods
 - [see e.g. AFFCA –Bubel et al DFT'95 , Allan& Walton TCAD99, Zachariah & Chacravarty TVLSI 00]
 - Based on shape expansion / shrinking
 - Many variants
 - Very expensive to compute $A(r)$ for medium/large r needed in integration
 - Quadratic number of expanded shape intersections. Repetition for different r

- **Statistical Layout sampling** in combination with shape-shifting techniques
 - [G. Allan TCAD00]
Methods to compute Critical Area

- **The Voronoi method**

 [Papadopoulou and Lee TCAD99, Papadopoulou TCAD01, Papadopoulou Algorithmica 04, Papadopoulou ISAAC07]

 - **Idea**: partition layout into regions where critical area integral can be easily computed (analytically)

 - **Critical area computation becomes trivial once appropriate Voronoi diagram derived**

 - Can be combined with layout sampling techniques for fast critical area estimate at chip level

 [IBM patent filing Papadopoulou et al. 2007]

 - Developed into the IBM **Voronoi CAA** tool – (now licenced to Cadence)

 - used extensively in production by IBM Manufacturing
 - Claim 60x throughput improvements over previously used tools

 [Maynard and Hibbeler ASMC'05]
Critical Area via Voronoi diagrams

- **Shorts:** $A_c \propto$ 2nd order Voronoi diagram of polygons (L_∞)
 [Papadopoulou & Lee T-CAD 99]

- **Simple Open Faults:** $A_c \propto$ Voronoi diagram of (weighted) segments (L_∞)
 [Papadopoulou T-CAD 01]

- **Via Blocks:** $A_c \propto$ Hausdorff Voronoi diagram (L_∞)
 [Papadopoulou T-CAD 01, Algorithmica 04]

- **General Open Faults:** $A_c \propto$ Higher order Voronoi diagram of (weighted) segments (L_∞)
 [Papadopoulou ISAAC 2007]

- **Analytical Critical Area integration** – no error
 - $O(n \log n)$ – type of algorithms in most cases

- **Critical Area Integral** = **Summation** of simple terms derived from Voronoi edges (for standard $D(r)$ and L_∞ metric)
 [Papadopoulou & Lee T-CAD 99, IJCGA 01]
Critical Area via Voronoi diagrams

- In more detail:
 - L_∞ metric
 - [Papadopoulou & Lee, IJCGA 01]
 - Hausdorff Voronoi diagram – used in critical area extraction for via blocks
 - [Papadopoulou, Algorithmica 04]
 - Higher order Voronoi diagram of segments – used in critical area extraction for open faults
 - [Papadopoulou, ISAAC07]
L_∞ metric

- Practical idea to overcome robustness issues in the construction of ordinary Voronoi diagram of segments: use L_∞ metric

\[
p = (x_p, y_p) \quad d_\infty(p, q) = \max \{ |x_p - x_q|, |y_p - y_q| \}
\]

- **L_∞ distance** between p,q: Side of min square touching p, q

- **L_∞ Critical Area** -- model defects as squares instead of circles
 - Square defects: very common (not formalized) practical simplification
Why L_∞?

- **Algorithmic degree**
 - Formalizes potential of algorithm for robust implementation
 - Degree d: Test computations evaluation of multivariate polynomials of arithmetic degree $\leq d$.
 - Test computations require bit precision: $db + O(1)$ (input b-bit integers)

 In-circle test (segments): degree ≤ 40
 [Burnikel 96]

 ![In-circle test](image)

 L_∞ in-circle test (segments): degree ≤ 5
 [Papadopoulou & Lee IJCGA 01]

 ![L_∞ in-circle test](image)

 VLSI shapes: typically ortho-45: degree 1

- L_∞ Voronoi diagram construction: significantly lower algorithmic degree
- Robust, faster, easier to derive implementation
Hausdorff Voronoi diagram

- **Given**: set S of clusters of points (or polygons) in the plane
- **Compute**: Voronoi diagram of S according to **Hausdorff distance**
- **Simplifies** to Voronoi diagram of S according to **farthest distance**

[Papadopoulou Algorithmica 04, Papadopoulou & Lee IJCGA 04]

$$d_f(t,P) = \max \{d(t,p), \forall p \in P\}$$

Hausdorff distance between t and $P = d_f(t,P)$
Subdivision into Hausdorff Voronoi regions

\[
\text{region}(P) = \{ x \mid d_f(x, P) < d_f(x, Q), \forall Q \in S, \ Q \neq P \}
\]

\text{region}(P): subdivided by farthest Voronoi diagram of } P
A Hausdorff Voronoi region need not be connected if clusters are crossing.
Hausdorff Voronoi diagram -- Previous work

- **The cluster Voronoi diagram:** [Guibas, Edelsbrunner & Sharir, D&CG 89]
 - Combinatorial bounds on size of diagram:
 - **Disjoint** convex hulls: size $O(n)$, $n = \#$ pts on convex hulls of S
 - **Arbitrary** clusters of points: size $O(n^2\alpha(n))$
 - α is the inverse Ackermann’s function
 - Lower bound for n intersecting segments: $\Omega(n^2)$
 - $O(n^2\alpha(n))$-algorithm

- **Closest covered set diagram:** [Abellanas, Hernandez, Klein, Neumann-Lara & Urrutia, D&CG 97]
 - **Disjoint** convex hulls – **general convex metrics**: size $O(n)$
 - Expected $O(kn \log n)$ – algorithm, k: time to compute Hausdorff bisector of 2 convex polygons
Hausdorff Voronoi diagram -- Our Results

[Papadopoulou, Algorithmica 04]

- **Tight combinatorial bound** in all cases: $\Theta(n+m)$
 - $n = \#$ pts on convex hulls of S
 - $m = \#$ supporting segments between crossing clusters
 - Expand linear bound from disjoint to a more general non-crossing case
 - Improve upper bound in general case
 - Derive matching lower bound

- **Plane sweep algorithm**: $O((n+K)\log n)$
 - K reflects $\#$ crossings and pairs of *interacting* clusters
 - K small in VLSI setting -- asymptotic bound is $K = O(n^2)$
 - L_∞ version implemented in the IBM Voronoi CAA tool
 - Early experimental results verify negligible K in practice [Papadopoulou, TCAD 01]
VLSI Via-blocks

- A via layer consists of isolated vias and clusters of redundant vias
 - via: square contact connecting shapes in different layers
- Redundant vias get identified and unified into single shapes (via-shapes) thus, a via layer is a collection of rectilinear shapes
- A defect is a **via-block** if it overlaps an **entire** via-shape

- Size of smallest via-block at point t: **farthest** distance of t from **nearest** via-shape ($d_f(t,P)$)
Voronoi diagram for via blocks

- **Via-layer**: Collection of via-shapes (rectilinear polygons)
- **Need**: a subdivision of via-layer into regions that reveal the critical radius for via blocks at every point
 - Critical radius at point \(t \): size of smallest defect causing a via-block
- **Hausdorff Voronoi diagram** of via layer
 - Measure distance from a via-shape according to farthest distance

\[L_\infty \text{ Hausdorff Voronoi diagram} \]
Hausdorff Voronoi diagram on a via layer

IBM Voronoi CAA – via blocks
VLSI Open Faults

- **Open Fault (open)**: defect breaking wire(s) resulting in an open circuit

- Yield loss due to open faults is becoming very important
- To increase design reliability to open faults designers are increasingly inserting redundant routes
- Create interconnect **loops** that may span over **several layers**
 - A defect breaking a wire (polygon) does not necessarily cause a fault
- Reduce potential for open faults at the expense of increasing potential for shorts – ability to perform trade-offs important

- **Critical Area extraction for opens** in the presence of **redundant interconnects** and **multilayer loops**
Open: a defect breaking a net

- **Net**: collection of interconnected shapes spanning over # of layers connecting **terminals**
 - **Functional net**: Terminal shapes remain interconnected
 - **Broken net**: at least 1 disconnected terminal
Formalizing critical area for open faults

- Model net as a graph
- Give a formal definition for an open
- Define Voronoi diagram for opens
Model a net as a graph – compact

- One node for each connected component on a conducting layer
- Edge joins 2 nodes if | contact connecting resp. components
- Terminal node: node containing terminal shapes
Model a net as a graph – expanded on layer X for critical area extraction on X

- **Expand** nodes of G(N) on layer X by their **medial axes**
 - Add approximate via-points on medial axis representing vias/contacts
 - Add edges between via-points and incident graph nodes

\[G(N, M1) : \]
\[G(N) \text{ expanded on } M1 \]
Model a net as a graph – Clean up trivial parts

- Compute **bi-connected components, bridges, articulation pts**
 - bi-connected component: sub-graph – any 2 edges lie on a common cycle
- Clean up trivial bridges / trivial articulation points
 - **Trivial**: removal does not disconnect terminal nodes
Open – formal definition

- **Minimal open**: Defect of minimal size **breaking a net**
 - **break**: disconnect terminals
 - Centered along bridge / articulation point (shown red)
 - Or breaks a biconnected component
- **Open**: Any defect entirely containing a minimal open
- **Cut**: Elements of biconnected component whose removal breaks net
Voronoi diagram for opens on layer X

- Subdivision of layer X into regions that reveal the **critical radius** for opens at every point
 - Critical radius at point t: size of smallest defect centered at t causing an open

- **Special higher order Voronoi diagram** of core (non-trivial) **medial axis elements** on layer X
 - Medial axis elements weighted with their distance from polygon boundary
 - Medial axis elements provide a unique decomposition into wire segments

- Will show example of 1$^{\text{st}}$ and 2$^{\text{nd}}$ order Voronoi diagram for opens
1st order Voronoi diagram for open faults

- **Voronoi diagram of core medial axis elements** on layer M1 (L_∞)
 - Medial axis elements weighted with their distance from polygon boundary
 - Vertices have priority over edges: assign equidistant regions to vertices
- **Red regions** – critical radius determined – belong to bridges/articulation pts
- **Non-red regions**: critical radius not known: compute higher order diagram
Higher order Voronoi diagram for open faults

- **Sites**: core (non-trivial) medial axis elements on layer X
 - medial axis edges and incident vertices are **different entities**
 - medial axis elements weighted with distance from wire boundary

- k^{th} order Voronoi diagram:
 - **Non-red region**: region of the same k nearest neighbors
 - **Red region**: same r, $1 \leq r \leq k$, nearest neighbors forming a **cut** for net N

- **Opens Voronoi diagram**: Minimum order k Voronoi diagram such that all regions are colored red.
2nd order Voronoi diagram for open faults

- Red regions: critical radius determined by the farthest cut element
Differences: higher order VD of segments (L_∞) vs higher order VD of points (Euclidean)

- The open portion of a segment cannot be considered as a higher order neighbor in the regions of its endpoints but not vice versa
 - Case of points is symmetric

- L_∞ metric: \exists regions equidistant from multiple elements
 - k-tuples owning 2 neighboring regions may differ > 1 element
 - Cannot happen in Euclidean case

- Segments are weighted
 - Weights are special – complication – but no combinatorial difference

- Maintain information on red regions (corresponding to cuts of bi-connected components)
Opens Voronoi diagram -- Iterative Construction

- Modify iterative approach to compute higher order Voronoi diagrams of points to accommodate the differences of segments
 - Non-trivial modifications - fundamental approach remains similar

- Combinatorial bounds (segments) remain the same as points
 - Size of order k Voronoi diagram: $O(k(n-k))$ [Points: Lee 82]
 - Construction time (iterative algorithm): $O(k^2n\log n)$

- At every iteration determine new red regions (cuts of biconnected components)
 - Non-trivial problem
Time complexity

- Time to compute the opens Voronoi diagram
 - $O(k^2 n \log n)$, to compute higher order Voronoi diagrams, where k is the max order Voronoi diagram computed,
 - $O(k^2 n^2)$, to determine new cuts (new red regions)
 - If $k \leq 2$, simplifies to $O(n \log n)$

- In practice net connectivity is low – iteration (k) expected short

- Enforce low iteration:
 - Once a sufficient set of cuts S (red regions) have been identified, stop and report the **Hausdorff Voronoi diagram** of S
Opens Voronoi diagram – Hausdorff Voronoi diagram of cuts

- Hausdorff Voronoi region of a cut C: locus of points closest to C, where

\[d(t, C) = \max \left\{ d(t, c), \forall c \in C \right\} \]
Critical radii for open faults

- Critical area integration can now be performed analytically (L_∞)
Summary

- Generalizations of Voronoi diagrams as motivated by the VLSI critical area analysis problem
 - Hausdorff Voronoi diagram
 - Higher order Voronoi diagrams of segments
 - Combinatorial structures of independent interest

- Integrated in **Voronoi CAA**: *IBM-Cadence Voronoi Critical Area Analysis Tool*
 - used extensively by IBM manufacturing for the prediction of yield
Current and future work

- **Geometric min cut problem** – motivated by the critical area problem
 - Given: a graph with some geometric flavor i.e. certain edges are embedded in the plane forming a planar subgraph
 - Embedded edges are vulnerable to defects that may create cuts to disconnect the graph
 - The size of a geometric cut is determined by the size of the smallest defect disconnecting the graph – not the number of edges in the cut
 - Find the minimum geometric cut – variations

- **Higher order Voronoi diagrams of segments/polygonal objects**
 - In critical area application segment endpoints are different entities than open portions of segments – simplifies the problem
 - Study higher order Voronoi diagram of segments in general
 - Only recent result for farthest segment Voronoi diagram

[Aurenhammer, Drysdale & Krasser 06]
Future Work

- **Voronoi** diagrams of segments/polygons under **movement**
 - Motivation: Critical Area improvement
 - Kinetic Voronoi diagrams have been considered only for points so far
 - Investigate kinetic Voronoi diagrams for segments

- **CGAL** open source project
 - Plane sweep construction of the L_∞ Voronoi diagram of polygonal objects
 - Very useful for VLSI applications – no plane sweep / other metrics available in CGAL so far
 - Hausdorff Voronoi diagram / Higher order Voronoi diagram of segments
Future Work

- Main research interest: **Design, Analysis, and Implementation** of **Algorithms** for realistic problems
 - Interest in algorithmic problems arising in application areas especially of geometric nature
 - Application area at IBM: VLSI Design Automation -- Manufacturing
 - Establish collaborations to engage in research of algorithmic problems in new application areas

- Interest in the theory of design and analysis of algorithms, sequential and parallel, approximation algorithms, but also in the experimental study of algorithms
- **Algorithm Engineering**: close gap between theoretically designed and studied algorithms and methods used in practice, especially heuristics.
Thank you